EVOLUTIONARY ROBOTICS Mitchell A. Potter and Alan C. Schultz, chairs EVOLUTIONARY ROBOTICS 1279 Creation of a Learning, Flying Robot by Means of Evolution Peter Augustsson Krister Wol® Peter Nordin Department of Physical Resource Theory, Complex Systems Group Chalmers University of Technology SE-412 96 GÄoteborg, Sweden E-mail: wol®,
[email protected] Abstract derivation of limb trajectories, is computationally ex- pensive and requires ¯ne-tuning of several parame- ters in the equations describing the inverse kinematics We demonstrate the ¯rst instance of a real [Wol® and Nordin, 2001] and [Nordin et al, 1998]. The on-line robot learning to develop feasible more general question is of course if machines, to com- flying (flapping) behavior, using evolution. plicated to program with conventional approaches, can Here we present the experiments and results develop their own skills in close interaction with the of the ¯rst use of evolutionary methods for environment without human intervention [Nordin and a flying robot. With nature's own method, Banzhaf, 1997], [Olmer et al, 1995] and [Banzhaf et evolution, we address the highly non-linear al, 1997]. Since the only way nature has succeeded in fluid dynamics of flying. The flying robot is flying is with flapping wings, we just treat arti¯cial or- constrained in a test bench where timing and nithopters. There have been many attempts to build movement of wing flapping is evolved to give such flying machines over the past 150 years1. Gustave maximal lifting force. The robot is assembled Trouve's 1870 ornithopter was the ¯rst to fly. Powered with standard o®-the-shelf R/C servomotors by bourdon tube fueled with gunpowder, it flew 70 me- as actuators.