PPH 2Nd Edn #23.Vp

Total Page:16

File Type:pdf, Size:1020Kb

PPH 2Nd Edn #23.Vp 43 Standard Medical Therapy for Postpartum Hemorrhage J. Unterscheider, F. Breathnach and M. Geary INTRODUCTION firm contraction of the organ. If severe haemorrhage has already set in, it is highly recommended that the drug should Failure of the uterus to contract and retract following be given by the intravenous route. For this purpose one-third childbirth has for centuries been recognized as the of the standard size ampoule may be injected or, for those most striking cause of postpartum hemorrhage (PPH) who wish accurate dosage, a special ampoule containing and complicates up to 10% of pregnancies globally. In 0.125 mg is manufactured. An effect may be looked for in less the developing world, PPH is responsible for one than one minute.’ maternal death every 7 minutes1. Another uterotonic agent, oxytocin, the hypothalamic In the 19th century, uterine atony was treated by polypeptide hormone released by the posterior pitu- intrauterine placement of various agents with the aim itary, was discovered in 1909 by Sir Henry Dale8 and of achieving a tamponade effect. ‘A lemon imperfectly synthesized in 1954 by du Vigneaud9. The develop- quartered’ or ‘a large bull’s bladder distended with ment of oxytocin constituted the first synthesis of water’ were employed for this purpose, with apparent a polypeptide hormone and gained du Vigneaud a success. Douching with vinegar or iron perchloride Nobel Prize for his work. was also reported2,3. Historically, the first uterotonic The third group of uterotonics comprises the ever- drugs were ergot alkaloids, followed by oxytocin and, expanding prostaglandin family. The prostaglandins finally, prostaglandins. were discovered in 1935 by a group led by Swedish Ergot, the alkaloid-containing product of the fun- physiologist Ulf von Euler10 who found that extracts gus Claviceps purpurea that grows on rye, was recog- of seminal vesicles or of human semen were capable of nized for centuries as having uterotonic properties and causing contraction of uterine tissue and lowering is the substance referred to by John Stearns in 1808 as blood pressure. The term ‘prostaglandin’ evolved from ‘pulvis parturiens’ (a powder [for] childbirth), at which von Euler’s belief that the active material came time it was used as an agent to accelerate labor4. By the exclusively from the prostate gland. This family of end of the 19th century, however, recognition of the ‘eicosanoids’, 20-carbon fatty acids, was subsequently potential hazards associated with ergot use in labor, found to be produced in a variety of tissues and namely its ability to cause uterine hyperstimulation capable of mediating a myriad of physiologic and and stillbirth, had tempered enthusiasm for its use. pathologic processes. Prostaglandins, by virtue of their Focus was diverted toward its role in preventing and ability to cause tetanic myometrial activity, are treating PPH at a time when, according to an 1870 increasingly used as adjunctive therapy to standard report, maternal mortality in England approached one oxytocin and ergometrine to treat PPH resulting from in 20 births5. uterine atony (see Section 8). Attempts to isolate the active alkaloids from ergot This chapter is devoted to critical evaluation of the were not successful until the early 20th century, when standard pharmacological methods available to treat Barber and Dale isolated ergotoxine in 19063. Initially uterine atony, with particular focus on agent selection thought to be a pure substance, this agent was sub- based on effectiveness, safety profile, ease of adminis- sequently found to comprise four alkaloids, and in tration, cost and applicability in low resource settings. 1935 Moir and Dudley were credited with isolating ergometrine, the active aqueous extract ‘to which ergot rightly owes its long-established reputation as UTERINE ATONY the pulvis parturiens’6,7. Moir reported on its clinical use in 1936, stating7: Powerful efficient contractions of the myometrium are ‘. the chief use of ergometrine is in the prevention and essential to arrest blood loss after delivery. The resul- treatment of postpartum haemorrhage. Here the ergometrine tant compression of the uterine vasculature serves to effect is seen at its best. If after the delivery of the placenta the halt the 800 ml/min blood flow in the placental bed. uterus is unduly relaxed, the administration of ergometrine, Recognition of a soft, boggy uterus in the setting of a 1 mg by mouth or 0.5 mg by injection, will quickly cause a postpartum bleed alerts the attendant to uterine atony. 355 POSTPARTUM HEMORRHAGE The particular contribution that uterine atony makes Recognizing the risks of pulmonary embolus and toward PPH is so well known that a universal reflex alloimmunization associated with blood transfusion, action when faced with excessive postpartum bleeding intraoperative cell salvage has recently been intro- is to induce uterine contraction using bimanual mas- duced into obstetric practice in cases where massive sage. Prompt recognition of this condition and institu- obstetric hemorrhage is anticipated or in the manage- tion of uterotonic therapy will effectively terminate ment of patients who decline blood transfusion (see the majority of cases of hemorrhage. Once effective Chapter 72). The fact that uterine atony occurs unpre- uterine contractility is established, persistent bleeding dictably in women with no identifiable predisposing should prompt the search for retained placental frag- risk factors underpins the need for strict protocols for ments, genital tract trauma or a bleeding diathesis. PPH management to be in place in every unit that Astute risk assessment is crucial in identifying provides obstetric care (see Chapters 40 and 41). women at increased risk of uterine atony, thereby allowing preventive measures to be instituted and for OXYTOCIN delivery to take place where transfusion and anesthetic facilities are available. That having been said, one must With timely and appropriate use of uterotonic remember that the majority of parturients with one or therapy, the majority of women with uterine atony more risk factors do not bleed excessively and, con- can avoid surgical intervention. Stimulation of uterine versely, large numbers of women with no risk factors contraction is usually achieved in the first instance experience true hemorrhage. by bimanual uterine massage and the injection of The established risk factors associated with uterine oxytocin (either intramuscularly or intravenously), atony are outlined in Table 1. It is worth noting that with or without ergometrine. The mode of action of multiparity, hitherto believed to be a significant risk oxytocin involves stimulation of the upper uterine factor, has not emerged as having an association with segment to contract in a rhythmical fashion. Owing to uterine atony in recent studies11–13. Whereas previous its short plasma half-life (mean 3 min), a continuous PPH confers a 2–4-fold increased risk of hemorrhage intravenous infusion is required in order to maintain compared to that in women without such a his- the uterus in a contracted state16. The usual dose tory13,14. The presence of leiomyomata may result in is 40 IU in 500 ml of saline, with the dosage rate more than a two-fold increase in the risk for PPH15. adjusted according to response (typical infusion rate It is appropriate that women with these predispos- 10 IU/h or 2 ml/min). When administered intrave- ing risk factors should deliver in a hospital with ade- nously, the onset of action is almost instantaneous and quate facilities to manage PPH. Prophylactic measures plateau concentration is achieved after 30 minutes. include appropriate hospital booking for women at By contrast, intramuscular administration results in a risk and correction of anemia before delivery, active slower onset of action (3–7 min) but a longer lasting management of the third stage of labor, ensuring the clinical effect (up to 60 min). availability of cross-matched blood and access to Metabolism of oxytocin is via the renal and hepatic interventional radiology services and critical care. routes. Its antidiuretic effect, amounting to 5% of the antidiuretic effect of the endogenous peptide hormone vasopressin, can result in water toxicity, especially if Table 1 Risk factors for uterine atony administered in large volumes of electrolyte-free solu- tions. This degree of water overload can manifest itself Factors associated with uterine overdistension Multiple pregnancy with headache, vomiting, drowsiness and convulsions. Polyhydramnios On the other hand, rapid intravenous bolus adminis- Fetal macrosomia tration of undiluted oxytocin results in relaxation of Labor-related factors vascular smooth muscle, which can lead to hypo- Induction of labor tension. The intravenous route is contraindicated in Prolonged labor known hypersensitivity or profound hypotension. It is Precipitate labor therefore best given intramuscularly or by dilute intra- Augmented labor venous infusion. Oxytocin is stable at temperatures up Instrumental delivery ° Manual removal of placenta to 25 C, but refrigeration is recommended if stored for extended periods to prolong its shelf-life. Use of uterine relaxants Disadvantages of oxytocin are its short half-life, Deep anesthesia (especially halogenated anesthetic agents) Magnesium sulfate the requirement for parenteral administration, and the Nitroglycerin need for refrigeration for storage. The use and re-use of syringes in low resource settings carry the risk of Intrinsic factors Previous postpartum
Recommended publications
  • E001466.Full.Pdf
    Editorial BMJ Glob Health: first published as 10.1136/bmjgh-2019-001466 on 11 April 2019. Downloaded from WHO recommendations on uterotonics for postpartum haemorrhage prevention: what works, and which one? Joshua P Vogel, 1,2 Myfanwy Williams,3 Ioannis Gallos,4 Fernando Althabe,1 Olufemi T Oladapo1 To cite: Vogel JP, THE GLOBAL BURDEN OF POSTPARTUM trials of tranexamic acid for PPH treatment Williams M, Gallos I, et al. HAEMORRHAGE and a heat-stable formulation of carbetocin WHO recommendations on 6–12 uterotonics for postpartum Obstetric haemorrhage, especially post- for PPH prevention. The increasing haemorrhage prevention: partum haemorrhage (PPH), was responsible number of PPH prevention and management what works, and which for more than a quarter of the estimated 303 options makes it challenging for providers one?BMJ Glob Health 000 maternal deaths that occurred globally in and health system stakeholders to choose 2019;4:e001466. doi:10.1136/ 2015.1 PPH—commonly defined as a blood where and how to invest limited resources in bmjgh-2019-001466 loss of 500 mL or more within 24 hours after order to optimise health outcomes. birth—affects about 6% of all women giving Multiple uterotonics have been eval- Handling editor Seye Abimbola birth.1 Uterine atony is the most common uated for PPH prevention over the past Received 4 February 2019 cause of PPH, but it can also be caused by four decades, including oxytocin receptor Revised 10 March 2019 genital tract trauma, retained placental tissue agonists (oxytocin and carbetocin), prosta- Accepted 16 March 2019 or maternal bleeding disorders. The majority glandin analogues (misoprostol, sulprostone, of women who experience PPH have no iden- carboprost), ergot alkaloids (such as ergo- tifiable risk factor, meaning that PPH preven- metrine/methylergometrine) and combina- tion programmes rely on universal use of PPH tions of these (oxytocin plus ergometrine, © Author(s) (or their prophylaxis for all women in the immediate or oxytocin plus misoprostol).
    [Show full text]
  • New Zealand Data Sheet
    NEW ZEALAND DATA SHEET 1. PRODUCT NAME PROSTIN 15M 250 microgram (µg)/mL Solution for Injection 2. QUALITATIVE AND QUANTITIATIVE COMPOSITION Each 1 mL contains 250 μg carboprost or 332 μg carboprost (as tromethamine). Excipient(s) with known effect Each 1 mL contains 9.45 mg/mL benzyl alcohol (added as preservative). For the full list of excipients, see section 6.1. 3. PHARMACEUTIAL FORM Solution for Injection. PROSTIN 15M is a clear colourless solution. 4. CLINCAL PARTICUALRS 4.1 Therapeutic indications PROSTIN 15M is indicated for the treatment of postpartum haemorrhage due to uterine atony which has not responded to conventional methods of management. Prior treatment should include the use of intravenously administered oxytocin, manipulative techniques such as uterine massage and, unless contraindicated, intramuscular ergot preparations. Studies have shown that in such cases, the use of PROSTIN 15M has resulted in satisfactory control of haemorrhage, although it is unclear whether or not ongoing or delayed effects of previously administered embolic agents have contributed to the outcome. In a high proportion of cases, PROSTIN 15M used in this manner has resulted in the cessation of life threatening bleeding and the avoidance of emergency surgical intervention. 4.2 Dose and method of administration Dose An initial dose of 250 µg (1 mL) is to be given by deep intramuscular injection. In clinical trials, it was found that the majority of successful cases (73%) responded to single injections. In some selected cases, however, multiple dosing at intervals of 15 to 90 minutes was carried out with successful outcome. The need for additional injections and the interval at which these should be given can be determined only by the attending physicians as dictated by the course of clinical events.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Eicosanoids & Platelet Activating Factor
    Eicosanoids & Platelet Activating Factor Prof. Sanjay Khattri Dept. of Pharmacology & Therapeutics King George’s Medical University, Lucknow 1 Autacoid These are the substances produced by wide variety of cells that act locally at the site of production. (local hormones) 2 Mediators of Inflammation and Immune reaction 1. Vasoactive amines (Histamine and Serotonin) 2.Eicosanoids 3.Platlet Activating Factor 4.Bradykinins 4.Nitric Oxide 5.Neuropeptides 6.Cytokinines 3 EICOSANOIDS PGs, TXs and LTs are all derived from eicosa (referring to 20 C atoms) tri/tetra/ penta enoic acids. Therefore, they can be collectively called eicosanoids. Major source: 5,8,11,14 eicosa tetraenoic acid (arachidonic acid). Other eicosanoids of increasing interest are: lipoxins and resolvins. The term prostanoid encompasses both prostaglandins and thromboxanes. 4 EICOSANOIDS Contd…. In most instances, the initial and rate-limiting step in eicosanoid synthesis is the liberation of intracellular arachidonate, usually in a one-step process catalyzed by the enzyme phospholipase A2 (PLA2). PLA2 generates not only arachidonic acid but also lysoglyceryl - phosphorylcholine (lyso-PAF), the precursor of platelet activating factor (PAF). 5 EICOSANOIDS Contd…. Corticosteroids inhibit the enzyme PLA2 by inducing the production of lipocortins (annexins). The free arachidonic acid is metabolised separately (or sometimes jointly) by several pathways, including the following: Cyclo-oxygenase (COX)- Two main isoforms exist, COX-1 and COX-2 Lipoxygenases- Several subtypes, which
    [Show full text]
  • Fetal Compromise (Acute): Management If Suspected This Document Should Be Read in Conjunction with the Disclaimer
    King Edward Memorial Hospital King Edward Memorial Hospital Obstetrics & Gynaecology Obstetrics & Gynaecology CLINICAL PRACTICE GUIDELINE Fetal compromise (acute): Management if suspected This document should be read in conjunction with the Disclaimer Aim To identify suspected or actual fetal compromise and initiate early intervention to promote placental and umbilical blood flow to decrease risk of hypoxia and acidosis. Key points1 1. Fetal compromise in labour may be due to a variety of pathologies including placental insufficiency, uterine hyperstimulation, maternal hypotension, cord compression and placental abruption. Identification and management of reversible abnormalities may prevent unnecessary intervention. 2. Continuous electronic cardiotocograph (CTG) monitoring should be commenced when fetal compromise is detected at the onset of labour or develops during labour. 3. A normal CTG is associated with a low probability of fetal compromise and has the following features: Baseline rate 110-160 bpm Baseline variability 6-25 bpm Accelerations of 15 bpm for 15 seconds No decelerations. 4. The following features are unlikely to be associated with fetal compromise when occurring in isolation: Baseline rate 100-109 bpm Absence of accelerations Early decelerations Variable decelerations without complicating features. 5. The following features may be associated with significant fetal compromise and require further action (see management section on next page): Baseline fetal tachycardia >160 bpm Reduced or reducing baseline variability
    [Show full text]
  • Product Monograph
    PRODUCT MONOGRAPH HEMABATE® STERILE SOLUTION (carboprost tromethamine injection USP) 250 µg/mL Prostaglandin Pfizer Canada Inc. Date of Revision: 17,300 Trans-Canada Highway February 21, 2014 Kirkland, Quebec H9J 2M5 Control No. 170114 ® Pfizer Enterprises SARL Pfizer Canada Inc, Licensee © Pfizer Canada Inc. 2014 Table of Contents PART I: HEALTH PROFESSIONAL INFORMATION ..........................................................3 SUMMARY OF PRODUCT INFORMATION ..................................................................3 INDICATIONS AND CLINICAL USE ..............................................................................3 CONTRAINDICATIONS ...................................................................................................4 WARNINGS AND PRECAUTIONS ..................................................................................4 ADVERSE REACTIONS ....................................................................................................7 DRUG INTERACTIONS ..................................................................................................10 DOSAGE AND ADMINISTRATION ..............................................................................11 OVERDOSAGE ................................................................................................................11 ACTION AND CLINICAL PHARMACOLOGY ............................................................12 STORAGE AND STABILITY ..........................................................................................12 DOSAGE
    [Show full text]
  • Preparation and Chiral HPLC Separation of the Enantiomeric Forms of Natural Prostaglandins
    Article Preparation and Chiral HPLC Separation of the Enantiomeric Forms of Natural Prostaglandins Márton Enesei 1,2,László Takács 2, Enik˝oTormási 3, Adrienn Tóthné Rácz 3, Zita Róka 3, Mihály Kádár 3 and Zsuzsanna Kardos 2,* 1 Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, M˝uegyetemrakpart 3, 1111 Budapest, Hungary; [email protected] 2 CHINOIN, a member of Sanofi Group, PG Development, Tó utca 1-5, 1045 Budapest, Hungary; laszlo.takacs@sanofi.com 3 CHINOIN, a member of Sanofi Group, PG Analytics, Tó utca 1-5, 1045 Budapest, Hungary; robertne.tormasi@sanofi.com (E.T.); adrienn.tothneracz@sanofi.com (A.T.R.); zita.roka@sanofi.com (Z.R.); mihaly.kadar@sanofi.com (M.K.) * Correspondence: zsuzsanna.kardos@sanofi.com Received: 15 June 2020; Accepted: 10 August 2020; Published: 18 August 2020 Abstract: Four enantiomeric forms of natural prostaglandins, ent-PGF α (( )-1), ent-PGE ((+)-2) 2 − 2 ent-PGF α (( )-3), and ent-PGE ((+)-4) have been synthetized in gram scale by Corey synthesis used 1 − 1 in the prostaglandin plants of CHINOIN, Budapest. Chiral HPLC methods have been developed to separate the enantiomeric pairs. Enantiomers of natural prostaglandins can be used as analytical standards to verify the enantiopurity of synthetic prostaglandins, or as biomarkers to study oxidation processes in vivo. Keywords: preparation; ent-PGF2α; ent-PGF1α; ent-PGE2; ent-PGE1; chiral HPLC; enantiomeric separation; mirror images; enantiopurity 1. Introduction Interest in the field of prostaglandins has been steadily growing since the basic work of Bergström Samuelsson, and Vane [1–3]. Their discoveries revealed the structure, the enzyme-controlled biochemical synthesis from arachidonic acid, and the main physiological effects of prostaglandins as well as their related substances.
    [Show full text]
  • 49 Medical Vs. Surgical Methods for Second Trimester Abortion
    49 Medical vs. surgical methods for second trimester abortion Lohr et al. (2008) compared dilatation and evacuation (D&E) to medical methods of abortion in the second trimester (≥ 13 weeks), specifically intra-amniotic installation of prostaglandin F2α and mifepristone and misoprostol. The outcomes considered were complications, side-effects, completion of abortion and patient satisfaction. Although this review is from 2008, it is considered up-to-date as a recent litera- ture review revealed no additional studies which would meet inclusion criteria. Only two trials were included, one addressing each comparison. Gestational age ranged from 13 to 20 weeks among included trials. The trial quality is rated as low, given only one trial is included in each comparison and for the D&E versus mifepristone and misoprostol comparison the trial was very small (n=18) and had a primary outcome (feasibility of randomising US women to one of two methods of abor- tion) differing from the outcomes assessed in the review. The review found that the incidence of combined minor and major complications was lower with D&E compared with installation of prostaglandin F2α (Table 33). Fewer women experienced adverse events with D&E compared with mifepristone combined with misoprostol, although there were no differences in efficacy between the two groups. These results should be interpreted with caution given they are based on one small trial (n=18). The authors conclude that D&E is superior to installation of prostaglandin F2α and that the limited available evidence also favours D&E over mifepristone and misoprostol for decreased rates of adverse events.
    [Show full text]
  • Postpartum Haemorrhage
    Guideline Postpartum Haemorrhage Immediate Actions Call for help and escalate as necessary Initiate fundal massage Focus on maternal resuscitation and identifying cause of bleeding Determine if placenta still in situ Tailor pharmacological management to causation and maternal condition (see orange box). Complete a SAS form when using carboprost. Pharmacological regimen (see flow sheet summary) Administer third stage medicines if not already done so. Administer ergometrine 0.25mg both IM and slow IV (contraindicated in hypertension) IF still bleeding: Administer tranexamic acid- 1g IV in 10mL via syringe driver set at 1mL/minute administered over 10 minutes OR as a slow push over 10 minutes. Administer carboprost 250micrograms (1mL) by deep intramuscular injection Administer loperamide 4mg PO to minimise the side-effect of diarrhoea Administer antiemetic ondansetron 4mg IV, if not already given Prophylaxis Once bleeding is controlled, administer misoprostol 600microg buccal and initiate an infusion of oxytocin 40IU in 1L Hartmann’s at a rate of 250mL/hr for 4 hours. Flow chart for management of PPH Carboprost Bakri Balloon Medicines Guide Ongoing postnatal management after a major PPH 1. Purpose This document outlines the guideline details for managing primary postpartum haemorrhage at the Women’s. Where processes differ between campuses, those that refer to the Sandringham campus are differentiated by pink italic text or have the heading Sandringham campus. For guidance on postnatal observations and care after a major PPH, please refer to the procedure ‘Postpartum Haemorrhage - Immediate and On-going Postnatal Care after Major PPH 2. Definitions Primary postpartum haemorrhage (PPH) is traditionally defined as blood loss greater than or equal to 500 mL, within 24 hours of the birth of a baby (1).
    [Show full text]
  • INTRODUCTION Effect of Different Dosages of Intravaginal Misoprostol
    Original Article Gynecology and Obstetrics Medical Journal of Islamic World Academy of Sciences Effect of Different Dosages of Intravaginal Misoprostol for Second Trimester Pregnancy Termination Maysoon Sharief1, Enaas S. Al-Khayat1 1Department of Gynecology and Obstetrics, College of Medicine, University of Basrah, Basrah, Iraq. ABSTRACT Miscarriage is a common complication of early pregnancy; however; curettage and dilation are considered standard methods taking care of early pregnancy failure. Misoprostol has been used as an alternative agent for termination of early pregnancy. Therefore, this study was aimed to compare the efficacy and side effects of two different intravaginal misoprostol trials for the second trimester pregnancy termination of missed miscarriage between 14 and 23 weeks. A clinical trial was carried out in Basrah Maternity & Children Hospital during the period from October 2011 to November 2012. A total of 100 women experienced missed miscarriages at 14-23 weeks of gestation were admitted for medical termination of pregnancy. Patients were divided into the following two groups: Group 1: 50 patients received 400 µg of intravaginal misoprostol/8 hours. Group 2: 50 patients received 800 µg of intravaginal misoprostol/8 hours. The patients were followed up for 24 hours. The primary outcome measure was induction-miscarriage interval; the secondary outcomes were the rate of successful miscarriage and complete miscarriage; the incidence of side effects was compared in both groups. The rates of successful termination of pregnancy in both groups 1 and 2 were 86% and 90%, respectively. The success rates of the drug in group 1 were 0%, 12%, 36%, 34%, 10%, and 4% after first, second, third, fourth, fifth, and sixth doses, respectively; whereas, the success rates in group 2 were 24%, 34%, 24%, 12%, 4%, and 0% after first, second, third, fourth, fifth, and sixth doses, respectively.
    [Show full text]
  • Disruption of Protein-Protein Interactions
    Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2016 Supplementary data Disruption of Protein-Protein Interactions: Hot spot detection, structure-based virtual screening and in vitro testing for anti-cancer drug target – Survivin Sailu Sarvagalla,a Chun Hei Antonio Cheung,b,c Ju-Ya Tsai,b Hsing Pang Hsieh,d and Mohane Selvaraj Coumara,* aCentre for Bioinformatics, School of Life Sciences, Pondicherry University, Kalapet, Puducherry 605014, India. bDepartment of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan R.O.C. cInstitute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan R.O.C. dInstitute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC. * Corresponding author: M.S. Coumar; Phone, +91-413-2654950; fax, +91-413-2655211; e-mail, [email protected] S1 Contents A. Figures....................................................................................................................................S3 B. Tables…………………………………………………………………………………….... S6 S2 a Borealin hot spots per-residue energy decomposition 1 0 -1 l -2 o m -3 / l a c -4 k -5 G Δ -6 -7 -8 -9 Residues b INCENP hot spots per-residue energy decomposition 0 l -0.5 o m -1 / l a c -1.5 k -2 G Δ -2.5 -3 Residues Figure S1. Hot spot residue-wise energy contribution for the complex (a) Borealin hot spot residues energy contribution and (b) INCENP protein hot spot residues energy contribution. S3 Figure S2. Mapping of the energetically important residues in CPC interface region. Hot spots, warm hot spots and null spots are represented in red, gold and light green color, respectively.
    [Show full text]
  • OBGYN-Study-Guide-1.Pdf
    OBSTETRICS PREGNANCY Physiology of Pregnancy: • CO input increases 30-50% (max 20-24 weeks) (mostly due to increase in stroke volume) • SVR anD arterial bp Decreases (likely due to increase in progesterone) o decrease in systolic blood pressure of 5 to 10 mm Hg and in diastolic blood pressure of 10 to 15 mm Hg that nadirs at week 24. • Increase tiDal volume 30-40% and total lung capacity decrease by 5% due to diaphragm • IncreaseD reD blooD cell mass • GI: nausea – due to elevations in estrogen, progesterone, hCG (resolve by 14-16 weeks) • Stomach – prolonged gastric emptying times and decreased GE sphincter tone à reflux • Kidneys increase in size anD ureters dilate during pregnancy à increaseD pyelonephritis • GFR increases by 50% in early pregnancy anD is maintaineD, RAAS increases = increase alDosterone, but no increaseD soDium bc GFR is also increaseD • RBC volume increases by 20-30%, plasma volume increases by 50% à decreased crit (dilutional anemia) • Labor can cause WBC to rise over 20 million • Pregnancy = hypercoagulable state (increase in fibrinogen anD factors VII-X); clotting and bleeding times do not change • Pregnancy = hyperestrogenic state • hCG double 48 hours during early pregnancy and reach peak at 10-12 weeks, decline to reach stead stage after week 15 • placenta produces hCG which maintains corpus luteum in early pregnancy • corpus luteum produces progesterone which maintains enDometrium • increaseD prolactin during pregnancy • elevation in T3 and T4, slight Decrease in TSH early on, but overall euthyroiD state • linea nigra, perineum, anD face skin (melasma) changes • increase carpal tunnel (median nerve compression) • increased caloric need 300cal/day during pregnancy and 500 during breastfeeding • shoulD gain 20-30 lb • increaseD caloric requirements: protein, iron, folate, calcium, other vitamins anD minerals Testing: In a patient with irregular menstrual cycles or unknown date of last menstruation, the last Date of intercourse shoulD be useD as the marker for repeating a urine pregnancy test.
    [Show full text]