Redalyc.Not Only Size Matters: Achene Morphology Affects Time of Seedling Emergence in Three Heterocarpic Species of Anacyclus (
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Molecular Identification of Commercialized Medicinal Plants in Southern Morocco
Molecular Identification of Commercialized Medicinal Plants in Southern Morocco Anneleen Kool1*., Hugo J. de Boer1.,A˚ sa Kru¨ ger2, Anders Rydberg1, Abdelaziz Abbad3, Lars Bjo¨ rk1, Gary Martin4 1 Department of Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden, 2 Department of Botany, Stockholm University, Stockholm, Sweden, 3 Laboratory of Biotechnology, Protection and Valorisation of Plant Resources, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco, 4 Global Diversity Foundation, Dar Ylane, Marrakech, Morocco Abstract Background: Medicinal plant trade is important for local livelihoods. However, many medicinal plants are difficult to identify when they are sold as roots, powders or bark. DNA barcoding involves using a short, agreed-upon region of a genome as a unique identifier for species– ideally, as a global standard. Research Question: What is the functionality, efficacy and accuracy of the use of barcoding for identifying root material, using medicinal plant roots sold by herbalists in Marrakech, Morocco, as a test dataset. Methodology: In total, 111 root samples were sequenced for four proposed barcode regions rpoC1, psbA-trnH, matK and ITS. Sequences were searched against a tailored reference database of Moroccan medicinal plants and their closest relatives using BLAST and Blastclust, and through inference of RAxML phylograms of the aligned market and reference samples. Principal Findings: Sequencing success was high for rpoC1, psbA-trnH, and ITS, but low for matK. Searches using rpoC1 alone resulted in a number of ambiguous identifications, indicating insufficient DNA variation for accurate species-level identification. Combining rpoC1, psbA-trnH and ITS allowed the majority of the market samples to be identified to genus level. -
Fruits: Kinds and Terms
FRUITS: KINDS AND TERMS THE IMPORTANT PART OF THE LIFE CYCLE OFTEN IGNORED Technically, fruits are the mature ovaries of plants that contain ripe seeds ready for dispersal • Of the many kinds of fruits, there are three basic categories: • Dehiscent fruits that split open to shed their seeds, • Indehiscent dry fruits that retain their seeds and are often dispersed as though they were the seed, and • Indehiscent fleshy fruits that turn color and entice animals to eat them, meanwhile allowing the undigested seeds to pass from the animal’s gut We’ll start with dehiscent fruits. The most basic kind, the follicle, contains a single chamber and opens by one lengthwise slit. The columbine seed pods, three per flower, are follicles A mature columbine follicle Milkweed seed pods are also large follicles. Here the follicle hasn’t yet opened. Here is the milkweed follicle opened The legume is a similar seed pod except it opens by two longitudinal slits, one on either side of the fruit. Here you see seeds displayed from a typical legume. Legumes are only found in the pea family Fabaceae. On this fairy duster legume, you can see the two borders that will later split open. Redbud legumes are colorful before they dry and open Lupine legumes twist as they open, projecting the seeds away from the parent The bur clover modifies its legumes by coiling them and providing them with hooked barbs, only opening later as they dry out. The rattlepods or astragaluses modify their legumes by inflating them for wind dispersal, later opening to shed their seeds. -
Achillea Millefolium L
SPECIES Achillea millefolium L. Tribe: Anthemideae Family: Asteraceae USDA CODE: Order: Asterales Subclass: Asteridae ACMI2 Class: Magnoliopsida FEIS CODE: D. Kopp 2009 San Bernardino Mtns. ACHMIL A. Montalvo 2010 Monterey Co. coast; tripinnate, pubescent form A. Montalvo 2010 Monterey Co. Subspecific taxa JepsonOnline 2010 and FNA 2010 do not recognize subspecific taxa of A. millefolium . The USDA PLANTS database (viewed Sept. 24, 2010) recognizes 12 subspecific taxa as occurring in North America: Taxon introduced and naturalized in North America (thought to be native to Europe): NRCS CODES: 1. A. m. L. var. millefolium 1. ACMIM2 Taxa native to California: 2. ACMIA 2. A. m. L. var. alpicola (Rydb.) Garrolt 3. ACMIA2 3. A. m. L. var. arenicola (Heller) Nobs 4. ACMIC 4. A. m. L. var. californica (Pollard) Jepson 5. ACMIG 5. A. m. L. var. gigantea (Pollard) Nobs 6. ACMIO 6. A. m. L. var. occidentalis (DC.) Hyl. 7. ACMIP 7. A. m. L. var. pacifica (Rydb.) G.N.Jones 8. ACMIP2 8. A. m. L. var. puberula (Rydb.) Nobs. 9. ACMIB Additional taxa outside California (mostly northerly): 10. ACMIL2 9. A. m. L. var. borealis (Bong.) Farw. 11. ACMIM5 10. A. m. L. var. litoralis (Ehrend.) Nobs 12. ACMIN 11. A. m. L. var. megacephala (Raup) Bolvin. 12. A. m. L. var. nigrescens E. Mey. Synonyms (USDA PLANTS) 2. A. alpicola (Rydb.) Rydb.; A. fusca Rydb.; A. lanulosa Nutt. ssp. alpicola (Rydb.) D.D. Keck; A. l. Nutt. var. alpicola Rydb.; A. m. L. var. fusca (Rydb.) G.N. Jones; A. subalpina Greene Taxa numbered as above 3. -
Literature Cited
Literature Cited Robert W. Kiger, Editor This is a consolidated list of all works cited in volumes 19, 20, and 21, whether as selected references, in text, or in nomenclatural contexts. In citations of articles, both here and in the taxonomic treatments, and also in nomenclatural citations, the titles of serials are rendered in the forms recommended in G. D. R. Bridson and E. R. Smith (1991). When those forms are abbre- viated, as most are, cross references to the corresponding full serial titles are interpolated here alphabetically by abbreviated form. In nomenclatural citations (only), book titles are rendered in the abbreviated forms recommended in F. A. Stafleu and R. S. Cowan (1976–1988) and F. A. Stafleu and E. A. Mennega (1992+). Here, those abbreviated forms are indicated parenthetically following the full citations of the corresponding works, and cross references to the full citations are interpolated in the list alphabetically by abbreviated form. Two or more works published in the same year by the same author or group of coauthors will be distinguished uniquely and consistently throughout all volumes of Flora of North America by lower-case letters (b, c, d, ...) suffixed to the date for the second and subsequent works in the set. The suffixes are assigned in order of editorial encounter and do not reflect chronological sequence of publication. The first work by any particular author or group from any given year carries the implicit date suffix “a”; thus, the sequence of explicit suffixes begins with “b”. Works missing from any suffixed sequence here are ones cited elsewhere in the Flora that are not pertinent in these volumes. -
Geropogon Hybridus (L.) Sch.Bip
Mathematisch-Naturwissenschaftliche Fakultät Christina M. Müller | Benjamin Schulz | Daniel Lauterbach | Michael Ristow | Volker Wissemann | Birgit Gemeinholzer Geropogon hybridus (L.) Sch.Bip. (Asteraceae) exhibits micro-geographic genetic divergence at ecological range limits along a steep precipitation gradient Suggested citation referring to the original publication: Plant Systematics and Evolution 303 (2017) 91–104 DOI https://doi.org/10.1007/s00606-016-1354-y ISSN (print) 0378-2697 ISSN (online) 1615-6110 Postprint archived at the Institutional Repository of the Potsdam University in: Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe ; 832 ISSN 1866-8372 https://nbn-resolving.org/urn:nbn:de:kobv:517-opus4-427061 DOI https://doi.org/10.25932/publishup-42706 Plant Syst Evol (2017) 303:91–104 DOI 10.1007/s00606-016-1354-y ORIGINAL ARTICLE Geropogon hybridus (L.) Sch.Bip. (Asteraceae) exhibits micro-geographic genetic divergence at ecological range limits along a steep precipitation gradient 1 2 3 4 Christina M. Mu¨ller • Benjamin Schulz • Daniel Lauterbach • Michael Ristow • 1 1 Volker Wissemann • Birgit Gemeinholzer Received: 11 March 2016 / Accepted: 9 September 2016 / Published online: 31 October 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract We analyzed the population genetic pattern of the study area, which indicates that reduced precipitation 12 fragmented Geropogon hybridus ecological range edge toward range edge leads to population genetic divergence. -
Albuca Spiralis
Flowering Plants of Africa A magazine containing colour plates with descriptions of flowering plants of Africa and neighbouring islands Edited by G. Germishuizen with assistance of E. du Plessis and G.S. Condy Volume 62 Pretoria 2011 Editorial Board A. Nicholas University of KwaZulu-Natal, Durban, RSA D.A. Snijman South African National Biodiversity Institute, Cape Town, RSA Referees and other co-workers on this volume H.J. Beentje, Royal Botanic Gardens, Kew, UK D. Bridson, Royal Botanic Gardens, Kew, UK P. Burgoyne, South African National Biodiversity Institute, Pretoria, RSA J.E. Burrows, Buffelskloof Nature Reserve & Herbarium, Lydenburg, RSA C.L. Craib, Bryanston, RSA G.D. Duncan, South African National Biodiversity Institute, Cape Town, RSA E. Figueiredo, Department of Plant Science, University of Pretoria, Pretoria, RSA H.F. Glen, South African National Biodiversity Institute, Durban, RSA P. Goldblatt, Missouri Botanical Garden, St Louis, Missouri, USA G. Goodman-Cron, School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, RSA D.J. Goyder, Royal Botanic Gardens, Kew, UK A. Grobler, South African National Biodiversity Institute, Pretoria, RSA R.R. Klopper, South African National Biodiversity Institute, Pretoria, RSA J. Lavranos, Loulé, Portugal S. Liede-Schumann, Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany J.C. Manning, South African National Biodiversity Institute, Cape Town, RSA A. Nicholas, University of KwaZulu-Natal, Durban, RSA R.B. Nordenstam, Swedish Museum of Natural History, Stockholm, Sweden B.D. Schrire, Royal Botanic Gardens, Kew, UK P. Silveira, University of Aveiro, Aveiro, Portugal H. Steyn, South African National Biodiversity Institute, Pretoria, RSA P. Tilney, University of Johannesburg, Johannesburg, RSA E.J. -
Strawberry Plant Structure and Growth Habit E
Strawberry Plant Structure and Growth Habit E. Barclay Poling Professor Emeritus, NC State University Campus Box 7609, Raleigh NC 27695-7609 Introduction The strawberry plant has a short thickened stem (called a “crown”) which has a growing point at the upper end and which forms roots at its base (Fig. 1). New leaves and flower clusters emerge from “fleshy buds” in the crown in the early spring. From a cultural viewpoint, it is desirable in our region to have the formation of 1-2 “side stems” called branch crowns form during the late fall (Fig. 2). Each branch crown will add to the yield of the main crown by producing its own “flower cluster” or what is technically called an inflorescence. Branch crowns and main crowns are structurally identical, and an inflorescence develops at the terminal growing point of each crown (Fig. 3). Crown growth and development occur when temperatures are above 50o F (mainly in the month of October). Average daily temperatures in November below this temperature will slow branch crown formation and floral development. Row covers may be a good option in November for Camarosa to help stimulate further reproductive development. A well-balanced Camarosa strawberry plant will form 3-5 branch crowns by the time fruiting season begins in the spring. There is excellent potential for a 2 + lb crop per plant (> 15 tons per acre) when you can see the formation of 1-2 side crowns in addition to the main crown (center) in late fall/early winter (Fig. 7). In Chandler and Camarosa it is critical not to plant too early in the fall and run the risk of having too many crowns form (try to avoid the development of more than 6 crowns per plant). -
Invasive Plant Species Early Detection in the San Francisco Bay Area Network 2013 Annual Report
National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Invasive Plant Species Early Detection in the San Francisco Bay Area Network 2013 Annual Report Natural Resource Data Series NPS/SFAN/NRDS—2015/758 ON THE COVER High priority target species of the San Francisco Bay Area Network Invasive Plant Species Early Detection program. Clockwise from top left: common wallaby grass (Rytidosperma caespitosum), largeleaf St. Johnswort (Hypericum grandifolium), licorice plant (Helichrysum petiolare), and Japanese knotweed (Fallopia japonica). Photograph by: by Eric Wrubel, NPS Invasive Plant Species Early Detection in the San Francisco Bay Area Network 2013 Annual Report Natural Resource Data Series NPS/SFAN/NRDS—2015/758 Eric Wrubel National Park Service San Francisco Bay Area Network Inventory & Monitoring Program Fort Cronkhite Building 1063 San Francisco, California 94965 February 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Data Series is used to disseminate results of scientific studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. -
Field Release of the Hoverfly Cheilosia Urbana (Diptera: Syrphidae)
USDA iiillllllllll United States Department of Field release of the hoverfly Agriculture Cheilosia urbana (Diptera: Marketing and Regulatory Syrphidae) for biological Programs control of invasive Pilosella species hawkweeds (Asteraceae) in the contiguous United States. Environmental Assessment, July 2019 Field release of the hoverfly Cheilosia urbana (Diptera: Syrphidae) for biological control of invasive Pilosella species hawkweeds (Asteraceae) in the contiguous United States. Environmental Assessment, July 2019 Agency Contact: Colin D. Stewart, Assistant Director Pests, Pathogens, and Biocontrol Permits Plant Protection and Quarantine Animal and Plant Health Inspection Service U.S. Department of Agriculture 4700 River Rd., Unit 133 Riverdale, MD 20737 Non-Discrimination Policy The U.S. Department of Agriculture (USDA) prohibits discrimination against its customers, employees, and applicants for employment on the bases of race, color, national origin, age, disability, sex, gender identity, religion, reprisal, and where applicable, political beliefs, marital status, familial or parental status, sexual orientation, or all or part of an individual's income is derived from any public assistance program, or protected genetic information in employment or in any program or activity conducted or funded by the Department. (Not all prohibited bases will apply to all programs and/or employment activities.) To File an Employment Complaint If you wish to file an employment complaint, you must contact your agency's EEO Counselor (PDF) within 45 days of the date of the alleged discriminatory act, event, or in the case of a personnel action. Additional information can be found online at http://www.ascr.usda.gov/complaint_filing_file.html. To File a Program Complaint If you wish to file a Civil Rights program complaint of discrimination, complete the USDA Program Discrimination Complaint Form (PDF), found online at http://www.ascr.usda.gov/complaint_filing_cust.html, or at any USDA office, or call (866) 632-9992 to request the form. -
Achene Micro-Morphology of Anthemis (Asteraceae) and Its Allies in Iran with Emphasis on Systematics
INTERNATIONAL JOURNAL OF AGRICULTURE & BIOLOGY 1560–8530/2007/09–3–486–488 http://www.fspublishers.org Achene Micro-morphology of Anthemis (Asteraceae) and its Allies in Iran with Emphasis on Systematics ABDOLKARIM CHEHREGANI1 AND NATEGHEH MAHANFAR Laboratory of Plant, Cell and Molecular Biology, Department of Biology, Faculty of Sciences, Bu-Ali University, Hamedan, Iran 1Correspondence author’s e-mail: [email protected] ABSTRACT Anthemideae is a large tribe of Astraceae and poses difficulties in recognizing and classifying its members based on morphological characters. This research was focused on evaluating achene peculiarities for systematic purpose. Achene micro- morphological characteristics such as size, shape, papuse, sulcuse, lacune, etc., were considered useful in species recognition. Lacunas characters in each studied taxa were specific and regarded as good separator character in the studied taxa of this tribe. Based on data, Tanacetum kotschyi was considered as a problematic species that needs to be studied further. Key Words: Anthemideae; Anthemis; SEM; Achene; Systematic INTRODUCTION were deposited in Tehran University Herbarium and Bu-Ali Sina University (Table I). The achenes were coated with a Anthemideae is the seventh largest tribe of Asteraceae thin layer of gold-paladium and studied with a JEOL-840 with about 109 genera and 1740 species worldwide Scanning Electron Microscope (Japan) at Sanati Sharif (Bremer, 1994; Tahir et al., 2002). The tribe and shows a University, Tehran, Iran. Achene morphological and micro- temperate distribution (Heywood & Humphries, 1977; morphological characters such as size, shape, papuse, Bremer & Humphries, 1993; Francisco-Ortega et al., 2001). sulcuse, lacune and etc., were compared with prepared The members of this tribe have been studied by several micrograph. -
Genetic Diversity and Evolution in Lactuca L. (Asteraceae)
Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis committee Promotor Prof. Dr M.E. Schranz Professor of Biosystematics Wageningen University Other members Prof. Dr P.C. Struik, Wageningen University Dr N. Kilian, Free University of Berlin, Germany Dr R. van Treuren, Wageningen University Dr M.J.W. Jeuken, Wageningen University This research was conducted under the auspices of the Graduate School of Experimental Plant Sciences. Genetic diversity and evolution in Lactuca L. (Asteraceae) from phylogeny to molecular breeding Zhen Wei Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 25 January 2016 at 1.30 p.m. in the Aula. Zhen Wei Genetic diversity and evolution in Lactuca L. (Asteraceae) - from phylogeny to molecular breeding, 210 pages. PhD thesis, Wageningen University, Wageningen, NL (2016) With references, with summary in Dutch and English ISBN 978-94-6257-614-8 Contents Chapter 1 General introduction 7 Chapter 2 Phylogenetic relationships within Lactuca L. (Asteraceae), including African species, based on chloroplast DNA sequence comparisons* 31 Chapter 3 Phylogenetic analysis of Lactuca L. and closely related genera (Asteraceae), using complete chloroplast genomes and nuclear rDNA sequences 99 Chapter 4 A mixed model QTL analysis for salt tolerance in -
5. Tribe CICHORIEAE 菊苣族 Ju Ju Zu Shi Zhu (石铸 Shih Chu), Ge Xuejun (葛学军); Norbert Kilian, Jan Kirschner, Jan Štěpánek, Alexander P
Published online on 25 October 2011. Shi, Z., Ge, X. J., Kilian, N., Kirschner, J., Štěpánek, J., Sukhorukov, A. P., Mavrodiev, E. V. & Gottschlich, G. 2011. Cichorieae. Pp. 195–353 in: Wu, Z. Y., Raven, P. H. & Hong, D. Y., eds., Flora of China Volume 20–21 (Asteraceae). Science Press (Beijing) & Missouri Botanical Garden Press (St. Louis). 5. Tribe CICHORIEAE 菊苣族 ju ju zu Shi Zhu (石铸 Shih Chu), Ge Xuejun (葛学军); Norbert Kilian, Jan Kirschner, Jan Štěpánek, Alexander P. Sukhorukov, Evgeny V. Mavrodiev, Günter Gottschlich Annual to perennial, acaulescent, scapose, or caulescent herbs, more rarely subshrubs, exceptionally scandent vines, latex present. Leaves alternate, frequently rosulate. Capitulum solitary or capitula loosely to more densely aggregated, sometimes forming a secondary capitulum, ligulate, homogamous, with 3–5 to ca. 300 but mostly with a few dozen bisexual florets. Receptacle naked, or more rarely with scales or bristles. Involucre cylindric to campanulate, ± differentiated into a few imbricate outer series of phyllaries and a longer inner series, rarely uniseriate. Florets with 5-toothed ligule, pale yellow to deep orange-yellow, or of some shade of blue, including whitish or purple, rarely white; anthers basally calcarate and caudate, apical appendage elongate, smooth, filaments smooth; style slender, with long, slender branches, sweeping hairs on shaft and branches; pollen echinolophate or echinate. Achene cylindric, or fusiform to slenderly obconoidal, usually ribbed, sometimes compressed or flattened, apically truncate, attenuate, cuspi- date, or beaked, often sculptured, mostly glabrous, sometimes papillose or hairy, rarely villous, sometimes heteromorphic; pappus of scabrid [to barbellate] or plumose bristles, rarely of scales or absent.