Aggregate Matrix-Analytic Techniques and Their Applications

Total Page:16

File Type:pdf, Size:1020Kb

Aggregate Matrix-Analytic Techniques and Their Applications W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2002 Aggregate matrix-analytic techniques and their applications Alma Riska College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Computer Sciences Commons Recommended Citation Riska, Alma, "Aggregate matrix-analytic techniques and their applications" (2002). Dissertations, Theses, and Masters Projects. Paper 1539623412. https://dx.doi.org/doi:10.21220/s2-ky81-f151 This Dissertation is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. U MI MICROFILMED 2003 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with with permission permission of the of copyright the copyright owner. owner.Further reproductionFurther reproduction prohibited without prohibited permission. without permission. Aggregate matrix-analytic techniques and their applications A Dissertation Presented to The Faculty of the Department of Computer Science The College of William k Mary in Virginia In Partial Fulfillment Of the Requirements for the Degree of Doctor of Philosophy by Alma Riska 2002 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. APPROVAL SHEET This dissertation is submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy A. Riska Approved, November 2002 wgema Smirm Thesis Advisor Gianfranco Ciardo /KdJT VVeizhen Mao Xiaodong Zhang / !/ / Mark SquiMante lM T.J. Watson Research Center ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission To my father and the memory of my mother iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Table of Contents Acknowledgments xi List of Tables xiii List of Figures xx Abstract xxi 1 Introduction 2 1.1 Contributions ........................................................................................... 4 1.2 Organization ........................................................................................... 6 2 Background 8 2.1 Basic notation ........................................................................................... 9 2.1.1 Kendall N otation .......................................................................... 10 2.2 Random variables ..................................................................................... 12 2.2.1 Exponential distribution .............................................................. 13 2.2.2 Variations of exponential distribution ........................................ 14 iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 2.3 Heavy tailed distributions ...................................................................... 15 2.4 Markov processes .................................................................................... 18 2.4.1 Discrete time Markov chains (D TM Cs) ...................................... 18 2.4.2 Continuous time Markov chains (C TM C s) ................................ 21 2.5 Markov chains with repetitive structure ................................................ 22 2.5.1 Quasi birth-death processes ........................................................ 23 2.5.2 GI/M/l-type processes ................................................................. 26 2.5.3 M/G/1-type processes ................................................................. 28 2.5.4 GI/G/l-type processes ................................................................. 29 2.6 Phase-type distributions ......................................................................... 30 2.6.1 Fitting algorithms for PH distributions ...................................... 33 2.6.1.1 EM A lgorithm .............................................................. 33 2.6.1.2 Feldmann-YVhitt (FW) Algorithm ................................. 35 2.7 Markovian Arrival Process ...................................................................... 36 2.7.1 Fitting techniques for M A Ps ........................................................ 38 2.8 Aggregation techniques ............................................................................ 38 2.8.1 Exact aggregation and decomposition ........................................ 40 2.8.2 Stochastic complementation ........................................................ 42 2.9 Chapter summary .................................................................................... 46 3 Matrix-Analytic Methods 48 3.1 Matrix geometric solutions for GI/M/1-type and QBD processes . 50 v Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 3.1.1 Additional measures of in te re s t .................................................. 52 3.2 Why does a geometric relation hold for QBD processes? ........................ 54 3.3 Generalization: geometric solution for the GI/M/1 processes ............... 58 3.4 Why M /G /l processes are more difficu lt .............................................. 61 3.5 Example: a BMAP1 /C0 X2 /I q u eu e....................................................... 61 3.6 Generalization: derivation of Ramaswami’s recursive form ula ................ 65 3.7 General solution of M/G/1-type processes ........................................... 68 3.7.1 Ramaswami’s formula .................................................................. 69 3.7.2 Explicit computation of G ........................................................... 71 3.7.3 Fast FFT Ramaswami's formula .................................................. 71 3.8 Explicit computation of R for Q B D s ..................................................... 75 3.9 Conditions for stability ............................................................................. 77 3.10 Chapter summary ...................................................................................... 79 4 Data Fitting Algorithms 81 4.1 Long-tailed behavior ................................................................................ 82 4.2 D&C E M .................................................................................................. 86 4.2.1 D&C EM experimental re s u lts .................................................. 88 4.2.1.1 TVaces............................................................................ 89 4.2.1.2 D&C EM statistical analysis .................................... 90 4.2.2 D&C EM queueing system analysis ......................................... 94 4.2.3 Computational efficiency of D&C E M ...................................... 96 vi Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 4.2.4 Refined D&C EM fitting algorithm ...................................... 97 4.2.4.1 Results with the refined D&C E M ............................. 100 4.3 D&C M M ................................................................................................. 102 4.4 MAP fitting algorithm ............................................................................ 105 4.4.1 Hidden Markov model for parameter estim ate .................... 107 4.4.2 Generation of MAP from HMM o u tp u t ................................ I ll 4.4.3 Experimental re su lts ............................................................... 115 4.4.3.1 Traces............................................................................. 115 4.4.3.2 Experimental settin g ..................................................... 116 4.4.3.3 Peak TYaffic Period (Trace A ) ...................................... 117 4.4.3.4 Off-Peak TVaffic Period (TVace B ) ................................ 122 4.4.3.5 Strong Long-Range Dependence (Trace C ) ................ 124 4.5 Chapter summary ..................................................................................... 127 5 ETAQA Methodology 128 5.1 E taqa - M / G / 1 ................................................................................................ 130 5.1.1 Computing measures of interest for M/G/ 1-type processes . 137 5.1.2 Time and storage complexity .................................................... 142 5.2 E taqa -G I/M /1 ................................................................................................ 146 5.2.1 Computing measures of interest for GI/M/1-type processes . 149 5.2.2 Time and storage complexity .................................................... 150 5.3 E taqa -QBD ................................................................................................... 154 vii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. 5.3.1 Computing measures of interest for QBD processes ............... 155 5.3.2 Time and storage complexity ................................................... 157 5.4 Computational efficiency ........................................................................ 160 5.5 Numerical stability of the m ethod ......................................................... 163 5.6 MAMSolver ............................................................................................. 170 5.6.1 MAMSolver input and o u
Recommended publications
  • Superregular Matrices and Applications to Convolutional Codes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositório Institucional da Universidade de Aveiro Superregular matrices and applications to convolutional codes P. J. Almeidaa, D. Nappa, R.Pinto∗,a aCIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Aveiro, Portugal. Abstract The main results of this paper are twofold: the first one is a matrix theoretical result. We say that a matrix is superregular if all of its minors that are not trivially zero are nonzero. Given a a × b, a ≥ b, superregular matrix over a field, we show that if all of its rows are nonzero then any linear combination of its columns, with nonzero coefficients, has at least a − b + 1 nonzero entries. Secondly, we make use of this result to construct convolutional codes that attain the maximum possible distance for some fixed parameters of the code, namely, the rate and the Forney indices. These results answer some open questions on distances and constructions of convolutional codes posted in the literature [6, 9]. Key words: convolutional code, Forney indices, optimal code, superregular matrix 2000MSC: 94B10, 15B33, 15B05 1. Introduction Several notions of superregular matrices (or totally positive) have appeared in different areas of mathematics and engineering having in common the specification of some properties regarding their minors [2, 3, 5, 11, 14]. In the context of coding theory these matrices have entries in a finite field F and are important because they can be used to generate linear codes with good distance properties.
    [Show full text]
  • Queueing-Theoretic Solution Methods for Models of Parallel and Distributed Systems·
    1 Queueing-Theoretic Solution Methods for Models of Parallel and Distributed Systems· Onno Boxmat, Ger Koolet & Zhen Liui t CW/, Amsterdam, The Netherlands t INRIA-Sophia Antipolis, France This paper aims to give an overview of solution methods for the performance analysis of parallel and distributed systems. After a brief review of some important general solution methods, we discuss key models of parallel and distributed systems, and optimization issues, from the viewpoint of solution methodology. 1 INTRODUCTION The purpose of this paper is to present a survey of queueing theoretic methods for the quantitative modeling and analysis of parallel and distributed systems. We discuss a number of queueing models that can be viewed as key models for the performance analysis and optimization of parallel and distributed systems. Most of these models are very simple, but display an essential feature of dis­ tributed processing. In their simplest form they allow an exact analysis. We explore the possibilities and limitations of existing solution methods for these key models, with the purpose of obtaining insight into the potential of these solution methods for more realistic complex quantitative models. As far as references is concerned, we have restricted ourselves in the text mainly to key references that make a methodological contribution, and to sur­ veys that give the reader further access to the literature; we apologize for any inadvertent omissions. The reader is referred to Gelenbe's book [65] for a general introduction to the area of multiprocessor performance modeling and analysis. Stochastic Petri nets provide another formalism for modeling and perfor­ mance analysis of discrete event systems.
    [Show full text]
  • M/M/C Queue with Two Priority Classes
    Submitted to Operations Research manuscript (Please, provide the mansucript number!) M=M=c Queue with Two Priority Classes Jianfu Wang Nanyang Business School, Nanyang Technological University, [email protected] Opher Baron Rotman School of Management, University of Toronto, [email protected] Alan Scheller-Wolf Tepper School of Business, Carnegie Mellon University, [email protected] This paper provides the first exact analysis of a preemptive M=M=c queue with two priority classes having different service rates. To perform our analysis, we introduce a new technique to reduce the 2-dimensionally (2D) infinite Markov Chain (MC), representing the two class state space, into a 1-dimensionally (1D) infinite MC, from which the Generating Function (GF) of the number of low-priority jobs can be derived in closed form. (The high-priority jobs form a simple M=M=c system, and are thus easy to solve.) We demonstrate our methodology for the c = 1; 2 cases; when c > 2, the closed-form expression of the GF becomes cumbersome. We thus develop an exact algorithm to calculate the moments of the number of low-priority jobs for any c ≥ 2. Numerical examples demonstrate the accuracy of our algorithm, and generate insights on: (i) the relative effect of improving the service rate of either priority class on the mean sojourn time of low-priority jobs; (ii) the performance of a system having many slow servers compared with one having fewer fast servers; and (iii) the validity of the square root staffing rule in maintaining a fixed service level for the low priority class.
    [Show full text]
  • Reed-Solomon Code and Its Application 1 Equivalence
    IERG 6120 Coding Theory for Storage Systems Lecture 5 - 27/09/2016 Reed-Solomon Code and Its Application Lecturer: Kenneth Shum Scribe: Xishi Wang 1 Equivalence of Codes Two linear codes are said to be equivalent if one of them can be obtained from the other by means of a sequence of transformations of the following types: (i) a permutation of the positions of the code; (ii) multiplication of symbols in a fixed position by a non-zero scalar in F . Note that these transformations can be applied to all code symbols. 2 Reed-Solomon Code In RS code each symbol in the codewords is the evaluation of a polynomial at one point α, namely, 2 1 3 6 α 7 6 2 7 6 α 7 f(α) = c0 c1 c2 ··· ck−1 6 7 : 6 . 7 4 . 5 αk−1 The whole codeword is given by n such evaluations at distinct points α1; ··· ; αn, 2 1 1 ··· 1 3 6 α1 α2 ··· αn 7 6 2 2 2 7 6 α1 α2 ··· αn 7 T f(α1) f(α2) ··· f(αn) = c0 c1 c2 ··· ck−1 6 7 = c G: 6 . .. 7 4 . 5 k−1 k−1 k−1 α1 α2 ··· αn G is the generator matrix of RSq(n; k; d) code. The order of writing down the field elements α1 to αn is not important as far as the code structure is concerned, as any permutation of the αi's give an equivalent code. i j=1;:::;n The generator matrix G is a Vandermonde matrix, which is of the form [aj]i=0;:::;k−1.
    [Show full text]
  • A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 8-2013 A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types Shuping Zhang [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Management Sciences and Quantitative Methods Commons Recommended Citation Zhang, Shuping, "A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types. " PhD diss., University of Tennessee, 2013. https://trace.tennessee.edu/utk_graddiss/2503 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Shuping Zhang entitled "A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Management Science. Mandyam M. Srinivasan, Melissa Bowers, Major Professor We have read this dissertation and recommend its acceptance: Ken Gilbert, Theodore P. Stank Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) A Simple, Practical Prioritization Scheme for a Job Shop Processing Multiple Job Types A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Shuping Zhang August 2013 Copyright © 2013 by Shuping Zhang All rights reserved.
    [Show full text]
  • (Thesis Proposal) Takayuki Osogami
    Resource Allocation Solutions for Reducing Delay in Distributed Computing Systems (Thesis Proposal) Takayuki Osogami Department of Computer Science Carnegie Mellon University [email protected] April, 2004 Committee members: Mor Harchol-Balter (Chair) Hui Zhang Bruce Maggs Alan Scheller-Wolf (Tepper School of Business) Mark Squillante (IBM Research) 1 Introduction Waiting time (delay) is a source of frustration for users who receive service via computer or communication systems. This frustration can result in lost revenue, e.g., when a customer leaves a commercial web site to shop at a competitor's site. One obvious way to decrease delay is simply to buy (more expensive) faster machines. However, we can also decrease delay for free with given resources by making more efficient use of resources and by better scheduling jobs (i.e., by changing the order of jobs to be processed). For single server systems, it is well understood how to minimize mean delay, namely by the shortest remaining processing time first (SRPT) scheduling policy. SRPT can provide mean delay an order of magnitude smaller than a naive first come first serve (FCFS) scheduling policy. Also, the mean delay under various scheduling policies, including SRPT and FCFS, can be easily analyzed for a relatively broad class of single server systems (M/GI/1 queues). However, utilizing the full potential computing power of multiserver systems and analyzing their performance are much harder problems than for the case of a single server system. Despite the ubiquity of multiserver systems, it is not known how we should assign jobs to servers and how we should schedule jobs within each server to minimize the mean delay in multiserver systems.
    [Show full text]
  • Linear Block Codes Vector Spaces
    Linear Block Codes Vector Spaces Let GF(q) be fixed, normally q=2 • The set Vn consisting of all n-dimensional vectors (a n-1, a n-2,•••a0), ai ∈ GF(q), 0 ≤i ≤n-1 forms an n-dimensional vector space. • In Vn, we can also define the inner product of any two vectors a = (a n-1, a n-2,•••a0) and b = (b n-1, b n-2,•••b0) n−1 i ab= ∑ abi i i=0 • If a•b = 0, then a and b are said to be orthogonal. Linear Block codes • Let C ⊂ Vn be a block code consisting of M codewords. • C is said to be linear if a linear combination of two codewords C1 and C2, a 1C1+a 2C2, is still a codeword, that is, C forms a subspace of Vn. a 1, ∈ a2 GF(q) • The dimension of the linear block code (a subspace of Vn) is denoted as k. M=qk. Dual codes Let C ⊂Vn be a linear code with dimension K. ┴ The dual code C of C consists of all vectors in Vn that are orthogonal to every vector in C. The dual code C┴ is also a linear code; its dimension is equal to n-k. Generator Matrix Assume q=2 Let C be a binary linear code with dimension K. Let {g1,g2,…gk} be a basis for C, where gi = (g i(n-1) , g i(n-2) , … gi0 ), 1 ≤i≤K. Then any codeword Ci in C can be represented uniquely as a linear combination of {g1,g2,…gk}.
    [Show full text]
  • On a Class of Matrices with Low Displacement Rank M
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Linear Algebra and its Applications 325 (2001) 161–176 www.elsevier.com/locate/laa On a class of matrices with low displacement rank M. Barnabei∗, L.B. Montefusco Department of Mathematics, University of Bologna, Piazza di Porta S. Donato, 5 40127 Bologna, Italy Received 5 June 2000; accepted 5 September 2000 Submitted by L. Elsner Abstract AmatrixA such that, for some matrices U and V, the matrix AU − VAor the matrix A − VAU has a rank which is small compared with the order of the matrix is called a matrix with displacement structure. In this paper the authors single out a new class of matrices with dis- placement structure—namely, finite sections of recursive matrices—which includes the class of finite Hurwitz matrices, widely used in computer graphics. For such matrices it is possible to give an explicit evaluation of the displacement rank and an algebraic description, and hence a stable numerical evaluation, of the corresponding generators. The generalized Schur algorithm can therefore be used for the fast factorization of some classes of such matrices, and exhibits a backward stable behavior. © 2001 Elsevier Science Inc. All rights reserved. AMS classification: 65F05; 65F30; 15A23; 15A57 Keywords: Recursive matrices; Displacement structure; Fast factorization algorithm; Stability 1. Introduction It is well known that the notion of matrix with displacement structure is used in the literature to define classes of matrices for which fast O(n2) factorization algorithms can be given (see, e.g., [9]).
    [Show full text]
  • Chapter 2: Linear Algebra User's Manual
    Preprint typeset in JHEP style - HYPER VERSION Chapter 2: Linear Algebra User's Manual Gregory W. Moore Abstract: An overview of some of the finer points of linear algebra usually omitted in physics courses. May 3, 2021 -TOC- Contents 1. Introduction 5 2. Basic Definitions Of Algebraic Structures: Rings, Fields, Modules, Vec- tor Spaces, And Algebras 6 2.1 Rings 6 2.2 Fields 7 2.2.1 Finite Fields 8 2.3 Modules 8 2.4 Vector Spaces 9 2.5 Algebras 10 3. Linear Transformations 14 4. Basis And Dimension 16 4.1 Linear Independence 16 4.2 Free Modules 16 4.3 Vector Spaces 17 4.4 Linear Operators And Matrices 20 4.5 Determinant And Trace 23 5. New Vector Spaces from Old Ones 24 5.1 Direct sum 24 5.2 Quotient Space 28 5.3 Tensor Product 30 5.4 Dual Space 34 6. Tensor spaces 38 6.1 Totally Symmetric And Antisymmetric Tensors 39 6.2 Algebraic structures associated with tensors 44 6.2.1 An Approach To Noncommutative Geometry 47 7. Kernel, Image, and Cokernel 47 7.1 The index of a linear operator 50 8. A Taste of Homological Algebra 51 8.1 The Euler-Poincar´eprinciple 54 8.2 Chain maps and chain homotopies 55 8.3 Exact sequences of complexes 56 8.4 Left- and right-exactness 56 { 1 { 9. Relations Between Real, Complex, And Quaternionic Vector Spaces 59 9.1 Complex structure on a real vector space 59 9.2 Real Structure On A Complex Vector Space 64 9.2.1 Complex Conjugate Of A Complex Vector Space 66 9.2.2 Complexification 67 9.3 The Quaternions 69 9.4 Quaternionic Structure On A Real Vector Space 79 9.5 Quaternionic Structure On Complex Vector Space 79 9.5.1 Complex Structure On Quaternionic Vector Space 81 9.5.2 Summary 81 9.6 Spaces Of Real, Complex, Quaternionic Structures 81 10.
    [Show full text]
  • A Standard Generator/Parity Check Matrix for Codes from the Cayley Tables Due to the Non-Associative (123)-Avoiding Patterns of AUNU Numbers
    Universal Journal of Applied Mathematics 4(2): 39-41, 2016 http://www.hrpub.org DOI: 10.13189/ujam.2016.040202 A Standard Generator/Parity Check Matrix for Codes from the Cayley Tables Due to the Non-associative (123)-Avoiding Patterns of AUNU Numbers Ibrahim A.A1, Chun P.B2,*, Abubakar S.I3, Garba A.I1, Mustafa.A1 1Department of Mathematics, Usmanu Danfodiyo University Sokoto, Nigeria 2Department of Mathematics, Plateau State University Bokkos, Nigeria 3Department of Mathematics, Sokoto State University Sokoto, Nigeria Copyright©2016 by authors, all rights reserved. Authors agree that this article remains permanently open access under the terms of the Creative Commons Attribution License 4.0 international License. Abstract In this paper, we aim at utilizing the Cayley Eulerian graphs due to AUNU patterns had been reported in tables demonstrated by the Authors[1] in the construction of [2] and [3]. This special class of the (132) and a Generator/Parity check Matrix in standard form for a Code (123)-avoiding class of permutation patterns which were first say C Our goal is achieved first by converting the Cayley reported [4], where some group and graph theoretic tables in [1] using Mod2 arithmetic into a Matrix with entries properties were identified, had enjoyed a wide range of from the binary field. Echelon Row operations are then applications in various areas of applied Mathematics. In[1], performed (carried out) on the matrix in line with existing we described how the non-associative and non-commutative algorithms and propositions to obtain a matrix say G whose properties of the patterns can be established using their rows spans C and a matrix say H whose rows spans , the Cayley tables where a binary operation was defined to act on dual code of C, where G and H are given as, G = (Ik| X ) and the (132) and (123)-avoiding patterns of the AUNU numbers T H= ( -X |In-k ).
    [Show full text]
  • Optimal Surplus Capacity Utilization in Polling Systems Via Fluid Models
    Optimal Surplus Capacity Utilization in Polling Systems via Fluid Models Ayush Rawal, Veeraruna Kavitha and Manu K. Gupta Industrial Engineering and Operations Research, IIT Bombay, Powai, Mumbai - 400076, India E-mail: ayush.rawal, vkavitha, manu.gupta @iitb.ac.in Abstract—We discuss the idea of differential fairness in polling while maintaining the QoS requirements of primary customers. systems. One such example scenario is: primary customers One can model this scenario with polling systems, when it demand certain Quality of Service (QoS) and the idea is to takes non-zero time to switch the services between the two utilize the surplus server capacity to serve a secondary class of customers. We use achievable region approach for this. Towards classes of customers. Another example scenario is that of data this, we consider a two queue polling system and study its and voice users utilizing the same wireless network. In this ‘approximate achievable region’ using a new class of delay case, the network needs to maintain the drop probability of priority kind of schedulers. We obtain this approximate region, the impatient voice customers (who drop calls if not picked-up via a limit polling system with fluid queues. The approximation is within a negligible waiting times) below an acceptable level. accurate in the limit when the arrival rates and the service rates converge towards infinity while maintaining the load factor and Alongside, it also needs to optimize the expected sojourn times the ratio of arrival rates fixed. We show that the set of proposed of the data calls. schedulers and the exhaustive schedulers form a complete class: Polling systems can be categorized on the basis of different every point in the region is achieved by one of those schedulers.
    [Show full text]
  • Modified Erlang Loss System for Cognitive Wireless Networks
    Journal of Mathematical Sciences, Vol. , No. , , MODIFIED ERLANG LOSS SYSTEM FOR COGNITIVE WIRELESS NETWORKS E. V. Morozov1;2;3 , S. S. Rogozin1;2 , H. Q. Nguyen4 and T. Phung-Duc4 This paper considers a modified Erlang loss system for cognitive wireless networks and related ap- plications. A primary user has preemptive priority over secondary users and the primary customer is lost if upon arrival all the channels are used by other primary users. Secondary users cognitively use idle channels and they can wait at an infinite buffer in cases idle channels are not available upon arrival or they are interrupted by primary users. We obtain explicit stability condition for the cases where arrival processes of primary users and secondary users follow Poisson processes and their ser- vice times follow two distinct arbitrary distributions. The stability condition is insensitive to the service time distributions and implies the maximal throughout of secondary users. For a special case of exponential service time distributions, we analyze in depth to show the effect of parameters on the delay performance and the mean number of interruptions of secondary users. Our simulations for distributions rather than exponential reveal that the mean number of terminations for secondary users is less sensitive to the service time distribution of primary users. 1. Introduction In recent years, Internet traffic has increased explosively due to the increased use of smart-phones, tablet computers, etc. This causes a shortage problem of wireless spectrum. Cognitive wireless is considered as a promising solution to this problem [1{5]. For recent development of cognitive radio networks, we refer to the survey paper by Ostovar et al.
    [Show full text]