The Gloria Transform Fault-NE Atlantic: Seismogenic And

Total Page:16

File Type:pdf, Size:1020Kb

The Gloria Transform Fault-NE Atlantic: Seismogenic And These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour figures will appear in colour in all electronic versions of this book. B978-0-12-812064-4.00008-6, 00008 CHAPTER 8 c0040 The Gloria Transform Fault—NE Atlantic: Seismogenic and Tsunamigenic Potential R. Omira*,†, M. Neres*,†, L. Batista*,† *Portuguese Institute for Sea and Atmosphere, IPMA, Lisbon, Portugal †Dom Luiz Institute, IDL, Faculty of Sciences, University of Lisbon, Lisbon, Portugal OUTLINE 1 Introduction 1 5 Discussion 8 2 Geodynamic Setting 3 6 Conclusions 10 3 The Gloria Transform Fault 4 Acknowledgments 10 4 Tsunamigenic Potential of Gloria References 10 Fault 6 s0010 1 INTRODUCTION p0055 The Azores-Gibraltar fracture zone (AGFZ) marks the western plate boundary between the Eurasian and Nubian plates. It extends eastwards from the Mid-Atlantic Ridge in the Azores toward the Strait of Gibraltar (Fig. 1). The central domain of the AGFZ, called Gloria Fault (GF), follows a prominent morphological feature. The GF was first mapped by Laughton et al. (1972) and presents a relatively slow, 5mm/year, interplate motion (Fernandes et al., 2003) dominated by dextral strike-slip faulting. Seismically, it is characterized by low seismic activity, although exhibiting a large variation between its eastern, central and western segments. The lack of seismic activity in the eastern GF segment suggests that the low-magnitude earthquakes are probably not detectable by the available seismic network. Transform Plate Boundaries and Fracture Zones 1 # 2019 Elsevier Inc. All rights reserved. https://doi.org/10.1016/B978-0-12-812064-4.00008-6 Duarte, 978-0-12-812064-4 Comp. by: SATHIVEL.N Stage: Revises1 Chapter No.: 8 Title Name: Duarte Date:28/7/18To protect Time:17:30:50the rights of Pagethe author(s) Number: 1 and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication. These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour figures will appear in colour in all electronic versions of this book. B978-0-12-812064-4.00008-6, 00008 2 8. THE GLORIA TRANSFORM FAULT—NE ATLANTIC: SEISMOGENIC AND TSUNAMIGENIC POTENTIAL f0010 FIG. 1 (A) Location of the study area in the Atlantic Ocean. The Azores-Gibraltar fracture zone (AGFZ) is the only fracture-transform zone in the Atlantic Ocean that constitutes a relatively discrete major plate boundary. (B) The AGFZ and its regional context. Red dots are epicenters of M>4 earthquakes from the International Seismological Cen- ter (ISC) for the period 1970–2017. Focal mechanisms from the database compiled by Custo´dio et al. (2016) (M>5). Red line locates the seismic refraction and multichannel seismic reflection profiles by Batista et al. (2017) (Fig. 2). SAFZ: South Azores fracture zone. (C) The Gloria Fault. Red dots:M>4 epicenters. Focal mechanisms (Custo´dio et al., 2016 database) for earthquakes M>5 (in gray) and M>6 (in black, labels indicate date and magnitude). White arrows: vec- tors from the relative NU-EU velocity field as modeled by the neotectonic model of Neres et al. (2016). Yellow labels: Gloria Fault segments and respective slip rates as inferred by Neres et al. (2016) (note that the model allows for fault slip and continuum strain rate). Alternatively, this could indicate that the GF in this area is locked and loading for the next big earthquake. This later hypothesis is supported by the occurrence of past large strike-slip earthquake events within the GF or in its vicinities. p0060 During the 20th century, three large earthquakes (M>7) took place along the GF or in its proximity (Fig. 1C). All have generated tsunamis that were recorded by the regional Duarte, 978-0-12-812064-4 Comp. by: SATHIVEL.N Stage: Revises1 Chapter No.: 8 Title Name: Duarte Date:28/7/18To protect Time:17:30:50the rights of Pagethe author(s) Number: 2 and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication. These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour figures will appear in colour in all electronic versions of this book. B978-0-12-812064-4.00008-6, 00008 2 GEODYNAMIC SETTING 3 tide-gauge network. The Ms 7.1, May 8, 1939, earthquake occurred near the Azores (see Fig. 1C) with an epicenter located close to the end of the GF (Buforn et al., 1988; Reis et al., 2017). It caused a small tsunami that was recorded by the Ponta Delgada (Azores) tide gauge (Reis et al., 2017). On November 25, 1941, an M 8.4 earthquake occurred in the central segment of the GF (see Fig. 1C, Udias et al., 1976; Baptista et al., 2016). It was considered the largest strike-slip event ever recorded (Bird and Kagan, 2004) until the April 11, 2012 Sumatra earth- quake, Mw 8.6 (Meng et al., 2012). The 1941 GF earthquake was followed by a tsunami recorded by sea-level stations in Portugal mainland, Morocco, Madeira, and Azores islands, with a maximum wave height of about 0.2m in Ponta Delgada (Azores) (Baptista et al., 2016). Another high-magnitude event, the M 7.9 May 26, 1975, earthquake had its source 100km south from the eastern segment of the GF (see Fig. 1C, Buforn et al., 1988; Kaabouben et al., 2008). This strike-slip earthquake also generated a small tsunami that was recorded by the Portuguese, Spanish, and the Moroccan tide-gauge networks (Kaabouben et al., 2008). The spatial distribution of these large events suggests that there is no unique discrete structure running from the Azores to Gibraltar that can be considered as the locus of seismic slip, but rather some degree of fault-segment delocalization accounting for the observed earthquake dispersion (Baptista et al., 2017). p0065 In this chapter, we provide, as a starting point, an overview of the geodynamic setting of the AGFZ. We then focus on the Gloria transform fault by describing the main geometry and interpreted kinematics of this major tectonic structure, as well as its main associated seismicity. Furthermore, we use numerical modeling of tsunami propagation to provide new insight into the tsunamigenesis of the GF, and discuss the implications of its tsunamigenic potential on the NE Atlantic, the Mediterranean, and Connected Seas Tsunami Warning System (NEAM TWS). s0015 2 GEODYNAMIC SETTING p0070 The AGFZ is a complex structure bordering Nubia and Eurasia in the Atlantic that underwent a complex tectonic evolution (Fig. 1A and B). It runs from the Azores plateau (in the west) to the Strait of Gibraltar (in the east) across three distinct morphotectonic do- mains: the Azores triple junction zone, the GF, and the southwest Iberian Margin (SWIM) (Fig. 1B). Within each domain, different kinematic and stress regimes occur, mostly deter- mined by the Nubia-Eurasia (NU-EU) relative motion (e.g., Fernandes et al., 2003; Serpelloni et al., 2007; Neres et al., 2016). p0075 The Azores triple junction zone is the westernmost domain of the AGFZ where the North American, African (Nubia), and the Eurasian plates meet, and where the NU-EU boundary shows a divergent relative motion (Fig. 1B). This domain comprises a zone of distributed transtensional deformation close to the Mid-Atlantic Ridge that connects to the NW-SE-oriented Terceira spreading ridge (e.g., Miranda et al., 2014, 2015). Along the Terceira Rift, extensional tectonics generate intense normal regime seismicity of low to moderate mag- nitude that accounts for most of the NU-EU relative motion, also suggested by the absence of seismicity at the South Azores fracture zone (SAFZ, see Fig. 1B). p0080 The easternmost domain of the AGFZ runs from the Strait of Gibraltar to the Madeira-Tore Rise across the SWIM (Fig. 1B). Here, Nubia and Eurasia show a convergent movement along Duarte, 978-0-12-812064-4 Comp. by: SATHIVEL.N Stage: Revises1 Chapter No.: 8 Title Name: Duarte Date:28/7/18To protect Time:17:30:50the rights of Pagethe author(s) Number: 3 and publisher we inform you that this PDF is an uncorrected proof for internal business use only by the author(s), editor(s), reviewer(s), Elsevier and typesetter SPi. It is not allowed to publish this proof online or in print. This proof copy is the copyright property of the publisher and is confidential until formal publication. These proofs may contain colour figures. Those figures may print black and white in the final printed book if a colour print product has not been planned. The colour figures will appear in colour in all electronic versions of this book. B978-0-12-812064-4.00008-6, 00008 4 8. THE GLORIA TRANSFORM FAULT—NE ATLANTIC: SEISMOGENIC AND TSUNAMIGENIC POTENTIAL an apparently seismically diffuse plate boundary, but with some degree of earthquake clus- tering. Deformation is characterized by large-scale strain partitioning along differently orien- tated major dextral strike-slip and thrust faults, as attested by the diversity of focal mechanisms.
Recommended publications
  • Transform Faults Represent One of the Three
    8 Transform faults ransform faults represent one of the three Because of the drift of the newly formed oceanic types of plate boundaries. A peculiar aspect crust away from ridge segments, a relative move- T of their nature is that they are abruptly trans- ment along the faults is induced that corresponds formed into another kind of plate boundary at their to the spreading velocity on both sides of the termination (Wilson, 1965). Plates glide along the ridge. Th e sense of displacement is contrary to fault and move past each other without destruc- the apparent displacement of the ridge segments tion of or creation of new crust. Although crust is (Fig. 8.1b). In the example shown, the transform neither created or destroyed, the transform margin fault is a right-lateral strike-slip fault; if an observer is commonly marked by topographic features like straddles the fault, the right-hand side of the fault scarps, trenches or ridges. moves towards the observer, regardless of which Transform faults occur as several diff erent geo- way is faced. Transform faults end abruptly in a metries; they can connect two segments of growing point, the transformation point, where the strike- plate boundaries (R-R transform fault), one growing slip movement is transformed into a diverging or and one subducting plate boundary (R-T transform converging movement. Th is property gives this fault) or two subducting plate boundaries (T-T fault its name. In the example of the R-R transform transform fault); R stands for mid-ocean ridge, T for fault, the movement at both ends of the fault is deep sea trench ( subduction zone).
    [Show full text]
  • Segmentation of Transform Systems on the East Pacific Rise
    Segmentation of transform systems on the East Paci®c Rise: Implications for earthquake processes at fast-slipping oceanic transform faults Patricia M. Gregg Massachusetts Institute of Technology/WHOI Joint Program in Oceanography, Woods Hole, Massachusetts 02543, USA Jian Lin Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA Deborah K. Smith ABSTRACT Per®t et al., 1996) indicate that ITSCs are Seven of the eight transform systems along the equatorial East Paci®c Rise from 128 N magmatically active, implying that the regions to 158 S have undergone extension due to reorientation of plate motions and have been beneath them are hotter, and thus the litho- segmented into two or more strike-slip fault strands offset by intratransform spreading spheric plate is thinner than the surrounding centers (ITSCs). Earthquakes recorded along these transform systems both teleseismically domains. To explore the effect of segmenta- and hydroacoustically suggest that segmentation geometry plays an important role in how tion on the transform fault thermal structure, slip is accommodated at oceanic transforms. Results of thermal calculations suggest that we use a half-space steady-state lithospheric the thickness of the brittle layer of a segmented transform fault could be signi®cantly cooling model (McKenzie, 1969; Abercrom- reduced by the thermal effect of ITSCs. Consequently, the potential rupture area, and bie and Ekstrom, 2001). The temperature thus maximum seismic moment, is decreased. Using Coulomb static stress models, we within the crust and mantle, T, is de®ned as T 5 k 21/2 illustrate that long ITSCs will prohibit static stress interaction between transform seg- Tmerf [y(2 t) ], where Tm is the mantle ments and limit the maximum possible magnitude of earthquakes on a given transform temperature at depth, assumed to be 1300 8C; k system.
    [Show full text]
  • Mantle Dynamics and Characteristics of the Azores Plateau
    Earth and Planetary Science Letters 362 (2013) 258–271 Contents lists available at SciVerse ScienceDirect Earth and Planetary Science Letters journal homepage: www.elsevier.com/locate/epsl Mantle dynamics and characteristics of the Azores plateau C. Adam a,n, P. Madureira a,b, J.M. Miranda c, N. Lourenc-o c,d, M. Yoshida e, D. Fitzenz a,1 a Centro de Geofı´sica de E´vora/Univ. E´vora, 7002-554 E´vora, Portugal b Estrutura de Missao~ para a Extensao~ da Plataforma Continental (EMEPC), 2770-047, Pac-o d’ Arcos, Portugal c Instituto Portugues do Mar e da Atmosfera, Lisboa, Portugal d University of Algarve, IDL, Campus de Gambelas, 8000 Faro, Portugal e Institute for Research on Earth Evolution (IFREE), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa 237-0061, Japan article info abstract Article history: Situated in the middle of the Atlantic Ocean, the Azores plateau is a region of elevated topography Received 25 July 2012 encompassing the triple junction between the Eurasian, Nubian and North American plates. The plateau is Received in revised form crossed by the Mid-Atlantic Ridge, and the Terceira Rift is generally thought of as its northern boundary. 2 November 2012 The origin of the plateau and of the Terceira Rift is still under debate. This region is associated with active Accepted 5 November 2012 volcanism. Geophysical data describe complex tectonic and seismic patterns. The mantle under this region Editor: T. Spohn Available online 18 January 2013 is characterized by anomalously slow seismic velocities. However, this mantle structure has not yet been used to quantitatively assess the influence of the mantle dynamics on the surface tectonics.
    [Show full text]
  • Azores and Iceland
    13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2369 A COMPARATIVE STUDY ON STRONG GROUND MOTION IN TWO VOLCANIC ENVIRONMENTS: AZORES AND ICELAND Carlos S. OLIVEIRA1, Ragnar SIGBJÖRNSSON2, Simon ÓLAFSSON3 SUMMARY The objective of this paper is to present the main results of a comparative study of strong ground motion on the Azores and Iceland. These islands are a super-structural part of the Mid Atlantic Ridge, which marks the boundary between the North-American Plate and the Eurasian Plate and creates a north-south oriented belt of seismic and volcanic activity. The tectonic environments are described and compared emphasising the similarities in the geological structure, including surface geology and its effects on strong ground motion. Furthermore, the seismicity of the Azores and Iceland is compared based on earthquake catalogues using statistical analysis. The strong-motion networks on the islands are described along with the strong-motion data used in the subsequent analysis. The strong-motion data are compared using statistical analysis. The main emphasis is put on attenuation of strong-motion data, characterised by root mean square acceleration and peak ground acceleration. The attenuation is also compared to some of the common attenuation relationships, used by the engineering community in Europe and America. The main findings are that there are significant similarities between the tectonic environments of the Azores and Iceland. Furthermore, the similarities found in seismicity are statistically significant. The attenuation is characterised by rapid decay with increasing distance and high acceleration in the near source area. It is found that the same ground motion estimation models can be applied on the Azores and in Iceland.
    [Show full text]
  • Reducing Risk Where Tectonic Plates Collide—A Plan to Advance Subduction Zone Science
    Reducing Risk Where Tectonic Plates Collide— A Plan to Advance Subduction Zone Science Circular 1428 U.S. Department of the Interior U.S. Geological Survey Front cover. A U.S. Geological Survey scientist surveys Loowit Creek drainage on Mount St. Helens, part of a long-term project to track sediment erosion and deposition in the channel. View to the north, with Spirit Lake and Mount Rainier in the background. U.S. Geological Survey photograph by Kurt Spicer. Reducing Risk Where Tectonic Plates Collide—A Plan to Advance Subduction Zone Science By Joan S. Gomberg, Kristin A. Ludwig, Barbara A. Bekins, Thomas M. Brocher, John C. Brock, Daniel Brothers, Jason D. Chaytor, Arthur D. Frankel, Eric L. Geist, Matthew Haney, Stephen H. Hickman, William S. Leith, Evelyn A. Roeloffs, William H. Schulz, Thomas W. Sisson, Kristi Wallace, Janet T. Watt, and Anne Wein Circular 1428 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Acting Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text.
    [Show full text]
  • Transform Continental Margins – Part 1: Concepts and Models Christophe Basile
    Transform continental margins – Part 1: Concepts and models Christophe Basile To cite this version: Christophe Basile. Transform continental margins – Part 1: Concepts and models. Tectonophysics, Elsevier, 2015, 661, pp.1-10. 10.1016/j.tecto.2015.08.034. hal-01261571 HAL Id: hal-01261571 https://hal.archives-ouvertes.fr/hal-01261571 Submitted on 25 Jan 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Tectonophysics, 661, p. 1-10, http://dx.doi.org/10.1016/j.tecto.2015.08.034 Transform continental margins – Part 1: Concepts and models Christophe Basile Address: Univ. Grenoble Alpes, CNRS, ISTerre, F-38041 Grenoble, France.cbasile@ujf-grenoble. Abstract This paper reviews the geodynamic concepts and models related to transform continental margins, and their implications on the structure of these margins. Simple kinematic models of transform faulting associated with continental rifting and oceanic accretion allow to define three successive stages of evolution, including intra- continental transform faulting, active transform margin, and passive transform margin. Each part of the transform margin experiences these three stages, but the evolution is diachronous along the margin. Both the duration of each stage and the cumulated strike-slip deformation increase from one extremity of the margin (inner corner) to the other (outer corner).
    [Show full text]
  • The Ocean Basin & Plate Tectonics
    Sept. 2010 MAR 110 HW 3: 1 Homework 3: The Ocean Basin & Plate Tectonics 3-1. THE OCEAN BASIN The world ocean basin is an extensive suite of connected depressions (or basins) that are filled with salty water; covering 72% of the Earth’s surface. The ocean basin bathymetric profile in Figure 3-1 highlights features of a typical ocean basin, which is bordered by continental margins at the ocean’s edge. Starting at the coast, the sea floor the slopes slightly across the continental shelf to the shelf break where it plunges down the steeper continental slope to continental rise and the abyssal plain, which is flat because accumulated sediments. The continental shelf is the flooded edge of the continent -extending from the beach to the shelf break, with typical depths ranging from 130 m to 200 m. The sea floor slopes over wide shelves are 1° to 2° - virtually flat- and somewhat steeper over narrower shelves. Continental shelves are generally gently undulating surfaces, sometimes interrupted by hills and valleys (see Figure 3-2). Sept. 2010 MAR 110 HW 3: 2 The continental slope connects the continental shelf to the deep ocean, with typical depths of 2 to 3 km. While appearing steep in these vertically exaggerated pictures, the bottom slopes of a typical continental slope region are modest angles of 4° to 6°. Continental slope regions adjacent to deep ocean trenches tend to descend somewhat more steeply than normal. Sediments derived from the weathering of the continental material are delivered by rivers and continental shelf flow to the upper continental slope region just beyond the continental shelf break.
    [Show full text]
  • Two Classes of Transform Faults
    Two classes of transform faults SrM^r" } Department of Geology, Rutgers >, Newark, New Jersey 07102 ABSTRACT The fault motion is strike slip, and the displacement termina11 s ab- ruptly at both ends. In this model, both transform faults are ridge- A theoretical model and experimental work with cooling wax, as to-trench types (Wilson, 1965). They represent initial cuts in the well as a consideration of some faults that were originally cited as tennis ball (the lithosphere) and thus constitute original or funda- transform faults, have suggested that two classes of transform mental plate boundaries. It is proposed that all transform faults faults exist. They are termed "boundary transform fault" and that represent original or fundamental plate boundaries be called "ridge transform fault." They differ in the degree and manner in "boundary transform faults." which they delineate plate boundaries and probably also in age rel- We can apply the concept of boundary transform fault to the ative to a given plate. South American plate (Fig. 1). The present east boundary of this plate is the Mid-Atlantic Ridge. Initially, however, the east bound- INTRODUCTION ary was an incipient break in the combined continent of South America and Africa. At that time, the Mid-Atlantic Ridge and its Since Wilson's (1965) original definition of transform faults and offsets due to transform faults did not exist. The west boundary of Sykes's (1967) confirmation of the nature of movement along them, the South American plate is the Peru-Chile Trench bordered by the the term "transform fault" has come to be applied to such contrast- Andes.
    [Show full text]
  • Three-Dimensional Passive £Ow and Temperature Structure Beneath Oceanic Ridge^Ridge^Ridge Triple Junctions
    Earth and Planetary Science Letters 204 (2002) 115^132 www.elsevier.com/locate/epsl Three-dimensional passive £ow and temperature structure beneath oceanic ridge^ridge^ridge triple junctions Jennifer E. Georgen a;Ã, Jian Lin b a MIT^WHOI Joint Program in Oceanography, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA b Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received 12 March 2002; received in revised form 4 September 2002; accepted 6 September 2002 Abstract This study uses numerical modeling to investigate generalized characteristics of mantle flow and thermal structure in the vicinity of ridge^ridge^ridge (RRR) triple junctions. Oceanic triple junctions present a unique opportunity to study three-dimensional (3D) mantle dynamics in a tectonic setting considerably different than where only two plates diverge. In many prominent oceanic triple junctions, including Rodrigues, Azores, and Galapagos, the slowest- spreading ridge branch intersects the near-collinear faster-spreading branches quasi-orthogonally. This study focuses on triple junctions free of influence from nearby hotspots, similar to the geometry of the Rodrigues Triple Junction. A finite element model was used to calculate the steady-state 3D velocity flow field and temperature patterns resulting from advective and conductive heat transfer. For the slowest-spreading branch, model results predict a strong component of along-axis velocity directed away from the triple junction. Both upwelling velocity and temperature are calculated to increase along the slowest-spreading ridge toward the triple junction, approaching the upwelling rate and temperature of the fastest-spreading branch. Within 200 km of the triple junction, upwelling velocity is predicted to increase more than threefold along the slowest-spreading ridge.
    [Show full text]
  • Seismicity Along the Azores-Gibraltar Region and Global Plate Kinematics
    Seismicity along the Azores-Gibraltar region and global plate kinematics M. Bezzeghoud, C. Adam, E. Buforn, J. F. Borges & B. Caldeira Journal of Seismology ISSN 1383-4649 Volume 18 Number 2 J Seismol (2014) 18:205-220 DOI 10.1007/s10950-013-9416-x 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media Dordrecht. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy J Seismol (2014) 18:205–220 DOI 10.1007/s10950-013-9416-x ORIGINAL ARTICLE Seismicity along the Azores-Gibraltar region and global plate kinematics M. Bezzeghoud & C. Adam & E. Buforn & J. F. Borges & B. Caldeira Received: 11 February 2013 /Accepted: 23 December 2013 /Published online: 8 January 2014 # Springer Science+Business Media Dordrecht 2014 Abstract Seismicity along the western part of the between these two independent vector sets. Eurasia–Nubia plate boundary displays very complex Quantitatively, the slip velocities display a linear, non- patterns. The average motion is transtensional in the affine correlation with the norms of the relative kinematic Azores, dextral along the Gloria transform zone and con- velocities.
    [Show full text]
  • Plate Tectonics
    Plate Tectonics Introduction Continental Drift Seafloor Spreading Plate Tectonics Divergent Plate Boundaries Convergent Plate Boundaries Transform Plate Boundaries Summary This curious world we inhabit is more wonderful than convenient; more beautiful than it is useful; it is more to be admired and enjoyed than used. Henry David Thoreau Introduction • Earth's lithosphere is divided into mobile plates. • Plate tectonics describes the distribution and motion of the plates. • The theory of plate tectonics grew out of earlier hypotheses and observations collected during exploration of the rocks of the ocean floor. You will recall from a previous chapter that there are three major layers (crust, mantle, core) within the earth that are identified on the basis of their different compositions (Fig. 1). The uppermost mantle and crust can be subdivided vertically into two layers with contrasting mechanical (physical) properties. The outer layer, the lithosphere, is composed of the crust and uppermost mantle and forms a rigid outer shell down to a depth of approximately 100 km (63 miles). The underlying asthenosphere is composed of partially melted rocks in the upper mantle that acts in a plastic manner on long time scales. Figure 1. The The asthenosphere extends from about 100 to 300 km (63-189 outermost part of miles) depth. The theory of plate tectonics proposes that the Earth is divided lithosphere is divided into a series of plates that fit together like into two the pieces of a jigsaw puzzle. mechanical layers, the lithosphere and Although plate tectonics is a relatively young idea in asthenosphere. comparison with unifying theories from other sciences (e.g., law of gravity, theory of evolution), some of the basic observations that represent the foundation of the theory were made many centuries ago when the first maps of the Atlantic Ocean were drawn.
    [Show full text]
  • Origin and Models of Oceanic Transform Faults
    Tectonophysics 522–523 (2012) 34–54 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Review Article Origin and models of oceanic transform faults Taras Gerya ⁎ Swiss Federal Institute of Technology Zurich, Department of Geosciences, Zurich, Switzerland article info abstract Article history: Mid-ocean ridges sectioned by transform faults represent prominent surface expressions of plate tectonics. A Received 22 March 2011 fundamental problem of plate tectonics is how this pattern has formed and why it is maintained. Gross-scale Received in revised form 30 June 2011 geometry of mid-ocean ridges is often inherited from respective rifted margins. Indeed, transform faults seem Accepted 7 July 2011 to nucleate after the beginning of the oceanic spreading and can spontaneously form at a single straight ridge. Available online 22 July 2011 Both analog and numerical models of transform faults were investigated since the 1970s. Two main groups of analog models were developed: thermomechanical (freezing wax) models with accreting and cooling plates Keywords: – Transform faults and mechanical models with non-accreting lithosphere. Freezing wax models reproduced ridge ridge Mid-ocean ridges transform faults, inactive fracture zones, rotating microplates, overlapping spreading centers and other Analog models features of oceanic ridges. However, these models often produced open spreading centers that are dissimilar Numerical models to nature. Mechanical models, on the other hand, do not accrete the lithosphere and their results are thus only applicable for relatively small amount of spreading. Three main types of numerical models were investigated: models of stress and displacement distribution around transforms, models of their thermal structure and crustal growth, and models of nucleation and evolution of ridge-transform fault patterns.
    [Show full text]