Pronounced Zonal Heterogeneity in Eocene Southern High-Latitude Sea Surface Temperatures

Total Page:16

File Type:pdf, Size:1020Kb

Pronounced Zonal Heterogeneity in Eocene Southern High-Latitude Sea Surface Temperatures Pronounced zonal heterogeneity in Eocene southern high-latitude sea surface temperatures Peter M. J. Douglasa,1,2, Hagit P. Affeka, Linda C. Ivanyb, Alexander J. P. Houbenc,3, Willem P. Sijpd, Appy Sluijsc, Stefan Schoutenc,e, and Mark Pagania aDepartment of Geology and Geophysics, Yale University, New Haven, CT 06520; bDepartment of Earth Sciences, Syracuse University, Syracuse, NY 13244; cDepartment of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CD, Utrecht, The Netherlands; dClimate Change Research Centre, University of New South Wales, Sydney, NSW 2052, Australia; and eDepartment of Marine Organic Biogeochemistry, Royal Netherlands Institute for Sea Research, 1790 AB Den Burg, Texel, The Netherlands Edited by Mark H. Thiemens, University of California, San Diego, La Jolla, CA, and approved March 21, 2014 (received for review November 15, 2013) Paleoclimate studies suggest that increased global warmth during (10). This evidence for a tropical-to-subtropical climate in the the Eocene epoch was greatly amplified at high latitudes, a state southern high latitudes sharply contrasts with much cooler SST that climate models cannot fully reproduce. However, proxy es- estimates (10–15 °C in the early Eocene; 5–15 °C in the middle timates of Eocene near-Antarctic sea surface temperatures (SSTs) Eocene) derived from bivalve oxygen isotope values (δ18O), from have produced widely divergent results at similar latitudes, with Seymour Island (∼67°S) (11, 12), offshore of the Antarctic Penin- SSTs above 20 °C in the southwest Pacific contrasting with SSTs sula in the South Atlantic (Fig. 1). These temperature differences between 5 and 15 °C in the South Atlantic. Validation of this zonal could indicate the presence of large zonal SST gradients in the temperature difference has been impeded by uncertainties inher- Eocene southern high latitudes, with potential implications for heat ent to the individual paleotemperature proxies applied at these transport to high latitudes in greenhouse climates. sites. Here, we present multiproxy data from Seymour Island, near However, there are important uncertainties in TEX86 tem- the Antarctic Peninsula, that provides well-constrained evidence perature estimates due to multiple temperature calibrations (9) for annual SSTs of 10–17 °C (1σ SD) during the middle and late and unresolved questions regarding the provenance of sedimentary Eocene. Comparison of the same paleotemperature proxy at Sey- archaeal lipids (13, 14). Furthermore, bivalve δ18O paleotemper- mour Island and at the East Tasman Plateau indicate the presence of atures depend on assumptions for the oxygen isotopic composition a large and consistent middle-to-late Eocene SST gradient of ∼7°C of seawater (11). Uncertainty in the age of Seymour Island sedi- between these two sites located at similar paleolatitudes. Interme- ments also complicates the comparison with other paleoclimate diate-complexity climate model simulations suggest that enhanced datasets (11), although this age uncertainty is unlikely to account oceanic heat transport in the South Pacific, driven by deep-water for the observed temperature differences. These uncertainties in formation in the Ross Sea, was largely responsible for the observed the proxy datasets have made it difficult to determine whether SST gradient. These results indicate that very warm SSTs, in excess of apparent SST differences between the southwest Pacific and South 18 °C, did not extend uniformly across the Eocene southern high Atlantic are due to true zonal SST variability. latitudes, and suggest that thermohaline circulation may partially We performed clumped isotope analyses of the bivalve shells control the distribution of high-latitude ocean temperatures in green- previously analyzed for δ18O to better constrain SST estimates house climates. The pronounced zonal SST heterogeneity evident in the Eocene cautions against inferring past meridional temperature Significance gradients using spatially limited data within given latitudinal bands. Reconstructions of ancient high-latitude climates can help to paleooceanography | clumped isotopes | organic geochemistry | constrain the amplification of global warming in polar envi- climate modeling | high-latitude climate ronments. Climate models cannot reproduce the elevated high- latitude temperature estimates in the Eocene epoch, possibly he greenhouse climates of the Eocene provide an important indicating problems in simulating polar climate change. Widely Tanalog for understanding climate responses to elevated divergent near-Antarctic Eocene sea surface temperature (SST) greenhouse gas concentrations (1). Current efforts to simulate estimates, however, question the evidence for extreme warmth. Eocene climates, however, cannot reproduce geochemical evi- Our analysis of multiple temperature proxies near the Antarctic dence for very warm high-latitude temperatures and greatly re- Peninsula improves intersite comparisons and indicates a sub- duced meridional temperature gradients (2–4). This data–model stantial zonal SST gradient between the southwest Pacific and discrepancy could imply that current climate models do not ade- South Atlantic. Simulations of Eocene ocean temperatures imply quately incorporate important high-latitude climate feedbacks (5, that the formation of deep water in the southwest Pacific partly 6), limiting their ability to simulate polar amplification of green- accounts for this SST gradient, suggesting that climate models house warming. It is also possible, however, that the available underestimate Eocene SSTs in regions where the thermohaline high-latitude paleotemperature proxy records are inaccurate (3), circulation leads to relatively high temperatures. or are not representative of high-latitude temperatures generally. Widely differing paleotemperature estimates from the southern Author contributions: P.M.J.D., H.P.A., and L.C.I. designed research; P.M.J.D., A.J.P.H., and W.P.S. performed research; P.M.J.D., H.P.A., L.C.I., A.J.P.H., W.P.S., A.S., S.S., and M.P. high latitudes have complicated comparisons of paleotemperature analyzed data; and P.M.J.D. wrote the paper. data to models of Eocene climate. Paleotemperature estimates The authors declare no conflict of interest. from the East Tasman Plateau [Ocean Drilling Program (ODP) This article is a PNAS Direct Submission. site 1172; 67°S paleolatitude] (7) and New Zealand (55°S) (8) in 1Present address: Division of Geological and Planetary Sciences, California Institute of the southwest Pacific (Fig. 1), derived primarily from the archaeal- Technology, Pasadena, CA 91125. – lipid based paleotemperature proxy TEX86 (9), yield elevated sea 2 – To whom correspondence should be addressed. E-mail: [email protected]. surface temperature (SST) estimates of 26 28 °C in the early Eo- 3 – Present address: Netherlands Organization for Applied Scientific Research (TNO), Prince- cene and 17 24 °C in the middle Eocene (4) that suggest extreme tonlaan 6, 3584 CB, Utrecht, The Netherlands. polar amplification of greenhouse warmth. For comparison, mod- This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. ern mean annual SST at an equivalent latitude and longitude is 0 °C 1073/pnas.1321441111/-/DCSupplemental. 6582–6587 | PNAS | May 6, 2014 | vol. 111 | no. 18 www.pnas.org/cgi/doi/10.1073/pnas.1321441111 Downloaded by guest on September 28, 2021 Test of the Δ47–Temperature Relationship in Bivalves. Analyses of modern coastal bivalve shells (Table S2) agree with a synthetic calcite Δ47–temperature calibration that was developed using identical methods and equipment (Fig. 2) (23), supporting previous findings (24, 25) that the relationship between molluscan carbonate growth temperature and Δ47 agrees with inorganic calcite calibra- tion data. Some recently published clumped isotope analyses of modern bivalve shells have suggested the possibility of significant deviations from the synthetic-calcite calibration (26–28). The reason for these deviations is unknown at present, but is likely to be at least Latitude SST (º C) in part due to interlaboratory methodological differences, possibly related to the temperature of acid digestion (28). The modern bi- valve Δ47 data presented here (Fig. 2) are more relevant to our fossil samples than the datasets of refs. 27 and 28, because (i) those W studies were conducted with a 90 °C common acid bath, while we R use the same methodology as the synthetic-calcite calibration (15, 23); and (ii) in addition to shallow marine bivalves, the datasets of refs. 27 and 28 include cultured bivalves, deep-water bivalves, and Longitude other mollusk taxa that may exhibit different isotopic behavior. Seymour Island ODP 1172 New Zealand (East Tasman Plateau) Diagenetic Alteration of La Meseta Fm. Bivalve Shells. La Meseta DSDP 277 DSDP 511 Fm. bivalve fossils have been previously tested extensively for diagenetic recrystallization (11, 12, 31), including analyses of min- Fig. 1. The Eocene locations of SST proxy sites discussed in the text, shown eralogy, microstructure, minor and trace elements, and cath- with the UVic model Eocene paleogeography and sea surface temperatures odoluminescence. Furthermore, growth layers with interannual and from a model simulation with 1,600 ppm pCO2. The modeled region of δ18 δ13 deep-water formation in the Ross Sea is outlined in red. The modeled seasonal variations in Oand C values are found in the shells of depth-integrated stream function is also shown; solid and dashed lines
Recommended publications
  • Community-Defined Research Priorities
    Journal Pre-proof Fundamental questions and applications of sclerochronology: Community-defined research priorities Tamara Trofimova, Stella J. Alexandroff, Madelyn Mette, Elizabeth Tray, Paul G. Butler, Steven Campana, Elizabeth Harper, Andrew L.A. Johnson, John R. Morrongiello, Melita Peharda, Bernd R. Schöne, Carin Andersson, C. Fred T. Andrus, Bryan A. Black, Meghan Burchell, Michael L. Carroll, Kristine L. DeLong, Bronwyn M. Gillanders, Peter Grønkjær, Daniel Killam, Amy L. Prendergast, David J. Reynolds, James D. Scourse, Kotaro Shirai, Julien Thébault, Clive Trueman, Niels de Winter PII: S0272-7714(20)30708-3 DOI: https://doi.org/10.1016/j.ecss.2020.106977 Reference: YECSS 106977 To appear in: Estuarine, Coastal and Shelf Science Received Date: 1 February 2020 Revised Date: 15 July 2020 Accepted Date: 4 August 2020 Please cite this article as: Trofimova, T., Alexandroff, S.J., Mette, M., Tray, E., Butler, P.G., Campana, S., Harper, E., Johnson, A.L.A., Morrongiello, J.R., Peharda, M., Schöne, B.R., Andersson, C., Andrus, C.F.T., Black, B.A., Burchell, M., Carroll, M.L., DeLong, K.L., Gillanders, B.M., Grønkjær, P., Killam, D., Prendergast, A.L., Reynolds, D.J., Scourse, J.D., Shirai, K., Thébault, J., Trueman, C., de Winter, N., Fundamental questions and applications of sclerochronology: Community-defined research priorities, Estuarine, Coastal and Shelf Science (2020), doi: https://doi.org/10.1016/j.ecss.2020.106977. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record.
    [Show full text]
  • Growth and Seasonal Energetics of the Antarctic Bivalve Laternula Elliptica from King George Island, Antarctica
    MARINE ECOLOGY PROGRESS SERIES Vol. 257: 99–110, 2003 Published August 7 Mar Ecol Prog Ser Growth and seasonal energetics of the Antarctic bivalve Laternula elliptica from King George Island, Antarctica In-Young Ahn1,*, Jeonghee Surh2, You-Gyoung Park2, Hoonjeong Kwon2, Kwang-Sik Choi3, Sung-Ho Kang1, Heeseon J. Choi1, Ko-Woon Kim1, Hosung Chung1 1Polar Sciences Laboratory, Korea Ocean Research & Development Institute (KORDI), Ansan, PO Box 29, Seoul 425-600, Republic of Korea 2Department of Food and Nutrition, Seoul National University, Sillim-dong, Kwanak-ku, Seoul 151-742, Republic of Korea 3Department of Aquaculture, Cheju National University, Ara-1-dong, Cheju 690-756, Republic of Korea ABSTRACT: The Antarctic marine environment is characterized by extreme seasonality in primary production, and herbivores must cope with a prolonged winter period of food shortage. In this study, tissue mass and biochemical composition were determined for various tissues of the bivalve Later- nula elliptica (King & Broderip) over a 2 yr period, and its storage and use of energy reserves were investigated with respect to seasonal changes in food level and water temperature. Total ash-free dry mass (AFDM) accumulated rapidly following phytoplankton blooms (with peak values immediately before and after spawning) and was depleted considerably during the spawning and winter periods. Most of the variation was in the muscle, gonads and digestive gland. Spawning peaked in January and February and caused considerable protein and lipid losses in the muscle, gonads and digestive gland. In winter (March to August), the muscle and digestive gland lost considerable mass, while gonad mass increased; this suggests that the muscle tissue and digestive gland serve as major energy depots for both maintenance metabolism and gonad development in winter.
    [Show full text]
  • Jocelyn A. Sessa
    Jocelyn A. Sessa Current: Assistant Curator of Invertebrate Paleontology, Academy of Natural Sciences, & Assistant Professor, Department of Biodiversity, Earth & Environmental Science of Drexel University. Past Positions: 2016 to 2017 Senior Scientist in Paleontology & Education, American Museum of Natural History. Postdoctoral Fellowships: 2012 to 2016 Departments of Paleontology & Education, American Museum of Natural History. 2010 to 2012 Department of Paleobiology, Smithsonian National Museum of Natural History. 2009 to 2010 Department of Earth Sciences, Syracuse University. Education: Ph.D., 2009 Department of Geosciences, Pennsylvania State University, University Park, PA. M.S., 2003 Department of Geology, University of Cincinnati, Cincinnati, Ohio. B.A., 2000 Department of Geological Sciences, State University of New York at Geneseo, Geneseo, NY. Cum laude, minor in Environmental Studies. Publications (* indicates student author; for student work, ‡ indicates corresponding author): Buczek, A.J.*, Hendy, A., Hopkins, M. Sessa, J.A.‡ 2020. On the reconciliation of biostratigraphy and strontium isotope stratigraphy of three southern Californian Plio-Pleistocene formations. Geological Society of America Bulletin 132 ; doi.org/10.1130/B35488.1. Oakes, R.L., Sessa, J.A. 2020. Determining how biotic and abiotic variables affect the shell condition and parameters of Heliconoides inflatus pteropods from a sediment trap in the Cariaco Basin. Biogeosciences 17:1975–1990; doi.org/10.5194/bg-17-1975-2020. Oakes, R.L., Hill Chase, M., Siddall, M.E., Sessa, J.A. 2020. Testing the impact of two key scan parameters on the quality and repeatability of measurements from CT scan data. Palaeontologia Electronica 23(1):a07; doi.org/10.26879/942. Ferguson, K.*, MacLeod, K.G.‡, Landman, N.H., Sessa, J.A.‡ 2019.
    [Show full text]
  • Effect of Sperm Concentration and Sperm Ageing on Fertilisation
    MARINE ECOLOGY PROGRESS SERIES Vol. 215: 191–200, 2001 Published May 31 Mar Ecol Prog Ser Effect of sperm concentration and sperm ageing on fertilisation success in the Antarctic soft-shelled clam Laternula elliptica and the Antarctic limpet Nacella concinna Dawn K. Powell1,*, Paul A. Tyler1, Lloyd S. Peck2 1School of Ocean and Earth Science, University of Southampton, Southampton Oceanography Centre, Southampton SO14 3ZH, United Kingdom 2British Antarctic Survey, High Cross, Madingley Road, Cambridge CB3 0ET, United Kingdom ABSTRACT: Sperm concentration and sperm ageing effects on fertilisation success were evaluated in the laboratory in the free-spawning Antarctic soft-shelled clam Laternula elliptica and Antarctic limpet Nacella concinna. Fertilisation success was highly dependent on sperm concentration. High- est levels of fertilisation success were consistently replicated at ~107 sperm ml–1 for L. elliptica, and ~106 to 108 sperm ml–1 for N. concinna. However, both species exhibited extremely low fertilisation rates at concentrations <106 sperm ml–1. At sperm concentrations >106 sperm ml–1 N. concinna dis- played a rapid increase in abnormally developing larvae which, along with only a small decline in total fertilisation success above 108 sperm ml–1, was taken to indicate polyspermy. A small increase in abnormal development followed by a rapid decline in fertilisation success at high sperm concentra- tions (>107 sperm ml–1) for L. elliptica was attributed to oxygen depletion. Using the optimum sperm concentration found for fertilisation success, spermatozoa were capable of fertilising fresh ova for >90h in L. elliptica, and ~65 h in N. concinna. The sperm concentrations required for fertilisation suc- cess and sperm longevities reported here are at least an order of magnitude greater than those reported for nearshore temperate molluscs.
    [Show full text]
  • Responses to Elevated CO2 Exposure in a Freshwater Mussel, Fusconaia Flava
    J Comp Physiol B (2017) 187:87–101 DOI 10.1007/s00360-016-1023-z ORIGINAL PAPER Responses to elevated CO2 exposure in a freshwater mussel, Fusconaia flava Jennifer D. Jeffrey1 · Kelly D. Hannan1 · Caleb T. Hasler1 · Cory D. Suski1 Received: 7 April 2016 / Revised: 29 June 2016 / Accepted: 19 July 2016 / Published online: 29 July 2016 © Springer-Verlag Berlin Heidelberg 2016 Abstract Freshwater mussels are some of the most reduce their investment in non-essential processes such as imperiled species in North America and are particularly shell growth. susceptible to environmental change. One environmen- tal disturbance that mussels may encounter that remains Keywords Chitin synthase · Heat shock protein 70 · understudied is an increase in the partial pressure of CO2 Metabolic rate · Bivalve (pCO2). The present study quantified the impacts of acute (6 h) and chronic (up to 32 days) exposures to elevated pCO2 on genes associated with shell formation (chitin syn- Introduction thase; cs) and the stress response (heat shock protein 70; hsp70) in Fusconaia flava. Oxygen consumption (MO2) Freshwater mussels have their highest abundance and was also assessed over the chronic CO2 exposure period. diversity in North America, and provide many important Although mussels exhibited an increase in cs following ecological functions (Williams et al. 1993; Bogan 2008). an acute exposure to elevated pCO2, long-term exposure For example, freshwater mussels filter large volumes of resulted in a decrease in cs mRNA abundance, suggest- water daily, remove bacteria and particles from the water ing that mussels may invest less in shell formation during column, and generate nutrient-rich areas (Vaughn and chronic exposure to elevated pCO2.
    [Show full text]
  • Geochemical and Microstructural Signals in Giant Clam Tridacna Maxima Recorded Typhoon Events at Okinotori Island, Japan
    Geochemical and Microstructural Signals in Giant Clam Tridacna maxima Recorded Typhoon Events at Okinotori Title Island, Japan Author(s) Komagoe, Taro; Watanabe, Tsuyoshi; Shirai, Kotaro; Yamazaki, Atsuko; Uematu, Mitsuo Journal of geophysical research biogeosciences, 123(5), 1460-1474 Citation https://doi.org/10.1029/2017JG004082 Issue Date 2018-05 Doc URL http://hdl.handle.net/2115/71789 Rights Copyright 2018 American Geophysical Union Type article File Information Komagoe_et_al-2018-Journal_of_Geophysical_Research%3A_Biogeosciences.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Journal of Geophysical Research: Biogeosciences RESEARCH ARTICLE Geochemical and Microstructural Signals in Giant Clam 10.1029/2017JG004082 Tridacna maxima Recorded Typhoon Events Key Points: at Okinotori Island, Japan • Tridacna maxima in Okinotori Island made daily growth increments, Taro Komagoe1,2 , Tsuyoshi Watanabe1,2 , Kotaro Shirai3 , Atsuko Yamazaki1,2,4 , and increment-based chronology 3 provided dates for geochemical and Mitsuo Uematu analysis data 18 1Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, Japan, 2KIKAI institute for Coral • δ Oshell reflected annual SST fluctuations in Okinotori Island Reef Sciences, Kikai town, Japan, 3Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan, • The decrease in increment thickness 4Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Fukuoka, Japan and positive peaks in the shell Ba/Ca 18 ratio and δ Oshell corresponded to fall season typhoon approaches to the Abstract To validate the usability of the giant clam shell as a recorder of short-term environmental island changes such as typhoons, we collected a live Tridacna maxima from Okinotori Island, Japan, on 15 June 18 13 2006.
    [Show full text]
  • Active Research Grants
    Linda C. Ivany Professor Department of Earth and Environmental Sciences Heroy Geology Laboratory,Syracuse University, Syracuse, NY 13244 phone: (315) 443-3626 / fax: (315) 443-3363 / email: [email protected] http://thecollege.syr.edu/people/faculty/pages/ear/Ivany-Linda.html https://orcid.org/0000-0002-4692-3455 Education Ph.D. in Earth and Planetary Sciences, 1997, Harvard University Advisor: Stephen Jay Gould M.S. in Geology, minor in Zoology, 1990, University of Florida-Gainesville Advisor: Douglas S. Jones B.S. in Geology, minor in Zoology, 1988, Syracuse University Advisor: Cathryn R. Newton Academic Positions 2012-present Professor of Earth Sciences, Syracuse University 2005-2012 Associate Professor of Earth Sciences, Syracuse University 2001-2005 Assistant Professor of Earth Sciences, Syracuse University 2000-2001 Visiting Assistant Professor of Earth Sciences, Syracuse University 1997-2000 Michigan Society Fellow and Visiting Assistant Professor of Geological Sciences, University of Michigan General Research Interests Evolutionary Paleoecology, Paleoclimatology, Stable Isotopes in Paleobiology I am a marine paleoecologist and paleoclimatologist. My interests lie broadly in the evolution of the Earth-life system and how ecosystems and their component taxa evolve and respond to changes in the physical environment. Specific areas of interest include biotic and climatic change during the Paleogene (~65-24 million years ago); use of geochemical data, particularly stable isotopes, derived from accretionary biogenic materials for inference
    [Show full text]
  • Geoscience Department of Geography & Geology Program Review 2007-2014
    University of North Carolina Wilmington Master of Science in Geoscience Department of Geography & Geology Program Review 2007-2014 Self-Study December 2014 Self-Study Program Review Committee: Joanne Halls, Chair Michael Smith, Geoscience Graduate Coordinator Andrea Hawkes, Todd LaMaskin, Scott Nooner Executive Summary The UNC Wilmington Department of Geography and Geology began in 1970 and has grown to be a thriving and vital component of the Earth sciences at both undergraduate and graduate levels. The department currently has 19 tenure-track faculty, 2 lecturers, 1.5 staff people who support four undergraduate (geography, geoscience, geology, and oceanography) and two graduate (geoscience and geospatial technology) programs. Within the past 5 years the department has had several changes in faculty composition through retirements/departures and new hires. The degree programs have also changed substantially where the MS in Geology has become the MS in Geoscience. The result is a growth in our graduate program from 24 students in 2013 to 43 students in 2014. The greatest challenge that has consistently affected the Department is space. The faculty are spread across campuses (Center for Marine Science and main campus) and buildings, there is insufficient research space for faculty and students on the main campus, and the space is in need of refurbishment to accommodate the latest trends in science and technology. The greatest challenge for the MS in Geoscience program are the student stipends. The number of stipends and the funding amount is far less than comparable programs within North Carolina and in the mid-Atlantic region. It is a strong testament to the recruiting efforts of Department faculty that given this low funding the program has grown so quickly over the past few years.
    [Show full text]
  • Archaeology and Sclerochronology of Marine Bivalves
    View metadata,Downloaded citation and from similar orbit.dtu.dk papers on:at core.ac.uk Mar 29, 2019 brought to you by CORE provided by Online Research Database In Technology Archaeology and sclerochronology of marine bivalves Butler, Paul G.; Freitas, Pedro Seabra; Burchell, Meghan; Chauvaud, Laurent Published in: Goods and Services of Marine Bivalves Link to article, DOI: 10.1007/978-3-319-96776-9_21 Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Butler, P. G., Freitas, P. S., Burchell, M., & Chauvaud, L. (2018). Archaeology and sclerochronology of marine bivalves. In A. C. Smaal, J. G. Ferreira, J. Grant, J. K. Petersen, & Ø. Strand (Eds.), Goods and Services of Marine Bivalves (pp. 413-444). Springer. DOI: 10.1007/978-3-319-96776-9_21 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Archaeology and Sclerochronology of Marine Bivalves
    Downloaded from orbit.dtu.dk on: Sep 27, 2021 Archaeology and sclerochronology of marine bivalves Butler, Paul G.; Freitas, Pedro Seabra; Burchell, Meghan; Chauvaud, Laurent Published in: Goods and Services of Marine Bivalves Link to article, DOI: 10.1007/978-3-319-96776-9_21 Publication date: 2018 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Butler, P. G., Freitas, P. S., Burchell, M., & Chauvaud, L. (2018). Archaeology and sclerochronology of marine bivalves. In A. C. Smaal, J. G. Ferreira, J. Grant, J. K. Petersen, & Ø. Strand (Eds.), Goods and Services of Marine Bivalves (pp. 413-444). Springer. https://doi.org/10.1007/978-3-319-96776-9_21 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Chapter 21 Archaeology and Sclerochronology of Marine Bivalves Paul G. Butler, Pedro S. Freitas, Meghan Burchell, and Laurent Chauvaud Abstract In a rapidly changing world, maintenance of the good health of the marine environment requires a detailed understanding of its mechanisms of change, and the ability to detect early signals of a shift away from the equilibrium state that we assume characterized it before there was any significant human impact.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE Pennilyn Higgins Department of Earth and Environmental Science University of Rochester 227 Hutchison Hall Rochester, NY 14627 (585) 275-0601 [email protected] Education: 1995 -2000 University of Wyoming Laramie, WY 82071 M.S. Chemistry (December 1999) Ph.D. Geology (May 2000) 1990 - 1995 Fort Lewis College Durango, CO 81301 B.S. Geology and B.S. General Biology (April 1995) Professional: Instructor, Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, 1/1/2007–current Research Associate, Department of Earth and Environmental Sciences, University of Rochester, Rochester, NY, 1/1/2005–current Manager/Technician, Stable Isotope Ratios in the Environment, Analytical Laboratory (SIREAL), 1/1/2005– current Postdoctoral Research Fellow, Florida Museum of Natural History, University of Florida, Gainesville, FL, 6/1/2000–4/31/2004 Manager, Florida Laboratory for Isotopic and Environmental Research (FLIER), Fall 2001–April 2004 Instructor, University of Florida, Department of Geology and Geophysics, Fall term, 2001 NSF Graduate Research Fellow , University of Wyoming Department of Geology and Geophysics, Laramie, WY, 9/1996 – 8/1999 Teaching Assistant , University of Wyoming, Department of Geology and Geophysics, Laramie, WY, 8/1995 – 4/1996 Field Assistant , U.S. Bureau of Mines, IFOC, Denver, CO, 6/1995 – 8/1995 Field Assistant , U.S. Bureau of Mines, IFOC, Denver, CO, 7/1994 – 8/1994 Tutor, Program for Academic Advancement , Fort Lewis College, Durango, CO, 6/1994, 8/1994 – 12/1994
    [Show full text]
  • Palaeodemecological Analysis of Infaunal Bivalves “Lebensspuren” from the Mulichinco Formation, Lower Cretaceous, Neuquén Basin, Argentina
    AMEGHINIANA - 2012 - Tomo 49 (1): 47 – 59 ISSN 0002-7014 PALAEODEMECOLOGICAL ANALYSIS OF INFAUNAL BIVALVES “LEBENSSPUREN” FROM THE MULICHINCO FORMATION, LOWER CRETACEOUS, NEUQUÉN BASIN, ARGENTINA JAVIER ECHEVARRÍA, SUSANA E. DAMBORENEA and MIGUEL O. MANCEÑIDO División Paleozoología Invertebrados, Museo de La Plata, Paseo del Bosque s/n, B1900FWA La Plata, Argentina - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). [email protected] Abstract. The study of palaeodemecological features requires some particular taphonomic conditions. These conditions were met in the Mulichinco Formation (Valanginian), where burrowing bivalve trace fossils are widespread and often appear in cross section on bedding surfaces. Two groups of such beds were analyzed, measuring population density, spatial distribution, size distribution and horizontal orienta- tion of the burrows. The palaeoenvironment was established by means of a detailed sedimentological analysis, and the bivalve fauna present was checked, in order to attempt identifying their potential producers. High population densities were found in the two groups, indicating favourable physical conditions and good food supply, while differences in both spatial and size distributions were noticed between them; on most surfaces there was no preferred orientation. The first group (group A) showed a uniform pattern of spatial distribution and larger traces, with a remarkable absence of small sizes. In the second group (group B), the spatial distribution pattern is indistinguishable from a random distribution (except one case in which the pattern appears to be aggregated). Group A is interpreted as a set of escape traces made by deep burrowers in response to storm deposition, while group B is considered as resting/escape traces made by shallow burrowers in tide-dominated environments.
    [Show full text]