2020 State of the Great Lakes Report 1 Overseas Hitchhikers

Total Page:16

File Type:pdf, Size:1020Kb

2020 State of the Great Lakes Report 1 Overseas Hitchhikers MICHIGAN State of the Great Lakes 2020 REPORT 2020 State of the Great Lakes Report 1 Overseas Hitchhikers ...................................................................................... 26 TABLE OF CONTENTS New federal regulatory framework is proposed to control unwanted travelers found in ballast water of ships plying the Great Lakes Last Line of Defense ........................................................................................ 29 Agreement between Michigan, Illinois and the U.S. Army Corps of Engineers is a significant step in keeping invasive carp out of Taking Bold Action ..............................................................................................4 Great Lakes Governor Gretchen Whitmer says protecting the Great Lakes today will have lasting impact for generations Clean Water Champion .....................................................................................30 Building on Success .............................................................................................5 Public advocate’s mission is to inform, support and collaborate on drinking water issues EGLE Director Liesl Eichler Clark says we made significant strides this past year, now we need to keep the momentum going Protecting Water Resources ..............................................................................32 The Great Lakes At-a-Glance ............................................................................. 6 Keweenaw Bay Indian Community takes historic step toward developing water quality standards that contribute to community wellbeing A look at some of the issues that impact the lakes bordering Michigan Fighting for Lake Erie .......................................................................................34 Leading on Justice ...............................................................................................8 Adaptive Management Plan another tool to help Michigan reach goal of reducing harmful algal blooms New EGLE office helps to sustain communities along the Great Lakes through the lens of Environmental Justice Testing for Pathogens ....................................................................................... 36 Climate’s Impact on Water ................................................................................10 Technique honed for beach water sampling now also used to identify COVID-19 hotspots Michigan’s climate, energy, and water infrastructure initiatives drive community resiliency and water stewardship Legacy of Achievement .................................................................................... 38 Historic High Waters .........................................................................................13 Lower Menominee River Area of Concern delisting was 35 years in the making State, federal and local partners collaborate on coordinated response to rising water levels Status of Michigan AOCs ..................................................................................40 Creating Resilient Communities .......................................................................16 Significant progress is being made around the state as cleanup work continues New tools, planning help coastal communities strive and thrive in light of constant change Making Economic Waves .................................................................................. 42 Community Case Study .....................................................................................18 Reports by Great Lakes Restoration Initiative and Michigan Sea Grant demonstrate broad jobs impact from lakes Grand Haven city and township collaborate on sustainability changes to their master plans Green Jobs ........................................................................................................ 44 International Cooperation .................................................................................19 Michigan’s New Office of Outdoor Recreation Industry plants seeds for continued economic growth Great Lakes Commission works to translate a network of climate resiliency efforts into a comprehensive action plan Training Future Leaders ...................................................................................46 Peering Below the Waves ..................................................................................20 From Students to Stewards initiative aims to build lifelong connections with lakes and inspire tomorrow’s decision-makers Lakebed 2030 initiative provides a vision for a comprehensive mapping of Great Lakes bottomlands Restoring Great Lakes Reefs .............................................................................22 MICHIGAN.GOV/EGLE | 800-662-9278 Work is taking place around the state to rehabilitate important fish spawning habitat Prepared by the Michigan Department of Environment, Great Lakes, and Energy on behalf of the Office of the Governor (April 2021) 2 2020 State of the Great Lakes Report 2020 State of the Great Lakes Report 3 Building on TAKING BOLD ACTION We made significant strides this past year, Protecting the Great Lakes today will have lasting impact for generations Success now we need to keep the momentum going has put Michiganders and While my administration continues to work e faced new challenges and opportunities for the than ever. Regina Strong, Americans everywhere to the test. Great Lakes State in 2020, as we continued to 2020 toward a lasting infrastructure that protects W EGLE’s Environmental Justice While fighting the COVID-19 pandemic, we public health, it’s become even more clear do the work to protect and restore the world’s largest Public Advocate, and her office saw a historic, 500-year flooding event in that we’re facing a global climate crisis freshwater resource. This year provided opportunities are focusing on transformative Mid-Michigan that forced thousands of that will directly impact our environment, for learning and adapting to new experiences, with the approaches to engage with residents to evacuate their homes. economy and residents, with communities COVID-19 pandemic resulting in nearly all Department people and communities in a of color and low-income Michiganders of Environment, Great Lakes, and Energy (EGLE) staff more meaningful and inclusive Despite these unprecedented suffering disproportionately. working remotely. We have continued to serve our 10 manner. All of the work we circumstances, Michiganders continue to million Michigan residents by ensuring that we carry out do must be informed by our prove that tough times don’t last, but tough Michigan continues to see climate-fueled our mission to protect Michigan’s environment and public collective efforts to engage with the public to address people do, and by taking bold action, we can disasters, including high water levels, health by managing air, water, land and energy resources. public health, equity and Environmental Justice in build a stronger, more sustainable state historic flooding and toxic algal blooms. communities across Michigan. for our children and future generations. The science is clear, and its message is One silver lining from the COVID-19 pandemic has been This past year has been unpredictable, but we’ve matched urgent: the earth’s climate is now changing faster than at the renewed interest among Michiganders to reconnect This year has also provided opportunities to think about that uncertainty with bold actions to take on crises facing any point in the history of modern civilization. to the outdoors and enjoy our water playground. We how we build back a stronger, more resilient and adaptive our waters, public health and economy. look forward to building on that renewed connection to Great Lakes State from an environmental, economic and Action in the next decade will be paramount to reducing further drive Great Lakes stewardship. social perspective. EGLE will lead the Michigan Council COVID-19 highlighted several public health disparities the harmful impacts of the real threat of climate change, on Climate Solutions, which will craft and implement the across our state, including the need for access to clean so we’ve launched the MI Healthy Climate Plan. It sets We remain steadfast in our work to address issues Governor’s MI Healthy Climate Plan. water. Which is why early on during this crisis, I ensured some of the strongest goals in the country for combating ranging from emerging contaminants such as PFAS, that at-risk households had access to clean water for climate change. Our goal is a 100 percent carbon-neutral impacts from severe storm events and stress on our This 2020 State of the Great Lakes report is a testament handwashing and sanitation by requiring service to be Michigan by 2050. The transition will mitigate the future infrastructure systems, to high water levels, changing to the hard work of our staff and our many partners at reconnected to residences that experienced shutoffs due impacts of climate change and enable Michigan to take climate, and the continued threat of invasive species. the local, state, regional and binational levels to protect, to inability to pay. This action has provided crucial services full advantage of the global energy transformation — from restore and promote our precious freshwater resources. to people across the state who need access to clean and the jobs it will generate for our skilled workforce to the This year also brought many new opportunities, This has never been more important as we face the affordable water. protections it will provide for natural
Recommended publications
  • The Lake Michigan Natural Division Characteristics
    The Lake Michigan Natural Division Characteristics Lake Michigan is a dynamic deepwater oligotrophic ecosystem that supports a diverse mix of native and non-native species. Although the watershed, wetlands, and tributaries that drain into the open waters are comprised of a wide variety of habitat types critical to supporting its diverse biological community this section will focus on the open water component of this system. Watershed, wetland, and tributaries issues will be addressed in the Northeastern Morainal Natural Division section. Species diversity, as well as their abundance and distribution, are influenced by a combination of biotic and abiotic factors that define a variety of open water habitat types. Key abiotic factors are depth, temperature, currents, and substrate. Biotic activities, such as increased water clarity associated with zebra mussel filtering activity, also are critical components. Nearshore areas support a diverse fish fauna in which yellow perch, rockbass and smallmouth bass are the more commonly found species in Illinois waters. Largemouth bass, rockbass, and yellow perch are commonly found within boat harbors. A predator-prey complex consisting of five salmonid species and primarily alewives populate the pelagic zone while bloater chubs, sculpin species, and burbot populate the deepwater benthic zone. Challenges Invasive species, substrate loss, and changes in current flow patterns are factors that affect open water habitat. Construction of revetments, groins, and landfills has significantly altered the Illinois shoreline resulting in an immeasurable loss of spawning and nursery habitat. Sea lampreys and alewives were significant factors leading to the demise of lake trout and other native species by the early 1960s.
    [Show full text]
  • Great Lakes Pine Barrens
    Rapid Assessment Reference Condition Model The Rapid Assessment is a component of the LANDFIRE project. Reference condition models for the Rapid Assessment were created through a series of expert workshops and a peer-review process in 2004 and 2005. For more information, please visit www.landfire.gov. Please direct questions to [email protected]. Potential Natural Vegetation Group (PNVG) R6JAPIop Great Lakes Pine Barrens General Information Contributors (additional contributors may be listed under "Model Evolution and Comments") Modelers Reviewers Joshua Cohen [email protected] Vegetation Type General Model Sources Rapid AssessmentModel Zones Woodland Literature California Pacific Northwest Local Data Great Basin South Central Dominant Species* Expert Estimate Great Lakes Southeast Northeast S. Appalachians PIBA2 VAAN LANDFIRE Mapping Zones ANGE Northern Plains Southwest CAPE6 51 40 PIRE N-Cent.Rockies QUEL 50 SCSC 41 Geographic Range System occurs in northern Lower Michigan, northern Wisconsin, northern Minnesota, and eastern Ontario, north of the climatic tension zone (Curtis 1959 and is concentrated in the High Plains Subsection in northern Lower Michigan and in central Wisconsin (Vora 1993). Also occurs in several locations in the Upper Peninsula of Michigan and is associated with the upper Mississippi and St. Croix Rivers in Minnesota and Wisconsin (Comer 1996). Biophysical Site Description The Great Lakes pine barrens system is endemic to very dry, nutrient-impoverished landscape ecosystems. These ecosystems occur in landforms deposited by high-energy glacial melt waters, principally outwash plains and glacial lakebeds, underlain by well-sorted, coarse-textured sandy soils with low water retaining capacity. They also occur in bedrock-controlled landforms with shallow soils of limited moisture storage capacity (Cleland et al.
    [Show full text]
  • Thunder Bay National Marine Sanctuary
    www.thunderbay.noaa.gov (989) 356-8805 Alpena, MI49707 500 WestFletcherStreet Heritage Center Great LakesMaritime Contact Information N T ATIONAL ATIONAL HUNDER 83°30'W 83°15'W 83°00'W New Presque Isle Lighthouse Park M North Bay ARINE Wreck 82°45'W Old Presque Isle Lighthouse Park B S ANCTUARY North Albany Point Cornelia B. AY Windiate Albany • Types ofVesselsLostatThunderBay South Albany Point Sail Powered • • • Scows Ships, Brigs, Schooners Barks Lake Esau Grand Norman Island Wreck Point Presque Isle Lotus Lake Typo Lake of the Florida • Woods Steam Powered Brown • • Island Sidewheelers Propellers John J. Grand Audubon LAKE Lake iver R ll e B HURON Whiskey False Presque Isle Point • Other • • Unpowered Combustion Motor Powered 45°15'N 45°15'N Bell Czar Bolton Point Besser State Besser Bell Natural Area Wreck Defiance (by quantityoflossforallwrecks) Cargoes LostatThunderBay • • • • Iron ore Grain Coal Lumber products Ferron Point Mackinaw State Forest Dump Scow Rockport • • • • 23 Middle Island Sinkhole Fish Salt Package freight Stone Long Portsmouth Lake Middle Island Middle Island Lighthouse Middle Lake • • • Copper ore Passengers Steel Monaghan Point New Orleans 220 Long Lake Creek Morris D.M. Wilson Bay William A. Young South Ninemile Point Explore theThunderBayNationalMarineSanctuary Fall Creek Salvage Barge &Bathymetry Topography Lincoln Bay Nordmeer Contours inmeters Grass Lake Mackinaw State Forest Huron Bay 0 Maid of the Mist Roberts Cove N Stoneycroft Point or we gi an El Cajon Bay Ogarita t 23 Cre Fourmile Mackinaw State
    [Show full text]
  • AN OVERVIEW of the GEOLOGY of the GREAT LAKES BASIN by Theodore J
    AN OVERVIEW OF THE GEOLOGY OF THE GREAT LAKES BASIN by Theodore J. Bornhorst 2016 This document may be cited as: Bornhorst, T. J., 2016, An overview of the geology of the Great Lakes basin: A. E. Seaman Mineral Museum, Web Publication 1, 8p. This is version 1 of A. E. Seaman Mineral Museum Web Publication 1 which was only internally reviewed for technical accuracy. The Great Lakes Basin The Great Lakes basin, as defined by watersheds that drain into the Great Lakes (Figure 1), includes about 85 % of North America’s and 20 % of the world’s surface fresh water, a total of about 5,500 cubic miles (23,000 cubic km) of water (1). The basin covers about 94,000 square miles (240,000 square km) including about 10 % of the U.S. population and 30 % of the Canadian population (1). Lake Michigan is the only Great Lake entirely within the United States. The State of Michigan lies at the heart of the Great Lakes basin. Together the Great Lakes are the single largest surface fresh water body on Earth and have an important physical and cultural role in North America. Figure 1: The Great Lakes states and Canadian Provinces and the Great Lakes watershed (brown) (after 1). 1 Precambrian Bedrock Geology The bedrock geology of the Great Lakes basin can be subdivided into rocks of Precambrian and Phanerozoic (Figure 2). The Precambrian of the Great Lakes basin is the result of three major episodes with each followed by a long period of erosion (2, 3). Figure 2: Generalized Precambrian bedrock geologic map of the Great Lakes basin.
    [Show full text]
  • GLRI Fact Sheet
    WISCONSIN PROJECTS FOR 2010-2011 Great Lakes Restoration Initiative Federal funds support critical restoration and protection work on Wisconsinʼs Great Lakes Wisconsinʼs agencies and Priorities for the Great Lakes. GLRI funds will help Wisconsin address Great Lakes Drainage Basins in Wisconsin organizations received almost $30 these priorities on Lake Michigan and Lake Superior million in grants for the first year of the Great Lakes Restoration Initiative – a Lake Superior. federal basin-wide effort to restore and Economic Benefits of Restoration protect the Great Lakes. Restoring the Great Lakes will bring great benefits to our state. Work done A Vital Economic Asset under the GLRI will create jobs, The Great Lakes have had profound stimulate economic development, and Lake effects on our environment, culture, Michigan improve freshwater resources and ! and quality of life. They have fueled shoreline communities. A study our economic growth in the past and – conducted by the Brookings Institution if properly restored and protected – will Map Scale: found that fully implementing the 1 inch = 39.46 miles help us revitalize our economy in the regional collaboration strategy will future. generate $80-$100 billion in short and Lake Superior and Lake Michigan are affected by the actions of people throughout their watersheds. Lake Lake Michigan and Lake Superior long term benefits, including: Superior’s watershed drains 1,975,902 acres and provide: • $6.5-$11.8 billion in benefits supports 123,000 people. Lake Michigan’s watershed from tourism, fishing and drains 9,105,558 acres and supports 2,352,417 • Sport fishing opportunities for people. more than 250,000 anglers, recreation.
    [Show full text]
  • Status and Extent of Aquatic Protected Areas in the Great Lakes
    Status and Extent of Aquatic Protected Areas in the Great Lakes Scott R. Parker, Nicholas E. Mandrak, Jeff D. Truscott, Patrick L. Lawrence, Dan Kraus, Graham Bryan, and Mike Molnar Introduction The Laurentian Great Lakes are immensely important to the environmental, economic, and social well-being of both Canada and the United States (US). They form the largest surface freshwater system in the world. At over 30,000 km long, their mainland and island coastline is comparable in length to that of the contiguous US marine coastline (Government of Canada and USEPA 1995; Gronewold et al. 2013). With thousands of native species, including many endemics, the lakes are rich in biodiversity (Pearsall 2013). However, over the last century the Great Lakes have experienced profound human-caused changes, includ- ing those associated with land use changes, contaminants, invasive species, climate change, over-fishing, and habitat loss (e.g., Bunnell et al. 2014; Smith et al. 2015). It is a challenging context in terms of conservation, especially within protected areas established to safeguard species and their habitat. According to the International Union for Conservation of Nature (IUCN), a protected area is “a clearly defined geographical space, recognised, dedicated and managed, through legal or other effective means, to achieve the long-term conservation of nature with associat- ed ecosystem services and cultural values” (Dudley 2008). Depending on the management goals, protected areas can span the spectrum of IUCN categories from highly protected no- take reserves to multiple-use areas (Table 1). The potential values and benefits of protected areas are well established, including conserving biodiversity; protecting ecosystem structures and functions; being a focal point and context for public engagement, education, and good governance; supporting nature-based recreation and tourism; acting as a control or reference site for scientific research; providing a positive spill-over effect for fisheries; and helping to mitigate and adapt to climate change (e.g., Lemieux et al.
    [Show full text]
  • Great Lakes/Big Rivers Fisheries Operational Plan Accomplishment
    U.S. Fish & Wildlife Service Fisheries Operational Plan Accomplishment Report for Fiscal Year 2004 March 2003 Region 3 - Great Lakes/Big Rivers Partnerships and Accountability Aquatic Habitat Conservation and Management Workforce Management Aquatic Species Conservation and Aquatic Invasive Species Management Cooperation with Native Public Use Leadership in Science Americans and Technology To view monthly issues of “Fish Lines”, see our Regional website at: (http://www.fws.gov/midwest/Fisheries/) 2 Fisheries Accomplishment Report - FY2004 Great Lakes - Big Rivers Region Message from the Assistant Regional Director for Fisheries The Fisheries Program in Region 3 (Great Lakes – Big Rivers) is committed to the conservation of our diverse aquatic resources and the maintenance of healthy, sustainable populations of fish that can be enjoyed by millions of recreational anglers. To that end, we are working with the States, Tribes, other Federal agencies and our many partners in the private sector to identify, prioritize and focus our efforts in a manner that is most complementary to their efforts, consistent with the mission of our agency, and within the funding resources available. At the very heart of our efforts is the desire to be transparent and accountable and, to that end, we present this Region 3 Annual Fisheries Accomplishment Report for Fiscal Year 2004. This report captures our commitments from the Region 3 Fisheries Program Operational Plan, Fiscal Years 2004 & 2005. This document cannot possibly capture the myriad of activities that are carried out by any one station in any one year, by all of the dedicated employees in the Fisheries Program, but, hopefully, it provides a clear indication of where our energy is focused.
    [Show full text]
  • Great Lakes Region and Outlook February 2016
    El Niño Impacts Great Lakes Region and Outlook February 2016 Winter 2015/16 El Niño Update What is El Niño? Winter 2015/16 To Date An El Niño develops when sea surface temperatures are warmer than While the weather pattern this winter so far does share some similarities average in the equatorial Pacific for an extended period of time. This with the typical El Niño winter pattern, there are some differences as is important to North America because El Niño has an impact on our well. As predicted, temperatures have been above normal and in fact, weather patterns, most predominantly in the winter. December 2015 is now the warmest December on record for many locations across the Great Lakes basin (since records began in 1895). Typical El Niño Winter Pattern Snowfall has been significantly below normal across a majority of the Although each El Niño basin. As of January 31, ice cover extent on the Great Lakes is 8%, is different, there are which is significantly below normal for this time of year. In addition, ice some general patterns accumulation began late this year towards the end of December. On the that are predictable. other hand, overall precipitation has differed from the typical El Niño For instance, the polar winter pattern and conditions have been very wet. The reason for some jet stream is typically of the discrepencies from the typical pattern is that each El Niño episode farther north than can be different, and strong events in the past have brought varying usual, while the Pacific conditions to the basin.
    [Show full text]
  • Nipigon Bay Area of Concern Status of Beneficial Use Impairments September 2010
    Nipigon Bay Area of Concern Status of Beneficial Use Impairments September 2010 Nipigon Bay is in the most northerly area of Lake Superior. The Area of Concern takes in a large portion of Nipigon Bay and the Nipigon River, the largest tributary to Lake Superior, and the communities of Red Rock and Nipigon. There are Ontario Power Generation dams on the Nipigon River for the generation of hydroelectricity. The area supports a variety of wetlands and bird populations, including one of four known pelican colonies in Ontario. The watershed forests on both sides of the Nipigon River have been allocated for forest harvesting. Environmental concerns in the Nipigon Bay Area of Concern are related to water level and flow fluctuations in Lake Nipigon and the Nipigon River from the generation of hydroelectricity. These fluctuations affect stream bank stability, sediment load and fish and wildlife habitat. Other concerns include the accumulation of wood fibre, bark and other organic material from past log drives, and effluent discharges from a linerboard mill (which closed in 2006) and the municipal sewage treatment plants in Nipigon and Red Rock. PARTNERSHIPS IN ENVIRONMENTAL PROTECTION Nipigon Bay was designated an Area of Concern in 1987 under the Canada–United States Great Lakes Water Quality Agreement. Areas of Concern are sites on the Great Lakes system where environmental quality is significantly degraded and beneficial uses are impaired. Currently, there are 9 such designated areas on the Canadian side of the Great Lakes, 25 in the United States, and 5 that are shared by both countries. In each Area of Concern, government, community and industry partners are undertaking a coordinated effort to restore environmental quality and beneficial uses through a remedial action plan.
    [Show full text]
  • Misery Bay Chapter 2
    Existing Conditions The first step in developing a plan to protect the coastal resources of Misery Bay is to establish an accurate representation of existing cultural and environmental features within the study area. This chapter will present a series of maps and associated text to describe key features such as owner type, land uses, vegetation cover types, soils and geology. NEMCOG used information and digital data sets from the Center for Geographic Information, State of Michigan, Michigan Resource Information System, Alpena Township, Alpena County, Natural Resource Conservation Service, and U.S. Geological Survey. Information from the Alpena County Master Plan and Alpena Township Master Plan was used to develop a profile of existing conditions. Field surveys were conducted during 2003. Community Demographics Trends in population and housing characteristics can provide an understanding of growth pressures in a community. Population trends from 1900 and 2000 are summarized in Table 2.1. Population levels have risen and fallen twice in the last 100 years, first in the early part of the century and again in the 1980’s. The 1980 US Census recorded the largest population for Alpena Township and Alpena County at 10,152 and 32,315 respectively. During the 80’s decade, population fell by over five percent and has not climbed back to the 1980 US Census level. Table 2.1 Population Trends Alpena Township and Alpena County, 1900-2000 Alpena Township Alpena County Year Population % Change Population % Change 1900 1,173 --- 18,254 --- 1910 928 -20.9% 19,965 +9.4% 1920 701 -24.5% 17,869 -10.5% 1930 813 +16.0% 18,574 +3.9% 1940 1,675 +106.0% 20,766 +11.8% 1950 2,932 +75.0% 22,189 +6.9% 1960 6,616 +125.6% 28,556 +28.7% 1970 9,001 +36.0% 30,708 +7.5% 1980 10,152 +12.8% 32,315 +5.2% 1990 9,602 -5.4% 30,605 -5.3% 2000 9,788 +1.9% 31,314 +2.3% Source: U.S.
    [Show full text]
  • Lake Superior Food Web MENT of C
    ATMOSPH ND ER A I C C I A N D A M E I C N O I S L T A R N A T O I I O T N A N U E .S C .D R E E PA M RT OM Lake Superior Food Web MENT OF C Sea Lamprey Walleye Burbot Lake Trout Chinook Salmon Brook Trout Rainbow Trout Lake Whitefish Bloater Yellow Perch Lake herring Rainbow Smelt Deepwater Sculpin Kiyi Ruffe Lake Sturgeon Mayfly nymphs Opossum Shrimp Raptorial waterflea Mollusks Amphipods Invasive waterflea Chironomids Zebra/Quagga mussels Native waterflea Calanoids Cyclopoids Diatoms Green algae Blue-green algae Flagellates Rotifers Foodweb based on “Impact of exotic invertebrate invaders on food web structure and function in the Great Lakes: NOAA, Great Lakes Environmental Research Laboratory, 4840 S. State Road, Ann Arbor, MI A network analysis approach” by Mason, Krause, and Ulanowicz, 2002 - Modifications for Lake Superior, 2009. 734-741-2235 - www.glerl.noaa.gov Lake Superior Food Web Sea Lamprey Macroinvertebrates Sea lamprey (Petromyzon marinus). An aggressive, non-native parasite that Chironomids/Oligochaetes. Larval insects and worms that live on the lake fastens onto its prey and rasps out a hole with its rough tongue. bottom. Feed on detritus. Species present are a good indicator of water quality. Piscivores (Fish Eaters) Amphipods (Diporeia). The most common species of amphipod found in fish diets that began declining in the late 1990’s. Chinook salmon (Oncorhynchus tshawytscha). Pacific salmon species stocked as a trophy fish and to control alewife. Opossum shrimp (Mysis relicta). An omnivore that feeds on algae and small cladocerans.
    [Show full text]
  • Danahub 2021 – Reference Library E & O E Overview the Great Lakes Region Is the Living Hub of North America, Where It
    Overview The Great Lakes region is the living hub of North America, where it supplies drinking water to tens of millions of people living on both sides of the Canada-US border. The five main lakes are: Lake Superior, Lake Michigan, Lake Huron, Lake Ontario and Lake Erie. Combined, the Great Lakes contain approximately 22% of the world’s fresh surface water supply. Geography and Stats The Great Lakes do not only comprise the five major lakes. Indeed, the region contains numerous rivers and an estimated 35,000 islands. The total surface area of the Great Lakes is 244,100 km2 – nearly the same size as the United Kingdom, and larger than the US states of New York, New Jersey, Connecticut, Rhode Island, Massachusetts, Vermont and New Hampshire combined! The total volume of the Great Lakes is 6x1015 Gallons. This amount is enough to cover the 48 neighboring American States to a uniform depth of 9.5 feet (2.9 meters)! The largest and deepest of the Great Lakes is Lake Superior. Its volume is 12,100 Km3 and its maximum depth is 1,332 ft (406 m). Its elevation is 183 m above sea level. The smallest of the Great Lakes is Lake Erie, with a maximum depth of 64 m and a volume of 484 Km3. Lake Ontario has the lowest elevation of all the Great Lakes, standing at 74 m above sea level. The majestic Niagara Falls lie between Lakes Erie and Ontario, where there is almost 100 m difference in elevation. Other Rivers and Water Bodies The Great Lakes contain many smaller lakes such as Lake St.
    [Show full text]