Using the ACL2 System

Total Page:16

File Type:pdf, Size:1020Kb

Using the ACL2 System A Using the ACL2 System A.l Introduction This appendix tells you the basics you need to know in order to use the ACL2 system. After some preliminaries, we explain the fundamental read­ eval-print nature of interaction with ACL2. We then describe how to give commands that update the state of the system, e.g., with definitions and theorems. We conclude by describing the structure of the documentation, illustrating its use with an example and presenting an abbreviated outline. A.I.1 Getting Started ACL2 is publicly available on the Web at http://www . cs . utexas . edu/­ users/moore/ac12/. You are encouraged to explore this page, which has links to introductory material, to useful email addresses including an ACL2 mailing list, to research papers, and to the system itself along with instruc­ tions on how to obtain and install it. A.I.2 Conventions ACL2 has extensive documentation which is organized by topics. When a topic occurs in this book, recall that we may call attention to its status as a documentation topic by underlining it in typewriter font. For example, documentation is itself such a topic. This appendix is not intended to require any prior knowledge of the programming language underlying ACL2. It suffices for now to understand that ACL2 syntax uses prefix notation: for function calls the operator ap­ pears before the operands, all within parentheses. For example, the sum of the numbers 5 and 7 is written (+ 5 7). In the following sample transcript, only the expression (+ 5 7) is typed in by the user. The rest is printed by the system, including the ACL2 prompt. ACL2 !>(+ 5 7) 224 Computer-Aided Reasoning: An Approach 12 ACL2 !> We will follow this convention throughout this appendix: user input immediately follows prompts, and everything else in the display is printed by the system. A.2 The Read-Eval-Print Loop This section describes the basics of interacting with ACL2. See also Id. A.2.1 Entering ACL2 When you follow the installation instructions, you will create an executable image. In some Lisps, you will then need to invoke the command (lp) ("loop") in order to enter the ACL2 read-eval-print loop that is described below. Here, for example, is how one starts up ACL2 using Allegro Common Lisp, assuming that the ACL2 executable is called acl2. In GCL and perhaps other Lisps, you will immediately see the ACL2 prompt, ACL2 ! >, in which case you should skip (lp). I. ac12 Allegro CL Enterprise Edition 5.0 [SPARC] (8/29/98 12:15) [[ additional output omitted ]] ACL2(1): (lp) ACL2 Version 2.5. Level 1. Cbd "/user/smith/". Type :help for help. ACL2 !> A.2.2 Read, Eval, and Print Here again is the example presented above. ACL2 !>(+ 5 7) 12 ACL2 !> This example illustrates interaction with ACL2, namely, using a read­ eval-print loop . • Read: The system reads the user's input expression, (+ 5 7) . • Eval: The system evaluates this input, adding 5 and 7. Using the ACL2 System 225 • Print: The system prints out the result returned by the evaluation, 12. Numerous operations are built into ACL2 besides the addition operator (+) shown above. In particular, the operator thin directs ACL2 to attempt the proof of a theorem. The transcript below shows a use of thin that causes ACL2 to prove the commutativity of addition: the sum of x and y, (+ x y), is equal to the sum of y and x, (+ y x). Again, only the expression following the prompt was supplied by the user. ACL2 !>(thm (equal (+ x y) (+ y x») But simplification reduces this to T, using linear arithmetic and primitive type reasoning. Q.E.D. Summary Form: (THM ... ) Rules: «:FAKE-RUNE-FOR-LINEAR NIL) (:FAKE-RUNE-FOR-TYPE-SET NIL» Warnings: None Time: 0.02 seconds (prove: 0.00, print: 0.01, other: 0.01) Proof succeeded. ACL2 !> We postpone discussion of the theorem prover, but the example above provides some idea of how to interact with the system. Notice that this example illustrates that printing can go on during evaluation. It also shows that the print phase of the read-eval-print loop is skipped for thin, as it is for a few other built-in operations. A.2.3 Exiting ACL2 The most direct way to quit ACL2, including the underlying Lisp, may be to issue the keyword command : good-bye. (Keyword commands in general are discussed in Section A.3.2.) ACL2 !>:good-bye dork.cs.utexas.edu'l. The : good-bye command works when the underlying Lisp is GCL or (starting with ACL2 Version 2.5) Allegro CL. It may not work with other Lisps. How else can you exit an ACL2 session? You can probably quit ACL2, including the underlying Lisp, entirely from inside the ACL2 loop by typing control-d one or more times. In 226 Computer-Aided Reasoning: An Approach Emacs, use the combination eontrol-c eontrol-d instead of control-d. In MacIntosh Common Lisp (MCL), use eommand-q. But here is a more reliable approach than the one of the preceding paragraph. You can always leave the ACL2 loop by typing: 9" as follows. ACL2 !>:q Exiting the ACL2 read-eval-print loop. To re-enter, execute (LP) • ACL2> You could alternatively evaluate (value :q). In either case, you are left at the Lisp prompt, in what we sometimes refer to as raw Lisp. Each Lisp pro­ vides its own quit command to execute in raw Lisp, including (user: :bye) in GCL, (exel: :exit) in Allegro Common Lisp, (user: : quit) in CMU Common Lisp, and (eel: :quit) in MCL. A.2.4 Dealing with Interrupts and Breaks In many Common Lisps, an ACL2 session can be interrupted by typing eontrol-e (in Emacs, two eontrol-e characters). In MCL, use com­ mand-, (the comma character while holding down the command key). When the interrupt is seen, you are left in a break loop in raw Lisp. Certain input errors (as illustrated below) can also leave you in breaks. Your Lisp provides a way to abort the break and return to the top-level. In some Lisps, this will take you all the way out to raw Lisp and you must type (lp) to get back into the ACL2 command loop. In other Lisps, it will take you back into the ACL2 command loop. You can often get from the break loop back to the ACL2 read-eval-print loop by typing the token '#. ' followed by a carriage return, which implements the command (abort!). Here is an illustration of the user being accidentally thrown into a break loop because of a typo (the comma), followed by recovery using '#. '. The break prompt of your Lisp may resemble the ACL2 prompt; pay attention to the prompt. ACL2 !>(+ 3,245 7) Error: Illegal comma encountered by READ. Fast links are on: do (si::use-fast-links nil) for debugging Error signalled by CONDo Broken at CONDo Type:H for Help. ACL2»#. Abort to ACL2 top-level ACL2 Version 2.5. Levell. Cbd "/user/smith/". Type :help for help. ACL2 !> Using the ACL2 System 227 Occasionally, '#.' may not work, in particular when there are stack overflows. 1 In that case, follow these steps. 1. Return from the break using : q for GCL, : reset for Allegro, and q for CMU Lisp. This should put you in the ACL2 loop. 2. Exit the ACL2 loop using: q. 3. Re-enter the ACL2 loop using (lp). Note: We include Steps 2 and 3 because we have seen cases in which the underlying Lisp has had insufficient stack for further processing unless one first returns to the top level of raw Lisp. A.3 Managing ACL2 Sessions The example using thIn above shows that ACL2 comes with a built-in logical data base that is sufficiently rich to allow ACL2 to prove that addition is commutative. However, the utility of ACL2 derives largely from the ability to extend that logical data base, which we call a logical world or world, with new definitions and theorems. When the user's input causes the logical world to be changed, that input is called a command. A single command can generate several events that extend the logical world. The following command defines two functions: one named add3 that adds 3 to its input, x, and one named sub3 that subtracts 3 from its input, x. These two definition (defun) events will be used in examples below. This is a contrived example, since one rarely uses the sequencing operator progn in ACL2, but it illustrates the distinction between the notions of command (user input that creates at least one world-changing event) and event (a form that updates the ACL2 world when successfully evaluated). (progn (defun add3 (x) (+ x 3» (defun sub3 (x) (- x 3» Once this command has been submitted to ACL2, the functions defined can be tested, for example as follows. ACL2 !>(add3 9) 12 ACL2 !>(sub3 12) 9 ACL2 !> 1 For Lisp experts: The problem is that Lisp can reset the variable *readtable*. 228 Computer-Aided Reasoning: An Approach A.3.1 Viewing the ACL2 Logical World The ACL2 user's goal is generally the extension of the built-in logical world, by defining functions and by proving theorems that express desired prop­ erties of those functions. Logical worlds are extended using commands such as the one shown above. In this section we give an idea of how to obtain views of the current logical world. The simplest view of the current logical world is obtained using :pbt ("print back through"), which shows the current command history.
Recommended publications
  • Formal Verification of Eccs for Memories Using ACL2
    Journal of Electronic Testing (2020) 36:643–663 https://doi.org/10.1007/s10836-020-05904-2 Formal Verification of ECCs for Memories Using ACL2 Mahum Naseer1 · Waqar Ahmad1 · Osman Hasan1 Received: 12 April 2020 / Accepted: 2 September 2020 / Published online: 26 September 2020 © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract Due to the ever-increasing toll of soft errors in memories, Error Correction Codes (ECCs) like Hamming and Reed-Solomon Codes have been used to protect data in memories, in applications ranging from space to terresterial work stations. In past seven decades, most of the research has focused on providing better ECC strategies for data integrity in memories, but the same pace research efforts have not been made to develop better verification methodologies for the newer ECCs. As the memory sizes keep increasing, exhaustive simulation-based testing of ECCs is no longer practical. Hence, formal verification, particularly theorem proving, provides an efficient, yet scarcely explored, alternative for ECC verification. We propose a framework, with extensible libraries, for the formal verification of ECCs using the ACL2 theorem prover. The framework is easy to use and particularly targets the needs of formally verified ECCs in memories. We also demonstrate the usefulness of the proposed framework by verifying two of the most commonly used ECCs, i.e., Hamming and Convolutional codes. To illustrate that the ECCs verified using our formal framework are practically reliable, we utilized a formal record- based memory model to formally verify that the inherent properties of the ECCs like hamming distance, codeword decoding, and error detection/correction remain consistent even when the ECC is implemented on the memory.
    [Show full text]
  • Creating Formally Verified Components for Layered
    Creating Formally Verified Components for Layered Assurance with an LLVM to ACL2 Translator∗ y z David S. Hardin Jedidiah R. McClurg Jennifer A. Davis Advanced Technology Center Department of Computer Advanced Technology Center Rockwell Collins Science Rockwell Collins Cedar Rapids, IA, USA University of Colorado Cedar Rapids, IA, USA [email protected] Boulder, CO, USA [email protected] [email protected] ABSTRACT Keywords In our current work, we need to create a library of formally Formal verification, Theorem proving, ACL2, LLVM verified software component models from code that has been compiled (or decompiled) using the Low-Level Virtual Ma- 1. INTRODUCTION chine (LLVM) intermediate form; these components, in turn, are to be assembled into subsystems whose top-level assur- ance relies on the assurance of the individual components. \Remember that all models are wrong; the Thus, we have undertaken a project to build a translator practical question is how wrong do they have to from LLVM to the applicative subset of Common Lisp ac- be to not be useful." [2] { George Box, British cepted by the ACL2 theorem prover. Our translator pro- Statistician duces executable ACL2 specifications featuring tail recur- sion, as well as in-place updates via ACL2's single-threaded Layered assurance for software often requires the creation object (stobj) mechanism. This allows us to efficiently sup- of a library of assured software component models, start- port validation of our models by executing production tests ing with code that lacks a formal pedigree. These assured for the original artifacts against those models. Unfortu- components can then be assembled into subsystems whose nately, features that make a formal model executable are of- top-level assurance relies on the assurance of the individual ten at odds with efficient reasoning.
    [Show full text]
  • Checking Nuprl Proofs in ACL2: a Progress Report
    Checking Nuprl Proofs in ACL2: A Progress Report James L. Caldwell? and John Cowles? Department of Computer Science, University of Wyoming, Laramie Wyoming {jlc,cowles}@cs.uwyo.edu Abstract. Stipulations on the correctness of proofs produced in a for- mal system include that the axioms and proof rules are the intended ones and that the proof has been properly constructed (i.e. it is a correct in- stantiation of the axioms and proof rules.) In software implementations of formal systems, correctness additionally depends both on the correct- ness of the program implementing the system and on the hardware it is executed on. Once we implement a system in software and execute it on a computer, we have moved from the abstract world of mathematics into the physical world; absolute correctness can never be achieved here. We can only strive to increase our confidence that the system is producing correct results. In the process of creating proofs, foundational systems like Nuprl construct formal proof objects. These proof objects can be independently checked to verify they are correct instantiations of the axioms and proof rules thereby increasing confidence that the putative proof object faithfully represents a proof in the formal system. Note that this kind of proof checking does not address issues related to the models of the proof system, it simply provides more evidence that a proof has been correctly constructed. The Nuprl implementation consists of more than 100K lines of LISP and tactic code implemented in ML. Although parts of the system consist of legacy codes going as far back as the late 1970’s (Edinburgh LCF), and even though the Nuprl system has been extensively used since 1986 in formalizing a significant body of mathe- matics, the chances that the implementation is correct are slim.
    [Show full text]
  • How Lisp Systems Look Different in Proceedings of European Conference on Software Maintenance and Reengineering (CSMR 2008)
    How Lisp Systems Look Different In Proceedings of European Conference on Software Maintenance and Reengineering (CSMR 2008) Adrian Dozsa Tudor Gˆırba Radu Marinescu Politehnica University of Timis¸oara University of Berne Politehnica University of Timis¸oara Romania Switzerland Romania [email protected] [email protected] [email protected] Abstract rently used in a variety of domains, like bio-informatics (BioBike), data mining (PEPITe), knowledge-based en- Many reverse engineering approaches have been devel- gineering (Cycorp or Genworks), video games (Naughty oped to analyze software systems written in different lan- Dog), flight scheduling (ITA Software), natural language guages like C/C++ or Java. These approaches typically processing (SRI International), CAD (ICAD or OneSpace), rely on a meta-model, that is either specific for the language financial applications (American Express), web program- at hand or language independent (e.g. UML). However, one ming (Yahoo! Store or reddit.com), telecom (AT&T, British language that was hardly addressed is Lisp. While at first Telecom Labs or France Telecom R&D), electronic design sight it can be accommodated by current language inde- automation (AMD or American Microsystems) or planning pendent meta-models, Lisp has some unique features (e.g. systems (NASA’s Mars Pathfinder spacecraft mission) [16]. macros, CLOS entities) that are crucial for reverse engi- neering Lisp systems. In this paper we propose a suite of Why Lisp is Different. In spite of its almost fifty-year new visualizations that reveal the special traits of the Lisp history, and of the fact that other programming languages language and thus help in understanding complex Lisp sys- borrowed concepts from it, Lisp still presents some unique tems.
    [Show full text]
  • Industrial Hardware and Software Verification with ACL2
    Industrial Hardware and Software Verification with rsta.royalsocietypublishing.org ACL2 1 1 Warren A. Hunt, Jr. , Matt Kaufmann , 1 2 Research J Strother Moore and Anna Slobodova 1 Department of Computer Science Article submitted to journal University of Texas at Austin e-mail: {hunt,kaufmann,moore}@cs.utexas.edu 2 Centaur Technology, Inc. Subject Areas: 7600-C N. Capital of Texas Hwy, Suite 300 xxxxx, xxxxx, xxxx Austin, TX 78731 Keywords: e-mail: [email protected] xxxx, xxxx, xxxx ACL2 has seen sustained industrial use since the mid 1990s. Companies that have used ACL2 Author for correspondence: regularly include AMD, Centaur Technology, IBM, J Strother Moore Intel, Kestrel Institute, Motorola/Freescale, Oracle, e-mail: [email protected] and Rockwell Collins. This paper focuses on how and why ACL2 is used in industry. ACL2 is well-suited to its industrial application to numerous software and hardware systems because it is an integrated programming/proof environment supporting a subset of the ANSI standard Common Lisp programming language. As a programming language ACL2 permits the coding of efficient and robust programs; as a prover ACL2 can be fully automatic but provides many features permitting domain-specific human- supplied guidance at various levels of abstraction. ACL2 specifications and models often serve as efficient execution engines for the modeled artifacts while permitting formal analysis and proof of properties. Crucially, ACL2 also provides support for the development and verification of other formal analysis tools. However, ACL2 did not find its way into industrial use merely because of its technical features. The core ACL2 user/development community has a shared vision of making mechanized verification routine when appropriate and has been committed to this vision for the quarter century since the Computational Logic, Inc., Verified Stack.
    [Show full text]
  • Accessible Formal Methods for Verified Parser Development
    2021 IEEE Symposium on Security and Privacy Workshops Accessible Formal Methods for Verified Parser Development Letitia W. Li, Greg Eakman Elias J. M. Garcia, Sam Atman FAST Labs, BAE Systems Special Circumstances Burlington, Massachusetts, USA Brussels, Belgium [email protected], [email protected] fejmg, [email protected] Abstract—Security flaws in Portable Document Format (PDF) in the field of another object may not have been yet parsed, readers may allow PDFs to conceal malware, exfiltrate in- and therefore we cannot check any of the attributes of the ref- formation, and execute malicious code. For a PDF reader to erenced object (such as its type, or even its existence). Instead, identify these flawed PDFs requires first parsing the document syntactically, and then analyzing the semantic properties or these semantic properties are checked after the first parsing of structure of the parse result. This paper presents a language- the document, whether within the parser or separately. theoretic and developer-accessible approach to PDF parsing and In the DARPA SafeDocs project, we address the insecurity validation using ACL2, a formal methods language and theorem of PDF readers/parsers with a Language-theoretic Security prover. We develop two related components, a PDF syntax parser approach by first defining a PDF grammar, and then de- and a semantic validator. The ACL2-based parser, verified using the theorem prover, supports verification of a high-performance veloping verified parsers to accept only well-formed input equivalent of itself or an existing PDF parser. The validator then according to that grammar [8]. In this paper, we propose an extends the existing parser by checking the semantic properties accessible formal methods approach in ACL2 for safe, secure, in the parse result.
    [Show full text]
  • Software Verification with ACL2
    Software Verification with ACL2 Francisco Palomo Lozano [email protected] Software Verification and Validation Department of Computer Science Introduction Summary 1 Introduction 2 First Steps 3 Atoms and Lists 4 Sorted Lists 5 Sorting by Insertion 6 Sorting by Merging 7 Parallelism Francisco Palomo (UCA) Software Verification with ACL2 Version 1.1 3 / 39 Introduction What is ACL2? 1 AC omputational Logic for an Applicative Common Lisp 2 ACL2 is three things under the same name A pure functional programming language A computational logic formalizing this language An automated reasoning system for formal verification 3 ACL2 is regarded as an incarnation of McCarthy’s dream A dream came true Reasoning about Lisp functions 4 Landmarks Successor of NQTHM, the Boyer-Moore theorem prover Developed by Moore and Kaufmann for more than 20 years ACM Software System Award 2005 Annual conferences Francisco Palomo (UCA) Software Verification with ACL2 Version 1.1 4 / 39 Introduction Where has ACL2 been used?I 1996 Motorola CAP DSP 20-bit, used in radio, 1024-point complex FFT in 131 µs Verification of microcode DSP programs 1998 IBM 4758 PCI Cryptographic Coprocessor Used in ATMs Security model and formal analysis of bootstrapping code 2000 AMD Athlon Microprocessor Floating-point addition, subtraction, multiplication, and division Floating-point square root 2002 IBM Power4 Microprocessor Floating-point division and square-root algorithms 2005 Rockwell Collins AAMP7G Cryptoprocessor NSA MILS certified, used by the DoD in military avionics Verification of security policies implemented by microcode Francisco Palomo (UCA) Software Verification with ACL2 Version 1.1 5 / 39 Introduction Where has ACL2 been used?II 2008 Freescale Semiconductor Inc.
    [Show full text]
  • Recent Enhancements to ACL2
    How Can I Do That with ACL2? Recent Enhancements to ACL2 Matt Kaufmann J Strother Moore Dept. of Computer Science, Dept. of Computer Science, University of Texas at Austin University of Texas at Austin [email protected] [email protected] The last several years have seen major enhancements to ACL2 functionality, largely driven by re- quests from its user community, including utilities now in common use such as make-event, mbe, and trust tags. In this paper we provide user-level summaries of some ACL2 enhancements intro- duced after the release of Version 3.5 (in May, 2009, at about the time of the 2009 ACL2 workshop) up through the release of Version 4.3 in July, 2011, roughly a couple of years later. Many of these features are not particularly well known yet, but most ACL2 users could take advantage of at least some of them. Some of the changes could affect existing proof efforts, such as a change that treats pairs of functions such as member and member-equal as the same function. 1 Introduction This paper discusses ACL2 enhancements made in ACL2 Versions 3.6 through 4.3, that is, during the 2+ years that have passed since Version 3.5 was released around the time of the preceding (2009) ACL2 workshop. These enhancements primarily concern programming, proof control, and system infrastruc- ture — as opposed to improved proof procedures, sophisticated logical extensions, and theoretical stud- ies. Readers from outside the ACL2 community — should there be any! — may find this pragmatic stance surprising. But ACL2’s total integration of programming, proof, and system issues is one of the reasons ACL2 finds industrial application and we believe that the research issues raised by our commit- ment to integration are at least as important as more conventional theorem proving work.
    [Show full text]
  • An ACL2 Tutorial
    An ACL2 Tutorial Matt Kaufmann and J Strother Moore Department of Computer Sciences, University of Texas at Austin, Taylor Hall 2.124, Austin, Texas 78712 {kaufmann,moore}@cs.utexas.edu Abstract. We describe a tutorial that demonstrates the use of the ACL2 theorem prover. We have three goals: to enable a motivated reader to start on a path towards effective use of ACL2; to provide ideas for other interactive theorem prover projects; and to elicit feedback on how we might incorporate features of other proof tools into ACL2. 1 Introduction The name “ACL2” [14] stands for “A Computational Logic for Applicative Com- mon Lisp” and refers to a functional programming language, a formal logic, and a mechanized proof system. It was developed by the authors of this paper, with early contributions by Bob Boyer, and is the latest in the line of “Boyer-Moore” theorem provers [2, 3] starting with the 1973 Edinburgh Pure Lisp Prover’ [1]. The ACL2 logic and programming language are first-order and admit total recursive function definitions, and are based on a non-trivial purely functional subset of the Common Lisp [20] programming language. Thus, ACL2 can be built on many Lisp platforms. We have extended this subset in some important ways, in no small part because ACL2 is written primarily in itself! Extensions include additional primitives; a program mode that avoids proof obligations; a state with applicative semantics supporting file I/O and global variables; and applicative property lists and arrays with efficient under-the-hood implementations. This extended abstract describes a one-hour tutorial, not presented here, but accessible from the “demos” link on the ACL2 home page [14].
    [Show full text]
  • ACL2 in Drscheme
    ACL2 in DrScheme Dale Vaillancourt Rex Page Matthias Felleisen Northeastern University School of Computer Science Northeastern University Boston, MA 02115 University of Oklahoma Boston, MA 02115 [email protected] 200 Felgar St, Room 119 [email protected] Norman, OK 73019-6151 [email protected] ABSTRACT 1. TEACHING FORMAL METHODS Teaching undergraduates to develop software in a formal Over the past four years, the second author has designed framework such as ACL2 poses two immediate challenges. and implemented a senior-level course sequence on the con- First, students typically do not know applicative program- struction of sound software at Oklahoma University [16]. The ming and are often unfamiliar with ACL2’s syntax. Second, courses employ ACL2 as a programming language and the- for motivational reasons, students prefer to work on projects orem prover. The first semester course teaches applicative that involve designing interactive, graphical applications. programming and the basics of theorem proving. The second In this paper, we present DRACULA, a pedagogic pro- course focuses on a single project, continuing the training in gramming environment that partially solves these problems. formal methods in this larger context and also developing The environment adds a subset of Applicative Common Lisp software management skills. to DRSCHEME, an integrated programming environment for Both students and external industry observers consider the Scheme. DRACULA thus inherits DRSCHEME’s pedagogic course a success. Students give the course high scores in capabilities, especially its treatment of syntax and run-time evaluations, and industrial observers praise how much stu- errors. Further, DRACULA also comes with a library for dents learn about managing a large project and producing programming interactive, graphical games.
    [Show full text]
  • Iteration in ACL2
    Iteration in ACL2 Matt Kaufmann and J Strother Moore Department of Computer Science The University of Texas at Austin, Austin, TX, USA {kaufmann,moore}@cs.utexas.edu Iterative algorithms are traditionally expressed in ACL2 using recursion. On the other hand, Common Lisp provides a construct, loop, which — like most programming languages — provides direct support for iteration. We describe an ACL2 analogue loop$ of loop that supports efficient ACL2 programming and reasoning with iteration. 1 Introduction Recursion is a natural way to define notions in an equational logic. But for programming, iteration is often more natural and concise than recursion. This paper introduces an ACL2 iteration construct, loop$. We give an overview of its usage in programming and reasoning, and we touch on some key aspects of its implementation. Those who want more complete user-level documentation are welcome to see :DOC loop$ 1, and those who want more implementation details may visit Lisp comments in the ACL2 sources, in particular the “Essay on Loop$” and the “Essay on Evaluation of Apply$ and Loop$ Calls During Proofs”. The rest of this introduction illustrates the basics of loop$ and then mentions some related prior work. Next, Section 2 outlines the syntax of loop$ expressions. Section 3 provides necessary back- ground on apply$ and especially warrants. Then Section 4 gives semantics to loop$ expressions by translating them into the logic, which provides background for the discussion of reasoning about loop$ in Section 5. Section 6 discusses evaluation of calls of loop$, including considerations involving guards. We conclude by considering possible future enhancements to loop$.
    [Show full text]
  • Formal Verification of Arithmetic
    Formal Verification of Arithmetic RTL: Translating Verilog to C++ to ACL2 David M. Russinoff [email protected] We present a methodology for formal verification of arithmetic RTL designs that combines sequential logic equivalence checking with interactive theorem proving. An intermediate model of a Verilog module is hand-coded in Restricted Algorithmic C (RAC), a primitive subset of C augmented by the integer and fixed-point register class templates of Algorithmic C. The model is designed to be as abstract and compact as possible, but sufficiently faithful to the RTL to allow efficient equivalence checking with a commercial tool. It is then automatically translated to the logic of ACL2, enabling a mechanically checked proof of correctness with respect to a formal architectural specification. In this paper, we describe the RAC language, the translation process, and some techniques that facilitate formal analysis of the resulting ACL2 code. 1 Introduction A prerequisite for applying interactive theorem proving to arithmetic circuit verification is a reliable means of converting an RTL design to a semantically equivalent representation in a formal logic. Within the ACL2 community, this has been achieved in at least two industrial settings by mechanical translation from Verilog directly to the ACL2 logic. At Advanced Micro Devices, our approach was to generate a large clique of mutually recursive executable ACL2 functions in correspondence with the signals of a Verilog module [9], a scheme commonly known as “shallow embedding”. The Centaur Technology verification team has followed a different path [3], converting an RTL design to a netlist of S-expressions to be executed by an interpreter coded in ACL2, i.e., a “deep embedding” of the design.
    [Show full text]