Atmospheric CO2 Removed by Rock Weathering

Total Page:16

File Type:pdf, Size:1020Kb

Atmospheric CO2 Removed by Rock Weathering News & views receptor-binding domain of the spike protein Master of Public Health program, Cornell 7. Ju, B. et al. Nature https://doi.org/10.1038/s41586-020- that has an attached carbohydrate molecule. University, Ithaca, New York 14853, USA. Susan 2380-z (2020). 8. Yuan, M. et al. Science 368, 630–633 (2020). This region is not part of the key area that Daniel is in the Smith School of Chemical and 9. Baum, A. et al. Science https://doi.org/10.1126/science. directly binds to ACE2. The site that S309 rec- Biomolecular Engineering, Cornell University, abd0831 (2020). ognizes is evolutionarily conserved in spike Ithaca, New York 14853, USA. 10. Rogers, T. F. et al. Science https://doi.org/10.1126/science. abc7520 (2020). proteins across a range of bat coronaviruses e-mail: [email protected] 11. Brouwer, P. J. M. et al. Science https://doi.org/10.1126/ (in the genus Betacoronavirus lineage B; sub- science.abc5902 (2020). genus Sarbecovirus) that have similarities to 12. Hansen, J. et al. Science https://doi.org/10.1126/science. abd0827 (2020). the SARS-like coronaviruses. This raises the 1. Pinto, D. et al. Nature 583, 290–295 (2020). 13. Wec, A. Z. et al. Science https://doi.org/10.1126/science. possibility that such an antibody could have 2. Robbiani, D. F. et al. Nature https://doi.org/10.1038/ abc7424 (2020). s41586-020-2456-9 (2020). wide applicability in tackling related viruses. 14. Kelley, B. Nature Biotechnol. 38, 540–545 (2020). 3. Casadevall, A. & Pirofski, L. A. J. Clin. Invest. 130, 15. Furuyama, W. et al. Sci. Rep. 6, 20514 (2016). Not only, then, is this antibody of interest when 1545–1548 (2020). 16. Saphire, E. O. et al. Cell 174, 938–952 (2018). investigating ways to manage the COVID-19 4. Watanabe, Y. et al. Nature Commun. 11, 2688 (2020). 17. Mulangu, S. et al. N. Engl. J. Med. 381, 2293–2303 (2019). 5. ter Meulen, J. et al. PLoS Med. 3, e237 (2006). pandemic in the years ahead, but it might also 6. Shi, R. et al. Nature https://doi.org/10.1038/s41586-020- be considered for use in preventing future out- 2381-y (2020). This article was published online on 22 June 2020. breaks of related animal viruses, if they make the leap to causing infection in humans. Environmental science Ultimately, it seems unlikely that a robust treatment for COVID-19 will rely on a single antibody. Rather, as was the case for SARS, Atmospheric CO removed a synergistic approach combining different 2 monoclonal antibodies in an antibody cocktail might be more effective5. For such approaches by rock weathering to move forwards, evidence of effective anti- body neutralization from in vitro studies will Johannes Lehmann & Angela Possinger be needed, along with in vivo data assessing how well an antibody can boost other aspects Large-scale removal of carbon dioxide from the atmosphere of the immune response — by enlisting other might be achieved through enhanced rock weathering. It now immune cells to tackle the infection, for exam- seems that this approach is as promising as other strategies, ple. There are many promising avenues to explore in these efforts. in terms of cost and CO2-removal potential. See p.242 Pinto and colleagues got a head start with their work by exploring pre-existing anti- bodies, and they should now have more B-cell Achieving targets for mitigating global risks, such as the possible release of metals and populations to mine. Many other teams, to warming will require the large-scale withdrawal persistent organic compounds (compounds give just some examples2,6–13, have also pre- of carbon dioxide from the atmosphere. On resistant to environmental degradation). sented useful discoveries in the hunt for page 242, Beerling et al.1 report that enhanced Despite the enthusiasm the authors’ find- antibodies that can target SARS-CoV-2. The rock weathering in soils has substantial techni- ings might generate, it is crucial to stress that, next steps will be to test individual antibod- cal and economic potential as a global strategy even under optimistic assumptions, enhanced ies and antibody cocktails in animal models, for removing atmospheric CO2. When crushed rock weathering will sequester only some of to determine whether they offer protection, basalt or other silicate material is added to the annual global carbon emissions from and then to assess their safety and effective- soil, it slowly dissolves and reacts with CO2 fossil-fuel use. Therefore, reducing these ness in human clinical trials. An accelerated to form carbonates. These either remain emissions should still be the top priority for path might narrow the time lag between anti- in the soil or move towards the oceans. The averting dangerous climate change. But, as body discovery and proof-of-concept trials authors argue that this method would enable Beerling et al. note, any approach is insuffi- 14 in humans to as little as five or six months . between 0.5 billion and 2 billion tonnes of CO2 cient alone, and should be considered as part The most recent prominent example to be removed from the atmosphere each year. of a portfolio of options. of immunotherapy for infectious disease This rate is similar to that of other land-based Several other land-based carbon-seques- relates to battling the Ebola virus. In con- approaches2, such as the accrual of organic tration techniques rely on soils. However, cert with vaccines and conventional, carbon in soil, carbon capture and sequestra- inorganic-carbon sequestration by rock small-molecule-drug trials, the development tion in geological formations, and the addition weathering is fundamentally different from of monoclonal-antibody therapies for Ebola of biochar (a carbon-rich material) to soil. organic-carbon sequestration. The latter relies has progressed rapidly. Cocktails of anti- Beerling and colleagues find that removing on photosynthesis by plants to remove CO2 bodies, beginning with one called ZMapp, atmospheric CO2 through enhanced from the atmosphere, and on soils to retain the that target a key Ebola viral protein called GP rock weathering would cost, on average, plant carbon, mostly in the form of microbial in two crucial regions of the protein, are con- US$160–190 per tonne of CO2 in the United remains. In the future, therefore, scientists tinuing to be developed15–17. This progress in States, Canada and Europe, and $55–120 per should pay closer attention to what they mean efforts to tackle Ebola gives hope for similar tonne of CO2 in China, India, Mexico, Indonesia by ‘carbon sequestration’ — is it inorganic or immunotherapy achievements in targeting and Brazil. Furthermore, the authors report organic? SARS-CoV-2. Pinto and colleagues’ work marks that China, the United States and India — the The sequestration of atmospheric CO2 a major step towards that much-anticipated, three largest emitters of CO2 from fossil-fuel through enhanced rock weathering shares and much-needed, success. use — have the highest potential for CO2 some of the principal appeal, but also the removal using this method. However, they also challenges, of organic-carbon sequestra- Gary R. Whittaker is in the Department of note that the application of silicate material to tion. The fact that crop production benefits Microbiology and Immunology, and in the soil (Fig. 1) requires careful assessment of the is certainly a key asset of both methods. In the 204 | Nature | Vol 583 | 9 July 2020 ©2020 Spri nger Nature Li mited. All rights reserved. ©2020 Spri nger Nature Li mited. All rights reserved. case of enhanced rock weathering, the added rock contains essential plant nutrients, such as calcium and magnesium, as well as potas- sium and micronutrients that promote crop production in several ways. We would go even further than the authors do, to claim that these nutrients are currently insufficiently supplied in agriculture. Increasing soil pH alone would substantially boost crop yields in many regions of the world, because it is possible that low pH constrains crop production on more than 200 mil- lion hectares of arable and orchard soils3. This area is equivalent to about 20% of the total extent of these soils (967 million hectares; see go.nature.com/31rcajd). Consequently, on a global scale, acidity is the most important soil constraint for agriculture4. However, there have been no detailed multi-regional analyses of the difference in crop yield between low-pH ILSA B KANTOLA ILSA and optimum-pH soils, and such investigations would benefit the study of synergies between Figure 1 | Application of silicate material to cropland. Beerling et al.1 demonstrate that enhanced rock carbon-sequestration methods. The proposed weathering, achieved by adding crushed basalt or other silicate material to soil, is an effective strategy for rock additions could conceivably mitigate the removing carbon dioxide from the atmosphere. low use and supply shortages of agricultural limestone in several regions5. Furthermore, yields even decrease, where incentives fail to production, and are centred around managing calcium improves root growth in acidic sub- persuade farmers, or where supply chains soils. Farmers must be fully behind such a surface soil6, with crucial knock-on effects break down. But scientists should not be global effort or it will fail. Scientists might through greater water uptake by plant roots. deterred from evaluating such technologies, need to recognize that climate-change miti- Co-deployment of enhanced rock and should instead accept that farmers need to gation is not a sufficient incentive on its own, weathering with other soil-based seques- be in the driving seat in adapting soil manage- and that benefits to crop growth will need to be tration approaches might both reduce ment to meet their specific site and crop-pro- prioritized, as will financial incentives.
Recommended publications
  • On Weathering and Alteration of Rocks
    www.rockmass.net On weathering and alteration of rocks Weathering refers to the various processes of physical disintegration and chemical decomposition that occur when rocks at the Earth's surface are subjected to physical, chemical, and biological processes induced or modified by wind, water, and climate. These processes produce soil, unconsolidated rock detritus, and components dissolved in groundwater and runoff. Alteration is a process, which involves changes in the composition of the rock, most often caused by hydrothermal solutions or chemical weathering. Both processes, which generally first affect the walls of the discontinuities, lead to deterioration of the rock material with a reducing effect on its strength and deformation properties, may completely change the mechanical properties and behaviour of rocks. The main results of rock weathering and alteration are: 1. Mechanical disintegration or breakdown, by which the rock loses its coherence, but has little effect upon the change in the composition of the rock material. The results of this process are: The opening up of joints. The formation of new joints by rock fracture, the opening up of grain boundaries. The fracture or cleavage of individual mineral grains. Disintegration involves the breakdown of rock into its constituent minerals or particles with no decay of any rock-forming minerals. The principal sources of physical weathering are thermal expansion and contraction of rock, pressure release upon rock by erosion of overlaying materials, the alternate freezing and thawing of water between cracks and fissures within rock, crystal growth within rock, and the growth of plants and living organisms in rock. Rock alteration usually involves chemical weathering in which the mineral composition of the rock is changed, reorganized, or redistributed.
    [Show full text]
  • Glacial Weathering, Sulfide Oxidation, and Global Carbon Cycle Feedbacks
    Glacial weathering, sulfide oxidation, and global carbon cycle feedbacks Mark A. Torresa,b,c,1, Nils Moosdorfa,d,e,1, Jens Hartmannd, Jess F. Adkinsb, and A. Joshua Westa,2 aDepartment of Earth Sciences, University of Southern California, Los Angeles, CA 90089; bDivision of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125; cDepartment of Earth, Environmental, and Planetary Sciences, Rice University, Houston, TX 77005; dInstitute for Geology, Center for Earth System Research and Sustainability (CEN), Universität Hamburg, 20146 Hamburg, Germany; and eLeibniz Center for Tropical Marine Research, 28359 Bremen, Germany Edited by Thure E. Cerling, University of Utah, Salt Lake City, UT, and approved July 5, 2017 (received for review February 21, 2017) Connections between glaciation, chemical weathering, and the global erosion (5, 8, 9), which is thought to promote more rapid silicate carbon cycle could steer the evolution of global climate over geologic weathering (10, 11). If glaciation increases erosion rates, and if time, but even the directionality of feedbacks in this system remain to erosion enhances silicate weathering and associated production of be resolved. Here, we assemble a compilation of hydrochemical data alkalinity, then glacial weathering could act as a positive feedback from glacierized catchments, use this data to evaluate the dominant serving to promote further glaciation (5, 12). chemical reactions associated with glacial weathering, and explore the Glaciation may also affect rates of weathering of nonsilicate implications for long-term geochemical cycles. Weathering yields from minerals. Studies of glacial hydrochemistry have pointed to the im- catchments in our compilation are higher than the global average, portance of sulfide oxidation and carbonate dissolution as major which results, in part, from higher runoff in glaciated catchments.
    [Show full text]
  • Weathering, Erosion, and Susceptibility to Weathering Henri Robert George Kenneth Hack
    Weathering, erosion, and susceptibility to weathering Henri Robert George Kenneth Hack To cite this version: Henri Robert George Kenneth Hack. Weathering, erosion, and susceptibility to weathering. Kanji, Milton; He, Manchao; Ribeira e Sousa, Luis. Soft Rock Mechanics and Engineering, Springer Inter- national Publishing, pp.291-333, 2020, 9783030294779. 10.1007/978-3-030-29477-9. hal-03096505 HAL Id: hal-03096505 https://hal.archives-ouvertes.fr/hal-03096505 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in: Hack, H.R.G.K., 2020. Weathering, erosion and susceptibility to weathering. 1 In: Kanji, M., He, M., Ribeira E Sousa, L. (Eds), Soft Rock Mechanics and Engineering, 1 ed, Ch. 11. Springer Nature Switzerland AG, Cham, Switzerland. ISBN: 9783030294779. DOI: 10.1007/978303029477-9_11. pp. 291-333. Weathering, erosion, and susceptibility to weathering H. Robert G.K. Hack Engineering Geology, ESA, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente Enschede, The Netherlands e-mail: [email protected] phone: +31624505442 Abstract: Soft grounds are often the result of weathering. Weathering is the chemical and physical change in time of ground under influence of atmosphere, hydrosphere, cryosphere, biosphere, and nuclear radiation (temperature, rain, circulating groundwater, vegetation, etc.).
    [Show full text]
  • Consumption of Atmospheric Carbon Dioxide Through Weathering of Ultramafic Rocks in the Voltri Massif
    geosciences Article Consumption of Atmospheric Carbon Dioxide through Weathering of Ultramafic Rocks in the Voltri Massif (Italy): Quantification of the Process and Global Implications Francesco Frondini 1,* , Orlando Vaselli 2 and Marino Vetuschi Zuccolini 3 1 Dipartimento di Fisica e Geologia, Università degli Studi di Perugia, Via Pascoli s.n.c., 06123 Perugia, Italy 2 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via La Pira 4, 50121 Firenze, Italy; orlando.vaselli@unifi.it 3 Dipartimento di Scienze della Terra dell’Ambiente e della Vita, Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy; [email protected] * Correspondence: [email protected] Received: 1 May 2019; Accepted: 5 June 2019; Published: 9 June 2019 Abstract: Chemical weathering is the main natural mechanism limiting the atmospheric carbon dioxide levels on geologic time scales (>1 Ma) but its role on shorter time scales is still debated, highlighting the need for an increase of knowledge about the relationships between chemical weathering and atmospheric CO2 consumption. A reliable approach to study the weathering reactions is the quantification of the mass fluxes in and out of mono lithology watershed systems. In this work the chemical weathering and atmospheric carbon dioxide consumption of ultramafic rocks have been studied through a detailed geochemical mass balance of three watershed systems located in the metaophiolitic complex of the Voltri Massif (Italy). Results show that the rates of carbon dioxide consumption of the study area (weighted average = 3.02 1.67 105 mol km 2 y 1) are higher than ± × − − the world average CO2 consumption rate and are well correlated with runoff, probably the stronger weathering controlling factor.
    [Show full text]
  • The Earth's Crust Is Like the Skin of an Apple
    The Earth’s Crust Weathering & Erosion ! " Soil begins with rocks – so how is rock turned into soil? ! " How does soil travel and move? ! " Without sediments our planet would decline, perhaps ceasing to exist Inside the Earth The Earth's Crust is like the skin of an apple. It is very thin in comparison to the other three layers. The crust is only about 3-5 miles (8 kilometers) thick under the oceans(oceanic crust) and about 25 miles (32 kilometers) thick under the continents (continental crust). The temperatures of the crust vary from air temperature on top to about 1600 degrees Fahrenheit (870 degrees Celcius) in the deepest parts of the crust Three Laws of Thermodynamics ! " The first law of thermodynamics, also called conservation of energy, states that the total amount of energy in the universe is constant. This means that all of the energy has to end up somewhere, either in the original form or in a different from. We can use this knowledge to determine the amount of energy in a system, the amount lost as waste heat, and the efficiency of the system. ! " The second law of thermodynamics states that the disorder in the universe always increases. After cleaning your room, it always has a tendency to become messy again. This is a result of the second law. As the disorder in the universe increases, the energy is transformed into less usable forms. Thus, the efficiency of any process will always be less than 100%. ! " The third law of thermodynamics tells us that all molecular movement stops at a temperature we call absolute zero, or 0 Kelvin (-273oC).
    [Show full text]
  • The Breakdown of Rocks Mechanical Weathering
    Weathering: The Breakdown of Rocks Mechanical Weathering: Breaks rocks into smaller particles Chemical Weathering: Alters rock by chemical reactions Mechanical Weathering 1) Ice Wedging *Results from 9% expansion when water turns to ice. *High stress (110kg/cm2, about the wedge of a sledge) *It occurs when: >Adequate supply of moisture >Have preexisting fractures, cracks, and voids >Temperature rises above and below freezing *Was even used in some quarry operations to break up rock 2) Sheeting *Results from release of confining pressures *Has been observes directly in quarries and mines, even in roadways *Sheeting from heat results in a rock spalling *Spalling: surface of rock expands due to extreme heating but core of rock remains cool 3) Disintegration *Breakdown of rock into smaller pieces by critters, plants, etc. Results of Mechanical Weathering Talus Cones (From ice wedging mostly) Boulder fields (From ice wedging mostly) Jointing: Cracks in the rock from ice wedging and sheeting Chemical Weathering: Rocks are decomposed and the internal structure of the minerals is destroyed, and new minerals are created. 1) Hydrolysis: Chemical union of water and a mineral *Ex. Feldspar → clay mineral Water first form carbonic acid by combining with carbon dioxide in the reaction: H2 O + CO2 = H2 CO3 Then the mineral is broken down: 4NaAl3Si3O8 + 4H2CO3 + 18H2O → 4Na + 4HCO3 + 8H4SiO4 + Al4O10(OH)3 (Plagioclase) (carbonic acid) (water) (Dissolved components) (clay mineral) Sodium becomes displaced 2) Dissolution: Process where by rock material passes directly into solution, like salt in water *Most important minerals to do this: CARBONATES (Calcite;dolomite) Dissolution (continue) Water is a universal solvent due to its polar nature Behaves like a magnet A good example is limestone which is made of calcite or dolomite In wet areas, it forms valleys In arid areas, it forms cliffs Some rock types can be completely dissolved and leached (flushed away by water) Best examples are natural salt (halite) and gypsum.
    [Show full text]
  • Major Climate Feedback Processes Water Vapor Feedback Snow/Ice
    Lecture 5 : Climate Changes and Variations Major Climate Feedback Processes Climate Sensitivity and Feedback Water Vapor Feedback - Positive El Nino Southern Oscillation Pacific Decadal Oscillation Snow/Ice Albedo Feedback - Positive North Atlantic Oscillation (Arctic Oscillation) Longwave Radiation Feedback - Negative Vegetation-Climate Feedback - Positive Cloud Feedback - Uncertain ESS200A ESS200A Prof. Jin-Yi Yu Prof. Jin-Yi Yu Snow/Ice Albedo Feedback Water Vapor Feedback Mixing Ratio = the dimensionless ratio of the mass of water vapor to the mass of dry air. Saturated Mixing Ratio tells you the maximum amount of water vapor an air parcel can carry. The saturated mixing ratio is a function of air temperature: the warmer the temperature the larger the saturated mixing ration. a warmer atmosphere can carry more water vapor The snow/ice albedo feedback is stronger greenhouse effect associated with the higher albedo of ice amplify the initial warming and snow than all other surface covering. one of the most powerful positive feedback This positive feedback has often been offered as one possible explanation for (from Earth’s Climate: Past and Future ) how the very different conditions of the ESS200A ESS200A Prof. Jin-Yi Yu ice ages could have been maintained. Prof. Jin-Yi Yu 1 Longwave Radiation Feedback Vegetation-Climate Feedbacks The outgoing longwave radiation emitted by the Earth depends on surface σ 4 temperature, due to the Stefan-Boltzmann Law: F = (T s) . warmer the global temperature larger outgoing longwave radiation been emitted by the Earth reduces net energy heating to the Earth system cools down the global temperature a negative feedback (from Earth’ Climate: Past and Future ) ESS200A ESS200A Prof.
    [Show full text]
  • APPLICATION of GEOPHYSICAL TECHNIQUES to MINERALS-RELATED ENVIRONMENTAL PROBLEMS by Ken Watson, David Fitterman, R.W
    APPLICATION OF GEOPHYSICAL TECHNIQUES TO MINERALS-RELATED ENVIRONMENTAL PROBLEMS By Ken Watson, David Fitterman, R.W. Saltus, Anne McCafferty, Gregg Swayze, Stan Church, Kathy Smith, Marty Goldhaber, Stan Robson, and Pete McMahon Open-File Report 01-458 2001 This report is preliminary and had not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Geophysics in Mineral-Environmental Applications 2 Contents 1 Executive Summary 3 1.1 Application of methods . 3 1.2 Mineral-environmental problems . 3 1.3 Controlling processes . 4 1.4 Geophysical techniques . 5 1.4.1 Electrical and electromagnetic methods . 5 1.4.2 Seismic methods . 6 1.4.3 Thermal methods . 6 1.4.4 Remote sensing methods . 6 1.4.5 Potential field methods . 7 1.4.6 Other geophysical methods . 7 2 Introduction 8 3 Mineral-environmental Applications of Geophysics 10 4 Mineral-environmental Problems 13 4.1 The sources of potentially harmful substances . 15 4.2 Mobility of potentially harmful substances . 15 4.3 Transport of potentially harmful substances . 16 4.4 Pathways for transport of potentially harmful substances . 17 4.5 Interaction of potentially harmful substances with the environment . 18 5 Processes Controlling Mineral-Environmental Problems 18 5.1 Geochemical processes . 19 5.1.1 Chemical Weathering (near-surface reactions) . 19 5.1.2 Deep alteration (reactions at depth) . 20 5.1.3 Microbial catalysis .
    [Show full text]
  • Magnetic Minerals As Recorders of Weathering, Diagenesis, And
    Earth and Planetary Science Letters 452 (2016) 15–26 Contents lists available at ScienceDirect Earth and Planetary Science Letters www.elsevier.com/locate/epsl Magnetic minerals as recorders of weathering, diagenesis, and paleoclimate: A core–outcrop comparison of Paleocene–Eocene paleosols in the Bighorn Basin, WY, USA ∗ Daniel P. Maxbauer a,b, , Joshua M. Feinberg a,b, David L. Fox b, William C. Clyde c a Institute for Rock Magnetism, University of Minnesota, Minneapolis, MN, USA b Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA c Department of Earth Sciences, University of New Hampshire, Durham, NH, USA a r t i c l e i n f o a b s t r a c t Article history: Magnetic minerals in paleosols hold important clues to the environmental conditions in which the Received 17 February 2016 original soil formed. However, efforts to quantify parameters such as mean annual precipitation (MAP) Received in revised form 15 July 2016 using magnetic properties are still in their infancy. Here, we test the idea that diagenetic processes and Accepted 17 July 2016 surficial weathering affect the magnetic minerals preserved in paleosols, particularly in pre-Quaternary Available online 4 August 2016 systems that have received far less attention compared to more recent soils and paleosols. We evaluate Editor: H. Stoll the magnetic properties of non-loessic paleosols across the Paleocene–Eocene Thermal Maximum (a Keywords: short-term global warming episode that occurred at 55.5 Ma) in the Bighorn Basin, WY. We compare weathering data from nine paleosol layers sampled from outcrop, each of which has been exposed to surficial diagenesis weathering, to the equivalent paleosols sampled from drill core, all of which are preserved below environmental magnetism a pervasive surficial weathering front and are presumed to be unweathered.
    [Show full text]
  • Geology Tour Glossary
    GEOLOGY TOUR GLOSSARY ABRASION - a form of mechanical weathering involving the scraping of a rock surface by friction between rocks and moving particles during their transport by wind, glaciers, waves, gravity, running water, or erosion BIOLOGICAL WEATHERING – a type of chemical weathering in which biologically produced chemicals breakdown rocks, soils and minerals BIOTITE - a common dark-brown, dark-green, or black mineral of the mica group CHEMICAL WEATHERING - the direct effect of atmospheric and/or biological chemicals on the breakdown of rocks, soils and minerals COUNTRY ROCK - rock that is native to an area EXFOLIATION - the process in which rocks weather by peeling off in sheets rather that eroding grain by grain FALL ZONE - the geomorphologic break between an upland region of relatively hard crystalline basement rock and a coastal plain of softer sedimentary rock; distinguished by a drop in elevation and waterfalls in rivers FAULT - a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement along the fractures as a result of earth movement FELDSPAR - an abundant, rock-forming mineral that varies in color from pink, yellow-orange, tan-white. Large bits often have squared edges. About 60 percent of the Earth's outer crust is composed of feldspar GEOLOGY - the study of the history and structure of the Earth, the rocks that the Earth is made of, and the processes that form and change the rocks GNEISSIC BANDING - a type of foliation in metamorphic rock consisting of roughly parallel dark and light bands of rock GRANITE - a hard, granular, igneous rock, formed as magma solidifies far below the earth’s surface.
    [Show full text]
  • Weathering, Erosion and Deposition Mechanical Weathering
    WEATHERING, EROSION AND DEPOSITION MECHANICAL WEATHERING Breaking of rock into smaller particles by physical means Worms Abrasion- running Abrasion- water Animals moving rock and sediments Ice Plants Wind CHEMICAL WEATHERING Chemical breaking of rocks and minerals into new substances Lichen Acid rain Ground Water Water Air (oxidation) MECHANICAL AND CHEMICAL WEATHERING MASS MOVEMENT Movement of any material (rocks, soil, snow) down slope controlled by gravity Examples (Rapid mass movement) Rock slide landslide (Italy- notice the road) mudslide/landslide (Japan) Lahar (Japan) Examples (slow mass movement) Creep- an extremely slow movement of material AGENTS (FORCES) OF EROSION AND DEPOSITION CHANGING THE SURFACE OF THE EARTH Erosion – when materials (soil and sediment) are moved/transported from one area to another Deposition – when materials are dropped or deposited in another area from its original location Agents/Forces – Water, Wind, Ice, Gravity EROSION BY WIND DEPOSITION BY WIND EROSION BY WATER DEPOSITION BY WATER EROSION BY ICE LEFT SIDE SHOWS PERMAFROST W/ GLACIER RIGHT SIDE SHOW GLACIER MOVING CREATING VALLEY DEPOSITION BY ICE SAND LOOSE ROCK AND BIG ROCK CAME FROM THE SAME SOURCE… WHERE? EROSION BY GRAVITY HOW IS THE EARTH HEATED? Radiation is the primary Most energy in the way that air is heated. Troposhpere travels or Convection currents moves through move that heated air convection heated the air around the earth, and causing it to become less the difference between dense then rising, warm and cold air releasing energy and provide the energy becoming more dense needed to create sinking back down. weather. Layers review What is the order of the atmosphere layers starting with the layer closest to Earth? 25% 25% 25% 25% 1.
    [Show full text]
  • Chapter 9: Weathering and Erosion
    530-S1-MSS05_G6_IN 8/17/04 3:33 PM Page 258 Academic Standard —3: Students collect and organize data to identify relationships between physical objects, events, and processes. They use logical reasoning to question their own ideas as new information challenges their conceptions of the natural world. Also covers: Academic Standard 2 (Detailed standards begin on page IN8.) Weathering and Erosion What happened to his face? sections Well, how would you feel if wind, sand, and 1 Weathering and Soil Formation rain blew in your face for over 5,000 years? Lab Classifying Soils Don’t forget the blistering sun and nightly chill! Would you feel weathered and torn? 2 Erosion of Earth’s Surface Two processes help shape Earth’s surface— Lab Measuring Soil Erosion weathering and erosion. Virtual Lab How are Earth’s materials broken down? Science Journal Describe a place—a home, a park, river, or mountain. What would happen in a year, a hundred years, even 5,000 years? 258 Carmen Redondo/CORBIS 530-S1-MSS05_G6_IN 8/17/04 3:33 PM Page 259 Start-Up Activities Weathering and Erosion Make the following Foldable to compare and contrast weath- Water’s Force ering and erosion. The Grand Canyon is 446 km long, up to 29 km wide, and up to 1,829 m deep. The water STEP 1 Fold one sheet of paper lengthwise. of the Colorado River carved the canyon out of rock by wearing away particles and carry- ing them away for millions of years. Over time, erosion has shaped and reshaped STEP 2 Fold into thirds.
    [Show full text]