Module Dependences in Software Design

Total Page:16

File Type:pdf, Size:1020Kb

Module Dependences in Software Design Module Dependences in Software Design Daniel Jackson MIT Lab for Computer Science 200 Technology Square Cambridge, Massachusetts 02139 [email protected] Abstract A new model of inter-module dependences is proposed. ! e key idea is that dependences are mediated by specifi cations, so that not only the existence of a dependence is recorded, but also its quality. A single module does not necessarily o" er only a single specifi cation; each dependent module may use it through a di" er- ent specifi cation. ! is notion of dependence seems to explain some common programming idioms more readily than the conventional notion, and o" ers new opportunities for analysis and design cri- tique. 1 Introduction Software designers have long recognized the signifi c ance of dependences between modules in evaluating a design. When modules have many interdependences, the system is harder to understand; there is less fl e xibility to divide the labour of coding; and local changes have wide repercussions. But despite the seminal role of depen- dences, most designers have only a fuzzy sense of what they are and how to express them. Although various kinds of code dependences have been heavily investigated because of their role in separate compilation and program analysis, much less at- tention has been paid to design dependences. As a result, dependence diagrams are much less useful than they might be in program design, and cannot be used as a basis for analysis. ! i s paper outlines a new dependence model. Work on the model is in its pre- liminary stages, but it does seem to resolve some of the problems of the standard model, and in particular accounts better for some common idioms in object-ori- ented designs. 2 ! e Standard Model and its Defi ciencies ! e standard notion of module dependence, fi r st articulated by Parnas [8], is famil- iar to most developers. ! e system is described as a graph whose nodes represent modules and whose edges represent syntactic dependences. A dependence of mod- ule A on module B, drawn as an arrow from A to B, says that A, in providing services to the modules that depend on it, makes use of B. More precisely, A depends on B monterey.indd 1 8/25/03, 5:56:49 PM or uses B if “correct execution of B may be necessary for A to complete the task de- scribed in its specifi c ation” [8]. In teaching software engineering to undergraduates over the last few years, we have used these ‘module dependence diagrams’ to explain software designs, and have required students to produce them as documentation [6]. But we have come to realize that these diagrams are inadequate, and often do not capture the insights that motivate a design: á Transitivity. ! e dependency relation is, by defi nition, transitive, when intuitively it should not be. If A uses B and B uses C, then, in the absence of additional infor- mation, we must assume that any change to C a" ects B, and thus indirectly A, and thus A uses C. But perhaps B was inserted between A and C precisely to shield A from changes to C, and most changes to C will not a" ect A. á Polymorphism. Crucial elements of modern languages, such as polymorphism and interfaces, are not accommodated. Consider a typical Java program in which a client class C makes use of a hashtable class H and a key class K. Does H depend on K? On the one hand, the code of H makes no reference to the code of K; H likely belongs to a library that was written before K. On the other hand, changes to K can certainly cause H to fail. If the equals and hashCode methods of K are incom- patible, for example, a crucial representation invariant of the hashtable will be violated (that equal keys are kept in the same bucket chains), and a lookup with a given key may not return the value last inserted under that key. á Preconditions. Presenting a module with a bad procedure argument can cause it to fail. If a module’s specifi cation imposes a precondition, the designer’s intent was that blame for a bad input should be attributed to the calling module. But a module cannot easily be said to ‘use’ the modules that call it. á Replacement. Since a dependence of A on B does not indicate which properties of B are actually used by A, one cannot tell what properties of B should be preserved in a module that replaces it. ! e dependence diagram cannot therefore be used to reason about compatibility of components. 3 A New Model Our new model is based on two simple ideas. First, a dependence represents an assumption: a module A depends on a module B if the designer or implementer of A makes an assumption about the environment in which A is to be inserted that is justifi ed in the constructed system by the presence of B. ! e assumption may be that A is executed with a certain frequency; or that values passed to it satisfy certain con- ditions; or that values returned to it by procedures it calls are related to the values it passed them in certain ways. Second, dependences are mediated by specifi cations: one module does not de- pend directly on another, but rather on a specifi c ation which the other module must satisfy. A dependence of module A on module B mediated by specifi c ation S means that A assumes the conditions guaranteed by S, which the system is confi gured to provide through B. monterey.indd 2 8/25/03, 5:56:50 PM e se notions address some but not all of the defi ciencies of the standard mod- el: á e re is no transitivity problem, because of the interposed specifi cations. If A depends on B via specifi c ation S, and B depends on C via specifi c ation T, it is clear that changes to C that preserve the behaviour required by T will not a! ect B, and of the changes that a! ect B, only those that cause B no longer to satisfy S will af- fect A. á e use of polymorphic modules is clarifi ed. A hashtable H depends on its key class K via the specifi c ation Object Ð what in Java is referred to as ‘the object con- tract’. e dependence of H on K is an artifact of the confi guration: in this case due to some client class C passing objects of type K to the hashtable class H. e designer of H is not expected to predict the use of K, but can assume that any class whose objects are used as keys will satisfy Object. á A precondition is represented by a dependence in the reverse direction; the pre- and postconditions of a procecure specifi c ation can be regarded as distinct specifi cations associated with data fl o ws in di! erent directions. á Reasoning about replacement comes easily as a byproduct of the use of specifi c a- tions. A dependence of a module that makes the assumption described in speci- fi c ation S will be preserved appropriately if the module it depends on is replaced by one that also satisfi es S. If specifi c ations are treated as uninterpreted names (which will often be convenient), an explicit ordering on specifi c ations can be used to justify replacements that do not involve exact matches. Specifi cations appear, at least implicitly, in the traditional model, but they play a di! erent role. In Parnas’s formulation, the specifi c ation of the using module, and not the used module is relevant. Furthermore, in our model, specifi cations are associ- ated with dependences rather than modules. A single module may have many speci- fi c ations, each representing a view of the module presented to another module that depends on it. In the hashtable example, key class K appears to the hashtable class H under the specifi c ation Object, but will likely appear to the client class C under a stronger specifi cation that provides domain-specifi c properties. 4 Example: Observer Many of the ‘Gang of Four’ design patterns [3] are motivated by dependence consid- erations. We illustrate our dependence model on the Observer pattern. e fi gure shows dependence diagrams for a fragment of a program that has been refactored with Observer. e original program on the left has a subject class Subj and a concrete observer class CObs. Updates to Subj from a client class Client are propagated to CObs by calls to procedures specifi c to CObs. We have shown this by labelling the dependence with a specifi c ation CObs: using the name of the module for the specifi c ation is intended to suggest that the specifi c ation promises all the properties the module is designed to provide. e refactored program on the right di! ers primarily in the specifi c ations that mediate the dependences. e key di! erence is that Subj no longer interacts with monterey.indd 3 8/25/03, 5:56:52 PM Client Client Update Subj Reg ConsObs Obs Subj CObs CObs Subj CObs Get CObs via the specifi c ation CObs, but rather through a far weaker specifi cation Obs, a generic observer specifi c ation that could be used for other observer classes. ! is is the central motivation of Observer: it allows new observer classes to be added without changing the code of Subj.
Recommended publications
  • Artificial Intelligence in Health Care: the Hope, the Hype, the Promise, the Peril
    Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril Michael Matheny, Sonoo Thadaney Israni, Mahnoor Ahmed, and Danielle Whicher, Editors WASHINGTON, DC NAM.EDU PREPUBLICATION COPY - Uncorrected Proofs NATIONAL ACADEMY OF MEDICINE • 500 Fifth Street, NW • WASHINGTON, DC 20001 NOTICE: This publication has undergone peer review according to procedures established by the National Academy of Medicine (NAM). Publication by the NAM worthy of public attention, but does not constitute endorsement of conclusions and recommendationssignifies that it is the by productthe NAM. of The a carefully views presented considered in processthis publication and is a contributionare those of individual contributors and do not represent formal consensus positions of the authors’ organizations; the NAM; or the National Academies of Sciences, Engineering, and Medicine. Library of Congress Cataloging-in-Publication Data to Come Copyright 2019 by the National Academy of Sciences. All rights reserved. Printed in the United States of America. Suggested citation: Matheny, M., S. Thadaney Israni, M. Ahmed, and D. Whicher, Editors. 2019. Artificial Intelligence in Health Care: The Hope, the Hype, the Promise, the Peril. NAM Special Publication. Washington, DC: National Academy of Medicine. PREPUBLICATION COPY - Uncorrected Proofs “Knowing is not enough; we must apply. Willing is not enough; we must do.” --GOETHE PREPUBLICATION COPY - Uncorrected Proofs ABOUT THE NATIONAL ACADEMY OF MEDICINE The National Academy of Medicine is one of three Academies constituting the Nation- al Academies of Sciences, Engineering, and Medicine (the National Academies). The Na- tional Academies provide independent, objective analysis and advice to the nation and conduct other activities to solve complex problems and inform public policy decisions.
    [Show full text]
  • Computational Thinking's Influence on Research and Education For
    Computational thinking’s influence on research and education for all Influenza del pensiero computazionale nella ricerca e nell’educazione per tutti Jeannette M. Wing Columbia University, New York, N.Y., USA, [email protected] HOW TO CITE Wing, J.M. (2017). Computational thinking’s influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7-14. doi: 10.17471/2499-4324/922 ABSTRACT Computer science has produced, at an astonishing and breathtaking pace, amazing technology that has transformed our lives with profound economic and societal impact. In the course of the past ten years, we have come to realize that computer science offers not just useful software and hardware artifacts, but also an intellectual framework for thinking, what I call “computational thinking”. Everyone can benefit from thinking computationally. My grand vision is that computational thinking will be a fundamental skill—just like reading, writing, and arithmetic—used by everyone by the middle of the 21st Century. KEYWORDS Computational Thinking, Education, Curriculum. SOMMARIO L’informatica ha prodotto, a un ritmo sorprendente e mozzafiato, una straordinaria tecnologia che ha profondamente trasformato le nostre vite con importanti conseguenze economiche e sociali. Negli ultimi dieci anni ci si è resi conto che l’informatica non solo offre utili artefatti software e hardware, ma anche un paradigma di ragionamento che chiamo “pensiero computazionale”. Ognuno di noi può trarre vantaggio dal pensare in modo computazionale. Mi aspetto che il pensiero computazionale costituirà un’abilità fondamentale - come leggere, scrivere e far di conto – che verrà utilizzata da tutti entro la prima metà del XXI secolo.
    [Show full text]
  • Thomas Heldt
    Thomas Heldt Institute for Medical Engineering & Science p: (617) 324-5005 Massachusetts Institute of Technology f: (617) 253-7498 Room E25-324 e: [email protected] 77 Massachusetts Avenue Cambridge, MA 02139 Education Massachusetts Institute of Technology, Cambridge, MA, USA 1997 { 2004 Harvard { MIT Division of Health Sciences and Technology Ph.D. Medical Physics, September 2004 Thesis title: Computational Models of Cardiovascular Response to Orthostatic Stress Yale University, New Haven, CT, USA 1995 { 1997 M.S. Physics, June 1997 M.Phil. Physics, December 1998 Johannes Gutenberg-Universit¨at,Mainz, Germany 1994 { 1995 First-year medical studies Johannes Gutenberg-Universit¨at,Mainz, Germany 1992 { 1995 Diplomvorpr¨ufungPhysics, June 1994 Passed Diplomvorpr¨ufungin Physics with honors Experience Associate Professor of Electrical and Biomedical Engineering 07/2017 { present Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science W.M. Keck Career Development Professor in Biomedical Engineering 07/2016 { present Massachusetts Institute of Technology Member of the Affiliate Faculty of Health Sciences & Technology 05/2014 { present Harvard Medical School Core Faculty Member 07/2013 { present Massachusetts Institute of Technology Institute for Medical Engineering and Science Principal Investigator 07/2013 { present Massachusetts Institute of Technology Research Laboratory of Electronics Hermann L.F. von Helmholtz Career Development Professor 07/2013 { 06/2016 Massachusetts Institute of Technology Institute for Medical Engineering and Science Assistant Professor of Electrical and Biomedical Engineering 07/2013 { 06/2017 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Principal Research Scientist 07/2012 { 07/2013 Massachusetts Institute of Technology Computational Physiology and Clinical Inference Group Thomas Heldt, Ph.D.
    [Show full text]
  • Private Companiescompanies
    PrivatePrivate CompaniesCompanies Private Company Profiles @Ventures Kepware Technologies Access 360 Media LifeYield Acronis LogiXML Acumentrics Magnolia Solar Advent Solar Mariah Power Agion Technologies MetaCarta Akorri mindSHIFT Technologies alfabet Motionbox Arbor Networks Norbury Financial Asempra Technologies NumeriX Asset Control OpenConnect Atlas Venture Panasas Autonomic Networks Perimeter eSecurity Azaleos Permabit Technology Azimuth Systems PermissionTV Black Duck Software PlumChoice Online PC Services Brainshark Polaris Venture Partners BroadSoft PriceMetrix BzzAgent Reva Systems Cedar Point Communications Revolabs Ceres SafeNet Certeon Sandbridge Technologies Certica Solutions Security Innovation cMarket Silver Peak Systems Code:Red SIMtone ConsumerPowerline SkyeTek CorporateRewards SoloHealth Courion Sonicbids Crossbeam Systems StyleFeeder Cyber-Ark Software TAGSYS DAFCA Tatara Systems Demandware Tradeware Global Desktone Tutor.com Epic Advertising U4EA Technologies ExtendMedia Ubiquisys Fidelis Security Systems UltraCell Flagship Ventures Vanu Fortisphere Versata Enterprises GENBAND Visible Assets General Catalyst Partners VKernel Hearst Interactive Media VPIsystems Highland Capital Partners Ze-gen HSMC ZoomInfo Invention Machine @Ventures Address: 187 Ballardvale Street, Suite A260 800 Menlo Ave, Suite 120 Wilmington, MA 01887 Menlo Park, CA 94025 Phone #: (978) 658-8980 (650) 322-3246 Fax #: ND ND Website: www.ventures.com www.ventures.com Business Overview @Ventures provides venture capital and growth assistance to early stage clean technology companies. Established in 1995, @Ventures has funded more than 75 companies across a broad set of technology sectors. The exclusive focus of the firm's fifth fund, formed in 2004, is on investments in the cleantech sector, including alternative energy, energy storage and efficiency, advanced materials, and water technologies. Speaker Bio: Marc Poirier, Managing Director Marc Poirier has been a General Partner with @Ventures since 1998 and operates out the firm’s Boston-area office.
    [Show full text]
  • Introduction to the Literature on Programming Language Design Gary T
    Computer Science Technical Reports Computer Science 7-1999 Introduction to the Literature On Programming Language Design Gary T. Leavens Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Programming Languages and Compilers Commons Recommended Citation Leavens, Gary T., "Introduction to the Literature On Programming Language Design" (1999). Computer Science Technical Reports. 59. http://lib.dr.iastate.edu/cs_techreports/59 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Introduction to the Literature On Programming Language Design Abstract This is an introduction to the literature on programming language design and related topics. It is intended to cite the most important work, and to provide a place for students to start a literature search. Keywords programming languages, semantics, type systems, polymorphism, type theory, data abstraction, functional programming, object-oriented programming, logic programming, declarative programming, parallel and distributed programming languages Disciplines Programming Languages and Compilers This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/59 Intro duction to the Literature On Programming Language Design Gary T. Leavens TR 93-01c Jan. 1993, revised Jan. 1994, Feb. 1996, and July 1999 Keywords: programming languages, semantics, typ e systems, p olymorphism, typ e theory, data abstrac- tion, functional programming, ob ject-oriented programming, logic programming, declarative programming, parallel and distributed programming languages.
    [Show full text]
  • Interview with Barbara Liskov ACM Turing Award Recipient 2008 Done at MIT April 20, 2016 Interviewer Was Tom Van Vleck
    B. Liskov Interview 1 Interview with Barbara Liskov ACM Turing Award Recipient 2008 Done at MIT April 20, 2016 Interviewer was Tom Van Vleck Interviewer is noted as “TVV” Dr. Liskov is noted as “BL” ?? = inaudible (with timestamp) or [ ] for phonetic [some slight changes have been made in this transcript to improve the readability, but no material changes were made to the content] TVV: Hello, I’m Tom Van Vleck, and I have the honor today to interview Professor Barbara Liskov, the 2008 ACM Turing Award winner. Today is April 20th, 2016. TVV: To start with, why don’t you tell us a little bit about your upbringing, where you lived, and how you got into the business? BL: I grew up in San Francisco. I was actually born in Los Angeles, so I’m a native Californian. When I was growing up, it was definitely not considered the thing to do for a young girl to be interested in math and science. In fact, in those days, the message that you got was that you were supposed to get married and have children and not have a job. Nevertheless, I was always encouraged by my parents to take academics seriously. My mother was a college grad as well as my father, so it was expected that I would go to college, which in those times was not that common. Maybe 20% of the high school class would go on to college and the rest would not. I was always very interested in math and science, so I took all the courses that were offered at my high school, which wasn’t a tremendous number compared to what is available today.
    [Show full text]
  • A Formal Specification A
    Synchronization Primitives for a Multiprocessor: A Formal Specification A. D. Birrell, J. V. Guttag,* J. J. Horning, R. Levin Digital Equipment Corporation, Systems Research Center 180 Lytton Avenue, Palo Alto, CA 94801, U.S.A. Abstract descriptions. It can be made more precise and complete, and is more likely to be interpreted consistently by various Formal specifications of operating system interfaces can readers. Our experience in specifying and documenting the be a useful part of their documentation. We illustrate this synchronization facilities of DEC/SRC's Threads package by documenting the Threads synchronization primitives of supports this view. the Taos operating system. We start with an informal description, present a way to formally specify interfaces The Threads package implements concurrent threads in concurrent systems, give a formal specification of the of controlt for the Taos operating system [McJones 87] synchronization primitives, briefly discuss the implemen- and application programs running on our Firefly multi- tation, and conclude with a discussion of what we have processor workstation [Thacker 87]. The package supports learned from using the specification for more than a year. large numbers of concurrent threads, and permits multiple concurrent threads within an address space. The synchro- Introduction nization facilities we describe permit threads to cooperate in the use of shared memory. The careful documentation of interfaces is an important step in the production of software upon which other soft- We begin with an informal description of the Threads ware is to be built. If people are to use software without synchronization primitives. These are similar to those in having to understand its implementation, documentation many other systems, but their use on a multiprocessor must convey semantic as well as syntactic information.
    [Show full text]
  • Jeannette M. Wing Data Science Institute Columbia University 550 W
    Jeannette M. Wing Columbia University 313 Low Library, Mail Code 4310 535 West 116th Street New York, NY 10027 [email protected] (212) 854-1696 www.cs.columbia.edu/∼wing/ Research Interests Trustworthy AI, trustworthy computing, privacy, security, software specification and verification, distributed and concurrent systems, programming languages, programming methodology, software engineering. Education June 1983 Massachusetts Institute of Technology Cambridge, MA Ph.D. in Computer Science Thesis: A Two-Tiered Approach to Specifying Programs. Advisor: John Guttag. Minor in logic and number theory. June 1979 Massachusetts Institute of Technology Cambridge, MA S.M. in Electrical Engineering and Computer Science. Thesis: Partial-Match Retrieval Using Tries, Hashing, and Superimposed Codes. Advisors: Ronald Rivest (MIT) and John Reiser (Bell Labs). VI-A co-operative student in Computer Science with AT&T Bell Laboratories. June 1979 Massachusetts Institute of Technology Cambridge, MA S.B. in Computer Science and Engineering. VI-A co-operative student in Computer Science with AT&T Bell Laboratories. Employment History 2017– Columbia University New York, NY Executive Vice President for Research, 2021–. Avanessians Director of the Data Science Institute, 2017–2021. Professor of Computer Science, 2017–. Zuckerman Mind, Brain, and Behavior Institute, Affiliate Member, 2018–. 2013–2017 Microsoft Research Redmond, WA Corporate Vice President, Microsoft Research, July 2013–June 2017; Head of MSR Labs, September 2014– June 2017 Vice President, Head of Microsoft Research International, January–July 2013. 1985– Carnegie Mellon University Pittsburgh, PA Adjunct Professor of Computer Science, 2019–. 1 Consulting Professor of Computer Science, 2015–2018. On leave, 2013–2015. President’s Professor of Computer Science, 2004–2013.
    [Show full text]
  • University of Virginia Teaching Fellowship
    David Evans University Teaching Fellowship Application Statement In humanities fields, it is practically a cliché to say teaching is about inspiring young minds and conveying a love for a subject. In more technical subjects like Computer Science, however, these sentiments are seldom uttered and rarely believed. It is often argued that classes must first and foremost teach our students practical skills and develop the abilities they will need to obtain industrial jobs. Some will argue that introductory courses must be boring and tedious since it is only after enough basic information is learned that the more exciting material can be introduced. I couldn’t disagree more with those positions. I became a Computer Scientist because of a genuine love of the material, and I aspire to convey that to students when I teach. This is by far my most important goal when I design a course, prepare or deliver a lecture, lead or follow a discussion, create an assignment, or interact with a student. Our institution is not a vocational school, and that means our focus should be on inspiring our students to appreciate profound ideas and use them in creative and interesting ways. These are lofty goals that can only rarely be achieved. But we do our students a disservice if we do not strive to achieve them. This has been a guiding principle for me in teaching both undergraduate and graduate courses as well as advising students individually. Although I make plenty of room for discussion and special activities, all my courses so far have been primarily lecture based.
    [Show full text]
  • Adrian Vasile Dalca Curriculum Vitae
    Adrian Vasile Dalca Curriculum Vitae Massachusetts General Hospital, [email protected] Harvard Medical School, and http://adalca.mit.edu Computer Science and Artificial Intelligence Lab, 1 (617) 981-9164 Massachusetts Institute of Technology Education Ph.D. Massachusetts Institute of Technology 2016 Electrical Engineering and Computer Science Thesis: Genetic, Clinical and Population Priors for Brain Images Minor: Healthcare Ventures Advisor: Prof. Polina Golland Thesis Readers: John Guttag (MIT), Mert Sabuncu (HMS/MGH), Natalia Rost (HMS/MGH) GPA: 5.00/5.00 S.M. Massachusetts Institute of Technology 2012 Electrical Engineering and Computer Science Thesis: Segmentation of Nerve Bundles and Ganglia in Spine MRI using Particle Filters Advisor: Prof. Polina Golland GPA: 5.00/5.00 M.Sc. University of Toronto 2010 Department of Computer Science Thesis: VARiD: A Variation Detection Framework for Color-Space and Letter-Space Platforms Advisor: Prof. Michael Brudno GPA: 4.00/4.00 Hon. B.Sc. University of Toronto, with High Distinction 2008 Department of Computer Science Advisor: Prof. Michael Brudno GPA: 3.97/4.00 Research Experience Instructor (Junior Faculty), Radiology, MGH, Harvard Medical School, Charlestown, MA Laboratory for Computational Neuroscience. 2019 { Present Research Affiliate, CSAIL, MIT, Cambridge, MA Data Driven Inference Group. 2019 { Present Postdoctoral Fellow, CSAIL, MIT, and MGH, Harvard Medical School, Charlestown, MA Biomedical Data Analysis Group. Advisor: Prof. Mert Sabuncu 2017 { 2019 Data Driven Inference Group. Advisor: Prof. John Guttag 2017 { 2019 Research Assistant, Massachusetts Institute of Technology, Cambridge, MA Medical Vision Group. Advisor: Prof. Polina Golland 2010 { 2016 Computational Biology Lab. Advisor: Prof. Manolis Kellis Fall 2009 Research Assistant, University of Toronto, Toronto, ON, Canada Computational Biology Lab.
    [Show full text]
  • Abstraction Mechanisms in CLU
    that it enforces the preservation of I~. Step 4 guarantees (a) that the concrete operation is applicable whenever the abstract pre condition holds and (b) that if the operation is performed, the result corresponds properly to the abstract specifications. Language Design for S.L. Graham Acknowledgments. We owe a great deal to our col- Reliable Software Editor leagues at Carnegie-Mellon University and the Univer- sity of Southern California Information Sciences Insti- Abstraction tute, especially Mario Barbacci, Neil Goldman, Donald Good, John Guttag, Paul Hilfinger, David Jefferson, Mechanisms in CLU Anita Jones, David Lamb, David Musser, Karla Per- due, Kamesh Ramakrishna, and David Wile. We Barbara Liskov, Alan Snyder, would also like to thank James Horning and Barbara Russell Atkinson, and Craig Schaffert Liskov and their groups at the University of Toronto Massachusetts Institute of Technology and M.I.T., respectively, for their critical reviews of Alphard. We also appreciate very much the perceptive responses that a number of our colleagues have made on an earlier draft of this paper. Finally, we are grateful to Raymond Bates, David Lamb, Brian Reid, and Martin Yonke for their expert assistance with the docu- ment formatting programs. CLU is a new programming language designed to support the use of abstractions in program References 1. Dahl, O.-J., and Hoare, C.A.R. Hierarchical program struc- construction. Work in programming methodology has tures. In Structured Programming, O.-J. Dahl, E.W. Dijkstra, and led to the realization that three kinds of abstractions- C.A.R. Hoare, Academic Press, New York, 1972, pp. 175-220.
    [Show full text]
  • Bibliography
    Bibliography [Abelson85] Harold Abelson, Gerald Jay Sussman, and Julie Sussman, Structure and Interpretation of Computer Programs, MIT Press, Cambridge, MA, 1985. [Aho86] Alfred Aho, Ravi Sethi, and Jeffrey Ullman, Compilers: Principles, Tech- niques, and Tools, Addison-Wesley, Reading, MA, 1986. [Alagic78] Suad Alagic and Michael Arbib, The Design of Well-Structured and Correct Programs, Springer-Verlag, New York, 1978. [Allison86] Lloyd Allison, A Practical Introduction to Denotational Semantics, Cam- bridge University Press, Cambridge, UK, 1986. [Anderson76] E. R. Anderson, F. C. Belz, and E. K. Blum, “SEMANOL (73) A Metalanguage for Programming the Semantics of Programming Languages”, Acta Informatica, 6, 1976, pp. 109–131. [Astesiano91] Egidio Astesiano, “Inductive and Operational Semantics”, In Formal De- scription of Programming Concepts, edited by Erich Neuhold, et al, Springer- Verlag, Berlin, 1991. [Backhouse79] Roland Backhouse, Syntax of Programming Languages: Theory and Prac- tice, Prentice Hall International, Hemel Hempstead, UK, 1979. [Backhouse86] Roland Backhouse, Program Construction and Verification, Prentice Hall International, Englewood Cliffs, NJ, 1986. [Backus78] John Backus, “Can Programming Be Liberated from the von Neumann Style? A functional Style and Its Algebra of Programs”, Communications of the ACM, 21.8, August 1978, pp. 613–641. [Barendregt84] H. P. Barendregt, The Lambda Calculus, Its Syntax and Semantics, North- Holland, Amsterdam, 1984. [Bennett90] Jeremy Bennett, Introduction to Compiling Techniques, McGraw-Hill, New York, 1990. 611 612 BIBLIOGRAPHY [Bergstra89] J. Bergstra, J. Heering, and Paul Klint, Algebraic Specification, Addison- Wesley, Reading, MA, 1989. [Bird76] Richard Bird, Programs and Machines, Wiley, New York, 1976. [Bochman76] Gregor Bochman, “Semantic Evaluation from Left to Right”, Communica- tions of the ACM, 19.2, February 1976, pp.
    [Show full text]