New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life Article Open Access

Total Page:16

File Type:pdf, Size:1020Kb

New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life Article Open Access New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life Ju¨rgen F.H. Strassert,1 Mahwash Jamy,1 Alexander P. Mylnikov,2 Denis V. Tikhonenkov,2 and Fabien Burki*,1,3 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia 3Science for Life Laboratory, Uppsala University, Uppsala, Sweden *Corresponding author: E-mail: [email protected]. Associate Editor: Beth Shapiro Abstract The resolution of the broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these “orphan” groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. Telonemia has been hypothesized to represent a deeply diverging eukaryotic phylum but no consensus exists as to where it is placed in the tree. Here, we established cultures and report the phylogenomic analyses of three new transcriptome data sets for divergent telonemid lineages. All our phylogenetic reconstructions, based on 248 genes and using site-heterogeneous mixture models, robustly resolve the evolutionary origin of Telonemia as sister to the Sar supergroup. This grouping remains well supported when as few as 60% of the genes are randomly subsampled, thus is not sensitive to the sets of genes used but requires a minimal alignment length to recover enough phylogenetic signal. Telonemia occupies a crucial position in the tree to examine the origin of Sar, one of the most lineage-rich eukaryote supergroups. We propose the moniker “TSAR” to accommodate this new mega-assemblage in the phylogeny of eukaryotes. Key words: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists. Introduction Thebackboneofthetreealsocontainsaseriesoflong- known and newly discovered enigmatic protist taxa that do The eukaryote tree of life is one of the oldest working hy- not fit within any established supergroup based on ultrastruc- potheses in biology. Over the past 15 years, this tree has been ture, ribosomal DNA phylogenies, or even protein-coding extensively reshaped based on phylogenomic studies of an genes (Brugerolle et al. 2002; Walker et al. 2006; Heiss et al. Article ever-increasing diversity of protists (i.e., microbial eukaryotes) 2011; Yabuki et al. 2012;seeAdl et al. 2018 for a more ex- (Burki et al. 2007; Rodriguez-Ezpeleta, Brinkmann, Burger, haustive list of incertae sedis taxa within eukaryotes). et al. 2007; Brown et al. 2013; Yabuki et al. 2014; Katz and Interestingly, phylogenomics suggested that many of these Grant 2015; Burki et al. 2016; Brown et al. 2018). The “orphan” taxa are themselves supergroup-level lineages, likely current tree places most lineages into a few redefined representing early diverging evolutionary intermediates be- “supergroups”—a taxonomic rank-less concept that was de- tween the established supergroups (Zhao et al. 2012; Brown vised as inclusive clades reasonably supported by molecular et al. 2013; Cavalier-Smith et al. 2015; Janouskovec et al. 2017; and/or morphological evidence (Simpson and Roger 2002, Heiss et al. 2018; Lax et al. 2018). Individual orphan lineages 2004; Keeling et al. 2005). As few as eight supergroups are can also turn out to be evolutionarily related, forming new recognized, sometimes arranged in even higher-order divi- larger deeply branching eukaryotic clade as in the case of the sions assuming the root of the tree falls outside of these recently proposed “CRuMs” supergroup (Brown et al. 2018). mega-clades: Diaphoretickes, including Sar, Haptista, Taken together, orphans can profoundly impact our under- Cryptista, Archaeplastida; Amorphea, including Amoebozoa standing of ancient eukaryote evolution by defining new ma- and Obazoa; Excavata, including Discoba and Metamonada jor branches in the tree and help establishing the branching (Burki 2014; Simpson et al. 2017; Adl et al. 2019). Importantly, pattern among all main eukaryotic groups. this view of the tree remains a working hypothesis and whilst The genus Telonema is one such orphan taxon that has most groups have been robustly and consistently supported, proven difficult to place in eukaryote-wide phylogenies. others have not and still await confirmation (this is mainly the Known for over a century, this genus contains only case for Archaeplastida and Excavata) (Burki et al. 2016; Heiss two named species, Telonema subtile (syn. Telonema et al. 2018). subtilis)andTelonema antarcticum (Griessmann 1913; ß The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] Open Access Mol. Biol. Evol. 36(4):757–765 doi:10.1093/molbev/msz012 Advance Access publication January 22, 2019 757 Strassert et al. doi:10.1093/molbev/msz012 MBE Klaveness et al. 2005). However, environmental sequencing of of available genomic data sets and the tentative placement of the 18S rDNA has shown that the genetic diversity of Telonemia in previous phylogenomic works (Burki et al. 2009, Telonema is relatively high in marine and freshwater environ- 2012, 2016), special attention was made to include represen- ments and in fact likely represent several genera (Shalchian- tatives of Diaphoretickes lineages with sufficient data. For the Tabrizi et al. 2007; Bra˚te et al. 2010; Adl et al. 2018). Telonema telonemids, at least two sequences from different data sets and related sequences are frequently detected in these were required to group together in gene trees in order to be aquatic environments, and although they are usually not retained. This requirement became possible by the addition very abundant, they are thought to play significant ecological of the new telonemid data sets and greatly lowered the risk roles as biflagellated heterotrophic predators of bacteria and that unidentified contaminants were wrongly assigned to small-sized eukaryotes (Klaveness et al. 2005). The ultrastruc- Telonemia. Overall, the sequence coverage for the three telo- ture of T. subtile and T. antarcticum revealed unique mor- nemid operational taxonomic units (OTUs) ranged between phological features, such as a multilayered subcortical lamina 58%and99%(supplementary table 1, Supplementary and complex cytoskeleton, that distinguish Telonema from all Material online), which constitutes a large improvement other eukaryotes (Klaveness et al. 2005; Shalchian-Tabrizi et al. over previous studies (e.g., Burki et al. 2016). Sequences cor- 2006; Yabuki et al. 2013). Yet, Telonema also possesses struc- responding to the bodonid prey Procryptobia sorokini, easily tures that are characteristics of other groups: for example, the identifiable in gene trees from the presence of other related peripheral vacuoles that are similar to the cortical alveoli in taxa (e.g., Neobodo designis, Bodo saltans), were reassigned Alveolata, tripartite tubular hairs on the long flagellum that accordingly. In total, 293 taxa were initially analyzed (supple- are similar to the mastigonemes in Stramenopila, or wheel- mentary fig. S1, Supplementary Material online), but this like structures resembling extrusomes in some Rhizaria number was reduced to 109 OTUs to allow computational- (Klaveness et al. 2005; Shalchian-Tabrizi et al. 2006; Yabuki heavy analyses. This final taxon sampling was selected based et al. 2013). This combination of unique and shared ultra- on the taxonomic affiliation and data coverage of the OTUs, structural features makes Telonema highly distinctive from excluding faster-evolving lineages when the selection of other eukaryotic groups and has supported the notion that shorter branches was possible (fig. 1, Supplementary fig. S1, it forms a phylum-level lineage—Telonemia—without close Supplementary Material online, and supplementary table 1, relatives (Shalchian-Tabrizi et al. 2006). Accordingly, the first Supplementary Material online). molecular phylogenies based on up to four genes provided only few clues as to the position of the group, other than it Tree Inference and Testing was not closely related to any known groups (Shalchian- The 248 genes/109 OTUs supermatrix was analyzed by max- Tabrizi et al. 2006). Later, more substantial analyses based imum likelihood (ML) and Bayesian tree reconstructions us- on larger data sets containing 127–351 genes also failed to ing site-heterogeneous mixture models of evolution, pinpoint with statistical significance the origin of Telonemia, specifically LGþC60þFþC4 with posterior mean site fre- but this was likely due at least in part to the small number of quency (PMSF) profiles and CATþGTRþC4, respectively genes sampled from only one species (T. subtile)(Burki et al. (see Materials and Methods). These models have been shown 2009, 2012, 2016; Lax et al. 2018). to be more robust against heterogeneity in the amino acid
Recommended publications
  • Culturing and Targeted Pacbio RS Amplicon Sequencing Reveals a Higher Order Taxonomic Diversity and Global Distribution
    bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Enigmatic Diphyllatea eukaryotes: Culturing and targeted PacBio RS amplicon sequencing reveals a higher order taxonomic diversity and global distribution Orr Russell J.S.1,2*, Zhao Sen3,4, Klaveness Dag5, Yabuki Akinori6, Ikeda Keiji7, Makoto M. Watanabe7, Shalchian-Tabrizi Kamran1,2* 1 Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 2 Centre for Integrative Microbial Evolution (CIME), Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway 3 Department of Molecular Oncology, Institute of Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway 4 Medical Faculty, Center for Cancer Biomedicine, University of Oslo University Hospital, Oslo, Norway 5 Section for Aquatic Biology and Toxicology (AQUA), Department of Biosciences, University of Oslo, Oslo, Norway 6 Japan Agency for Marine-Earth Sciences and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan 7 Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan * Corresponding authors: Russell J. S. Orr & Kamran Shalchian-Tabrizi Email: [email protected] Mobile: +4748187013 Email: [email protected] Mobile: +4741045328 Address: Kristine Bonnevies hus, Blindernveien 31, 0371 Oslo, Norway Keywords: Diphyllatea, PacBio, rRNA, phylogeny, diversity, Collodictyon, amplicon, Sulcozoa 1 bioRxiv preprint doi: https://doi.org/10.1101/199125; this version posted October 8, 2017.
    [Show full text]
  • The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
    bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years.
    [Show full text]
  • Sex Is a Ubiquitous, Ancient, and Inherent Attribute of Eukaryotic Life
    PAPER Sex is a ubiquitous, ancient, and inherent attribute of COLLOQUIUM eukaryotic life Dave Speijera,1, Julius Lukešb,c, and Marek Eliášd,1 aDepartment of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ, Amsterdam, The Netherlands; bInstitute of Parasitology, Biology Centre, Czech Academy of Sciences, and Faculty of Sciences, University of South Bohemia, 370 05 Ceské Budejovice, Czech Republic; cCanadian Institute for Advanced Research, Toronto, ON, Canada M5G 1Z8; and dDepartment of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic Edited by John C. Avise, University of California, Irvine, CA, and approved April 8, 2015 (received for review February 14, 2015) Sexual reproduction and clonality in eukaryotes are mostly Sex in Eukaryotic Microorganisms: More Voyeurs Needed seen as exclusive, the latter being rather exceptional. This view Whereas absence of sex is considered as something scandalous for might be biased by focusing almost exclusively on metazoans. a zoologist, scientists studying protists, which represent the ma- We analyze and discuss reproduction in the context of extant jority of extant eukaryotic diversity (2), are much more ready to eukaryotic diversity, paying special attention to protists. We accept that a particular eukaryotic group has not shown any evi- present results of phylogenetically extended searches for ho- dence of sexual processes. Although sex is very well documented mologs of two proteins functioning in cell and nuclear fusion, in many protist groups, and members of some taxa, such as ciliates respectively (HAP2 and GEX1), providing indirect evidence for (Alveolata), diatoms (Stramenopiles), or green algae (Chlor- these processes in several eukaryotic lineages where sex has oplastida), even serve as models to study various aspects of sex- – not been observed yet.
    [Show full text]
  • Multigene Eukaryote Phylogeny Reveals the Likely Protozoan Ancestors of Opis- Thokonts (Animals, Fungi, Choanozoans) and Amoebozoa
    Accepted Manuscript Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opis- thokonts (animals, fungi, choanozoans) and Amoebozoa Thomas Cavalier-Smith, Ema E. Chao, Elizabeth A. Snell, Cédric Berney, Anna Maria Fiore-Donno, Rhodri Lewis PII: S1055-7903(14)00279-6 DOI: http://dx.doi.org/10.1016/j.ympev.2014.08.012 Reference: YMPEV 4996 To appear in: Molecular Phylogenetics and Evolution Received Date: 24 January 2014 Revised Date: 2 August 2014 Accepted Date: 11 August 2014 Please cite this article as: Cavalier-Smith, T., Chao, E.E., Snell, E.A., Berney, C., Fiore-Donno, A.M., Lewis, R., Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa, Molecular Phylogenetics and Evolution (2014), doi: http://dx.doi.org/10.1016/ j.ympev.2014.08.012 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 1 Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts 2 (animals, fungi, choanozoans) and Amoebozoa 3 4 Thomas Cavalier-Smith1, Ema E. Chao1, Elizabeth A. Snell1, Cédric Berney1,2, Anna Maria 5 Fiore-Donno1,3, and Rhodri Lewis1 6 7 1Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
    [Show full text]
  • Predatory Flagellates – the New Recently Discovered Deep Branches of the Eukaryotic Tree and Their Evolutionary and Ecological Significance
    Protistology 14 (1), 15–22 (2020) Protistology Predatory flagellates – the new recently discovered deep branches of the eukaryotic tree and their evolutionary and ecological significance Denis V. Tikhonenkov Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, 152742, Russia | Submitted March 20, 2020 | Accepted April 6, 2020 | Summary Predatory protists are poorly studied, although they are often representing important deep-branching evolutionary lineages and new eukaryotic supergroups. This short review/opinion paper is inspired by the recent discoveries of various predatory flagellates, which form sister groups of the giant eukaryotic clusters on phylogenetic trees, and illustrate an ancestral state of one or another supergroup of eukaryotes. Here we discuss their evolutionary and ecological relevance and show that the study of such protists may be essential in addressing previously puzzling evolutionary problems, such as the origin of multicellular animals, the plastid spread trajectory, origins of photosynthesis and parasitism, evolution of mitochondrial genomes. Key words: evolution of eukaryotes, heterotrophic flagellates, mitochondrial genome, origin of animals, photosynthesis, predatory protists, tree of life Predatory flagellates and diversity of eu- of the hidden diversity of protists (Moon-van der karyotes Staay et al., 2000; López-García et al., 2001; Edg- comb et al., 2002; Massana et al., 2004; Richards The well-studied multicellular animals, plants and Bass, 2005; Tarbe et al., 2011; de Vargas et al., and fungi immediately come to mind when we hear 2015). In particular, several prevailing and very abun- the term “eukaryotes”. However, these groups of dant ribogroups such as MALV, MAST, MAOP, organisms represent a minority in the real diversity MAFO (marine alveolates, stramenopiles, opistho- of evolutionary lineages of eukaryotes.
    [Show full text]
  • Ectocarpus: an Evo‑Devo Model for the Brown Algae Susana M
    Coelho et al. EvoDevo (2020) 11:19 https://doi.org/10.1186/s13227-020-00164-9 EvoDevo REVIEW Open Access Ectocarpus: an evo-devo model for the brown algae Susana M. Coelho1* , Akira F. Peters2, Dieter Müller3 and J. Mark Cock1 Abstract Ectocarpus is a genus of flamentous, marine brown algae. Brown algae belong to the stramenopiles, a large super- group of organisms that are only distantly related to animals, land plants and fungi. Brown algae are also one of only a small number of eukaryotic lineages that have evolved complex multicellularity. For many years, little information was available concerning the molecular mechanisms underlying multicellular development in the brown algae, but this situation has changed with the emergence of Ectocarpus as a model brown alga. Here we summarise some of the main questions that are being addressed and areas of study using Ectocarpus as a model organism and discuss how the genomic information, genetic tools and molecular approaches available for this organism are being employed to explore developmental questions in an evolutionary context. Keywords: Ectocarpus, Life-cycle, Sex determination, Gametophyte, Sporophyte, Brown algae, Marine, Complex multicellularity, Phaeoviruses Natural habitat and life cycle Ectocarpus is a cosmopolitan genus, occurring world- Ectocarpus is a genus of small, flamentous, multicellu- wide in temperate and subtropical regions, and has been lar, marine brown algae within the order Ectocarpales. collected on all continents except Antarctica [1]. It is pre- Brown algae belong to the stramenopiles (or Heter- sent mainly on rocky shores where it grows on abiotic okonta) (Fig. 1a), a large eukaryotic supergroup that (rocks, pebbles, dead shells) and biotic (other algae, sea- is only distantly related to animals, plants and fungi.
    [Show full text]
  • New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote tree of life Jürgen F. H. Strassert1, Mahwash Jamy1, Alexander P. Mylnikov2, Denis V. Tikhonenkov2, Fabien Burki1,* 1Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden 2Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia *Corresponding author: E-mail: [email protected] Keywords: TSAR, Telonemia, phylogenomics, eukaryotes, tree of life, protists bioRxiv preprint doi: https://doi.org/10.1101/403329; this version posted August 30, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract The broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these ‘orphan’ groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments.
    [Show full text]
  • 49Th Jírovec's Protozoological Days
    49th Jírovec's Protozoological Days Conference Proceedings Faculty of Science Charles University Prague, Czech Republic 2019 th 49 Jírovec's Protozoological Days Conference Proceedings Faculty of Science, Charles University, 2019 FOREWORD Dear protistologists, colleagues, and friends! Welcome to the, nearly jubilee, 49th Jírovec‟s Protozoological Days, an international protistological conference, traditionally organized by the Protozoological section of the Czech Society for Parasitology. This year„s Protodays are organized by a group from The Faculty of Science, Charles University, where 90 years ago Otto Jírovec received his doctorate and set out the foundations of Czech protistology. Since 1969, the conference has been an opportunity for graduate and postgraduate students, as well as postdocs and young scientists to present their research and results to the scientific community and the international community of protistologists. The topics presented at the conference include areas such as protistology, cell and molecular biology, genomics, phylogeny and systematics, as well as parasitology, biochemistry, and evolutionary biology and include discoveries of significant new organisms, metabolic pathways of organisms important to our understanding of the origin and evolution of life, research on the causes of serious parasitic diseases such as malaria, sleeping sickness, leishmaniasis, and many others, the development of their treatment and prevention. Thanks to English as the main language at the conference and thanks to the growing interest
    [Show full text]
  • Phylogenomics Invokes the Clade Housing Cryptista, Archaeplastida, and Microheliella Maris
    bioRxiv preprint doi: https://doi.org/10.1101/2021.08.29.458128; this version posted August 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenomics invokes the clade housing Cryptista, 2 Archaeplastida, and Microheliella maris. 3 4 Euki Yazaki1, †, *, Akinori Yabuki2, †, *, Ayaka Imaizumi3, Keitaro Kume4, Tetsuo Hashimoto5,6, 5 and Yuji Inagaki6,7 6 7 1: RIKEN iTHEMS, Wako, Saitama 351-0198, Japan 8 2: Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 236-0001, 9 Japan 10 3: College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan. 11 4: Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, 305-8575, Japan 12 5: Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305- 13 8572, Japan 14 6: Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 15 Ibaraki, 305-8572, Japan 16 7: Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, 17 Japan 18 19 †EY and AY equally contributed to this work. 20 *Correspondence addressed to Euki Yazaki: [email protected] and Akinori Yabuki: 21 [email protected] 22 23 Running title: The clade housing Cryptista, Archaeplastida, and Microheliella maris. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.08.29.458128; this version posted August 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Protists: Puppet Masters of the Rhizosphere Microbiome
    Review Protists: Puppet Masters of the Rhizosphere Microbiome 1,4 1,2,4 3 1 1, Zhilei Gao, Ida Karlsson, Stefan Geisen, George Kowalchuk, and Alexandre Jousset * The rhizosphere microbiome is a central determinant of plant performance. Highlights Microbiome assembly has traditionally been investigated from a bottom-up The rhizosphere microbiome is a major determinant of plant fitness. perspective, assessing how resources such as root exudates drive microbiome assembly. However, the importance of predation as a driver of microbiome The mechanisms driving microbiome assembly are, however, widely structure has to date largely remained overlooked. Here we review the impor- unknown, impeding its efficient tance of protists, a paraphyletic group of unicellular eukaryotes, as a key management. regulator of microbiome assembly. Protists can promote plant-beneficial func- Here we present free-living protists as tions within the microbiome, accelerate nutrient cycling, and remove patho- an overlooked yet core component of gens. We conclude that protists form an essential component of the the microbiome that may offer a rhizosphere microbiome and that accounting for predator–prey interactions powerful leverage to improve micro- biome function. would greatly improve our ability to predict and manage microbiome function at the service of plant growth and health. Protists shape microbiome structure by consuming bacteria and fungi and fi A Multitrophic Perspective on the Rhizosphere Microbiome can select for plant-bene cial func- tional traits. Plant growth, nutrition, and health are to a large extent determined by the activity of associated microorganisms [1]. In particular, plant roots are associated with an active multispecies Protist predation increases micro- community, the rhizosphere microbiome (see Glossary), providing several important ser- biome provisioning of services vices to the plant.
    [Show full text]
  • Final Copy 2021 05 11 Scam
    This electronic thesis or dissertation has been downloaded from Explore Bristol Research, http://research-information.bristol.ac.uk Author: Scambler, Ross D Title: Exploring the evolutionary relationships amongst eukaryote groups using comparative genomics, with a particular focus on the excavate taxa General rights Access to the thesis is subject to the Creative Commons Attribution - NonCommercial-No Derivatives 4.0 International Public License. A copy of this may be found at https://creativecommons.org/licenses/by-nc-nd/4.0/legalcode This license sets out your rights and the restrictions that apply to your access to the thesis so it is important you read this before proceeding. Take down policy Some pages of this thesis may have been removed for copyright restrictions prior to having it been deposited in Explore Bristol Research. However, if you have discovered material within the thesis that you consider to be unlawful e.g. breaches of copyright (either yours or that of a third party) or any other law, including but not limited to those relating to patent, trademark, confidentiality, data protection, obscenity, defamation, libel, then please contact [email protected] and include the following information in your message: •Your contact details •Bibliographic details for the item, including a URL •An outline nature of the complaint Your claim will be investigated and, where appropriate, the item in question will be removed from public view as soon as possible. Exploring the evolutionary relationships amongst eukaryote groups using comparative genomics, with a particular focus on the excavate taxa Ross Daniel Scambler Supervisor: Dr. Tom A. Williams A dissertation submitted to the University of Bristol in accordance with the requirements for award of the degree of Master of Science (by research) in the Faculty of Life Sciences, Novem- ber 2020.
    [Show full text]
  • A Forward Genetic Approach to Identifying Novel
    A FORWARD GENETIC APPROACH TO IDENTIFYING NOVEL CALCIUM REGULATORS IN TOXOPLASMA GONDII Kaice Arminda LaFavers Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Department of Pharmacology and Toxicology, Indiana University November 2017 Accepted by the Graduate Faculty of Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Doctoral Committee ____________________________ Gustavo Arrizabalaga, Ph.D., Chair ____________________________ Nickolay Brustovetsky, Ph.D. ___________________________ Theodore Cummins, Ph.D. ____________________________ Stacey Gilk, Ph.D. July 25, 2017 ____________________________ William Sullivan, Ph.D. ii Acknowledgements I would like to thank Dr. Vern Carruthers for sharing the Rh∆Ku80 strain used for endogenous tagging and generation of the gra41 knockout as well as the gra2 knockout strains along with its parental and complemented strains and the MIC2 antibody, Dr. Peter Bradley for the GRA7 and ROP1 antibodies, Dr. John Boyle for the Pru∆Ku80 strain used for endogenous tagging and the generation of the gra41 Type II knockout strain, Dr. Barry Stein for valuable training and advice in obtaining the transmission electron microscopy of the gra41 parental, knockout and complemented strains and Dr. Sanofar Abdeen for training and advice in recombinant protein purification. I would like to thank Karla Marquez Noguera, in the laboratory of Dr. Silvia Moreno at University of Georgia for conducting the calcium measurement experiments, Dr. Isabelle Coppens at Johns Hopkins for conducting the immunoelectron microscopy imaging, and Dr. Gustavo Arrizabalaga and Erin Garrison for the sequencing of the forward genetic mutant.
    [Show full text]