Resource Allocation in a Cloud Partially Powered by Renewable Energy Sources Yunbo Li

Total Page:16

File Type:pdf, Size:1020Kb

Resource Allocation in a Cloud Partially Powered by Renewable Energy Sources Yunbo Li Resource allocation in a Cloud partially powered by renewable energy sources Yunbo Li To cite this version: Yunbo Li. Resource allocation in a Cloud partially powered by renewable energy sources. Distributed, Parallel, and Cluster Computing [cs.DC]. Ecole nationale supérieure Mines-Télécom Atlantique, 2017. English. NNT : 2017IMTA0019. tel-01595953 HAL Id: tel-01595953 https://tel.archives-ouvertes.fr/tel-01595953 Submitted on 27 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Thèse de Doctorat Yunbo LI Mémoire présenté en vue de l’obtention du grade de Docteur de l’École nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire sous le sceau de l’Université Bretagne Loire École doctorale : Sciences et technologies de l’information, et mathématiques (STIM 503) Discipline : Informatique, section CNU 27 Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N) & Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA) Soutenue le 12 juin 2017 Thèse numéro : 2017IMTA0019 Resource allocation in a Cloud partially powered by renewable energy sources JURY Président : M. Romain ROUVOY, Professeur, Université de Lille Rapporteurs : M. Pascal BOUVRY, Professeur, Université du Luxembourg Mme Patricia STOLF, Maître de conférences (HDR), Université Toulouse Jean-Jaurès Examinateurs : M. Laurent LEFÈVRE, Chargé de recherche (HDR), Inria M. Romain ROUVOY, Professeur, Université de Lille Directeur de thèse : M. Jean-Marc MENAUD, Professeur, IMT Atlantique Co-directrice de thèse : Mme Anne-Cécile ORGERIE, Chargée de recherche, CNRS Remerciements Je voudrais tout d’abord remercier tout particulièrement mes encadrants de thèse, Dr. Anne-Cécile Orgerie (CNRS) et Pr. Jean-Marc Menaud (IMT-Atlantique), qui m’ont dirigé tout au long de ces trois années de thèse. Ils ont toujours été disponibles, à l’écoute de mes nombreuses questions, et se sont toujours intéressés à l’avancée de mes travaux. Je tiens à exprimer ma reconnaissance à Dr. Christine Morin, je suis ravi d’avoir travaillé dans son équipe Myriads. Je remercie également Pr. Jean-Louis Pazat qui m’a beaucoup apporté. Dr. Patricia Stolf et Pr. Pascal Bouvry m’ont fait l’honneur d’être rapporteurs de ma thèse, pour le temps consacré à la lecture de cette thèse, et pour les suggestions et les remar- ques intéressantes qu’ils m’ont faites. Je tiens à remercier Dr. Laurent Lefèvre et Pr. Romain Rouvoy pour avoir accepté de participer à mon jury de thèse. Ayant effectué mon stage à l’Université Rutgers, je remercie Pr. Manish Parashar et Dr. Ivan Rodero avec qui j’ai eu la chance de pouvoir travailler. Leur rigueur, leurs capacités d’analyse des problèmes et leurs connaissances ont été très utiles pour me permettre de pro- gresser ainsi quel leurs réponses à mes questions. Je remercie également tous les thésards David Guyon, Ismael Cuadrado Cordero, Anna Giannakou, Bogdan F. Cornea, Amir Teshome Wonjiga, Anca Iordache, Genc Tato et Gilles Madi-Wamba qui m’ont entouré et m’ont conseillé. Je remercie toutes les personnes dans le projet EPOC qui j’ai partagé mes travaux et no- tamment ces années de thèse : Nicolas Beldiceanu, Bárbara Dumas Feris, Philippe Gravey, Sabbir Hasan, Claude Jard, Thomas Ledoux, Didier Lime, Gilles Madi-Wamba, Pascal Morel, Michel Morvan, Marie-Laure Moulinard, Jean-Louis Pazat, Olivier H. Roux, Ammar Sharaiha. Mes derniers remerciements vont à mes parents et ma copine Zifan, je n’aurais rien fait de tout cela sans votre amour. 3 Contents Remerciements3 List of Tables 7 List of Figures 9 1 Introduction 13 1.1 Context......................................... 13 1.2 Problem Statement and Research Challenges................... 14 1.3 Contributions..................................... 15 1.3.1 Publications.................................. 16 1.3.2 Dissertation organization.......................... 16 2 State of the Art 19 2.1 Introduction...................................... 19 2.2 Data center: server, storage and network energy use............... 19 2.2.1 Data center types and components..................... 20 2.2.2 Energy consumption of computing, storage and network devices... 21 2.2.3 Green metrics................................. 24 2.3 Energy saving approaches.............................. 25 2.3.1 Energy efficiency............................... 25 2.3.2 Energy proportionality............................ 26 2.3.3 Virtualized Infrastructure for Cloud Computing............. 28 2.3.4 A little more green.............................. 34 2.3.5 Novel cloud architectures.......................... 36 2.4 Summary........................................ 38 3 EpoCloud data center 39 3.1 EpoCloud principles................................. 39 3.2 EpoCloud hardware architecture.......................... 40 3.2.1 High throughput optical networks for VM migration.......... 41 3.2.2 Disk throughput............................... 41 3.3 Real traces....................................... 43 3.3.1 Workload trace................................ 43 3.3.2 Solar energy trace............................... 45 3.4 Trace-driven simulator................................ 45 3.5 Summary........................................ 46 5 6 CONTENTS 4 Opportunistic scheduling (PIKA) for maximizing renewable energy consumption in Cloud’s data centers 49 4.1 Problem formulation................................. 50 4.1.1 Job....................................... 50 4.1.2 Workload................................... 50 4.2 PIKA overview.................................... 51 4.3 Resource management and job scheduling..................... 53 4.3.1 Overloaded PM detection.......................... 53 4.3.2 Gap....................................... 54 4.3.3 VM placement................................ 56 4.3.4 Consolidation and migration........................ 56 4.4 Over-commit resource policies........................... 57 4.4.1 Non over-commit policy........................... 57 4.4.2 Over-commit RAM policy.......................... 57 4.4.3 Over-commit CPU policy.......................... 57 4.4.4 Optimal Over-commit CPU/RAM policy................. 57 4.5 Experimental setup.................................. 58 4.5.1 Trace-driven simulator............................ 58 4.5.2 Real-world traces............................... 58 4.6 Evaluation....................................... 58 4.6.1 The performance of resource over-commitment policies......... 58 4.6.2 Energy model................................. 60 4.6.3 Simulation results.............................. 61 4.7 Conclusion....................................... 63 5 Balancing the use of batteries and opportunistic scheduling policies 65 5.1 Energy Storage Devices................................ 66 5.2 Context and assumptions.............................. 66 5.2.1 Small and medium data centers....................... 67 5.2.2 ESD model................................... 67 5.3 VM scheduling.................................... 68 5.3.1 Baseline algorithm.............................. 68 5.3.2 Opportunistic job scheduling........................ 69 5.3.3 Battery charge/discharge model...................... 69 5.4 Experimentation conditions............................. 70 5.4.1 Workload trace................................ 71 5.4.2 Solar energy trace............................... 71 5.5 Results......................................... 71 5.5.1 Find the optimal solar panel dimension.................. 71 5.5.2 Find optimal battery size in ideal case................... 72 5.5.3 Opportunistic vs. baseline when solar energy is not sufficient for the entire workload consumption........................ 73 5.5.4 Solar energy losses with variable battery size............... 74 5.5.5 Opportunistic scheduling migration vs. baseline battery loss...... 74 5.5.6 FFD scheduling impact........................... 75 5.5.7 Comparison of the approaches on a realistic scenario.......... 76 5.6 Conclusion....................................... 76 CONTENTS 7 6 Leveraging Renewable Energy in Edge Clouds for Data Stream Analysis in IoT 79 6.1 Driving Use Case................................... 80 6.2 System model and assumptions........................... 80 6.2.1 Edge and Core model............................ 80 6.2.2 Renewable energy and ESD model..................... 82 6.3 Experimentation.................................... 82 6.3.1 Setup...................................... 82 6.3.2 VM size and time analysis.......................... 83 6.3.3 Edge and core clouds’ energy consumption................ 85 6.3.4 The detection accuracy and number of cameras............. 87 6.4 Conclusion....................................... 89 7 Conclusion 91 7.1 Summary of the Dissertation............................ 91 7.2 Perspective....................................... 93 7.2.1 Thermal-aware job scheduling....................... 93 7.2.2 In-transit strategy............................... 93 7.2.3 Geographically distributed data centers.................. 94 A Appendix - Simplification of Equation 6.2 97 B Appendix - Simulator description
Recommended publications
  • Using Intel® Math Kernel Library and Intel® Integrated Performance Primitives in the Microsoft* .NET* Framework
    Using Intel® MKL and Intel® IPP in Microsoft* .NET* Framework Using Intel® Math Kernel Library and Intel® Integrated Performance Primitives in the Microsoft* .NET* Framework Document Number: 323195-001US.pdf 1 Using Intel® MKL and Intel® IPP in Microsoft* .NET* Framework INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
    [Show full text]
  • Intel(R) Math Kernel Library for Linux* OS User's Guide
    Intel® Math Kernel Library for Linux* OS User's Guide MKL 10.3 - Linux* OS Document Number: 315930-012US Legal Information Legal Information INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL(R) PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR. Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information. The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request. Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
    [Show full text]
  • Intel® Math Kernel Library for Windows* OS User's Guide
    Intel® Math Kernel Library for Windows* OS User's Guide Intel® MKL - Windows* OS Document Number: 315930-027US Legal Information Contents Contents Legal Information................................................................................7 Introducing the Intel® Math Kernel Library...........................................9 Getting Help and Support...................................................................11 Notational Conventions......................................................................13 Chapter 1: Overview Document Overview.................................................................................15 What's New.............................................................................................15 Related Information.................................................................................15 Chapter 2: Getting Started Checking Your Installation.........................................................................17 Setting Environment Variables ..................................................................17 Compiler Support.....................................................................................19 Using Code Examples...............................................................................19 What You Need to Know Before You Begin Using the Intel® Math Kernel Library...............................................................................................19 Chapter 3: Structure of the Intel® Math Kernel Library Architecture Support................................................................................23
    [Show full text]
  • 0 BLIS: a Modern Alternative to the BLAS
    0 BLIS: A Modern Alternative to the BLAS FIELD G. VAN ZEE and ROBERT A. VAN DE GEIJN, The University of Texas at Austin We propose the portable BLAS-like Interface Software (BLIS) framework which addresses a number of short- comings in both the original BLAS interface and present-day BLAS implementations. The framework allows developers to rapidly instantiate high-performance BLAS-like libraries on existing and new architectures with relatively little effort. The key to this achievement is the observation that virtually all computation within level-2 and level-3 BLAS operations may be expressed in terms of very simple kernels. Higher-level framework code is generalized so that it can be reused and/or re-parameterized for different operations (as well as different architectures) with little to no modification. Inserting high-performance kernels into the framework facilitates the immediate optimization of any and all BLAS-like operations which are cast in terms of these kernels, and thus the framework acts as a productivity multiplier. Users of BLAS-dependent applications are supported through a straightforward compatibility layer, though calling sequences must be updated for those who wish to access new functionality. Experimental performance of level-2 and level-3 operations is observed to be competitive with two mature open source libraries (OpenBLAS and ATLAS) as well as an established commercial product (Intel MKL). Categories and Subject Descriptors: G.4 [Mathematical Software]: Efficiency General Terms: Algorithms, Performance Additional Key Words and Phrases: linear algebra, libraries, high-performance, matrix, BLAS ACM Reference Format: ACM Trans. Math. Softw. 0, 0, Article 0 ( 0000), 31 pages.
    [Show full text]
  • Intel® Parallel Studio Xe 2017 Runtime
    Intel® Parallel StudIo Xe 2017 runtIme Release Notes 26 July 2016 Contents 1 Introduction ................................................................................................................................................... 1 1.1 What Every User Should Know About This Release ..................................................................... 1 2 Product Contents ......................................................................................................................................... 2 3 System Requirements ................................................................................................................................ 3 3.1 Processor Requirements........................................................................................................................... 3 3.2 Disk Space Requirements ......................................................................................................................... 3 3.3 Operating System Requirements .......................................................................................................... 3 3.4 Memory Requirements .............................................................................................................................. 3 3.5 Additional Software Requirements ...................................................................................................... 3 4 Issues and Limitations ..............................................................................................................................
    [Show full text]
  • 0 BLIS: a Framework for Rapidly Instantiating BLAS Functionality
    0 BLIS: A Framework for Rapidly Instantiating BLAS Functionality FIELD G. VAN ZEE and ROBERT A. VAN DE GEIJN, The University of Texas at Austin The BLAS-like Library Instantiation Software (BLIS) framework is a new infrastructure for rapidly in- stantiating Basic Linear Algebra Subprograms (BLAS) functionality. Its fundamental innovation is that virtually all computation within level-2 (matrix-vector) and level-3 (matrix-matrix) BLAS operations can be expressed and optimized in terms of very simple kernels. While others have had similar insights, BLIS reduces the necessary kernels to what we believe is the simplest set that still supports the high performance that the computational science community demands. Higher-level framework code is generalized and imple- mented in ISO C99 so that it can be reused and/or re-parameterized for different operations (and different architectures) with little to no modification. Inserting high-performance kernels into the framework facili- tates the immediate optimization of any BLAS-like operations which are cast in terms of these kernels, and thus the framework acts as a productivity multiplier. Users of BLAS-dependent applications are given a choice of using the the traditional Fortran-77 BLAS interface, a generalized C interface, or any other higher level interface that builds upon this latter API. Preliminary performance of level-2 and level-3 operations is observed to be competitive with two mature open source libraries (OpenBLAS and ATLAS) as well as an established commercial product (Intel MKL). Categories and Subject Descriptors: G.4 [Mathematical Software]: Efficiency General Terms: Algorithms, Performance Additional Key Words and Phrases: linear algebra, libraries, high-performance, matrix, BLAS ACM Reference Format: ACM Trans.
    [Show full text]
  • Accelerating Spark ML Applications Date Published: 2020-01-16 Date Modified
    Best Practices Accelerating Spark ML Applications Date published: 2020-01-16 Date modified: https://docs.cloudera.com/ Legal Notice © Cloudera Inc. 2021. All rights reserved. The documentation is and contains Cloudera proprietary information protected by copyright and other intellectual property rights. No license under copyright or any other intellectual property right is granted herein. Copyright information for Cloudera software may be found within the documentation accompanying each component in a particular release. Cloudera software includes software from various open source or other third party projects, and may be released under the Apache Software License 2.0 (“ASLv2”), the Affero General Public License version 3 (AGPLv3), or other license terms. Other software included may be released under the terms of alternative open source licenses. Please review the license and notice files accompanying the software for additional licensing information. Please visit the Cloudera software product page for more information on Cloudera software. For more information on Cloudera support services, please visit either the Support or Sales page. Feel free to contact us directly to discuss your specific needs. Cloudera reserves the right to change any products at any time, and without notice. Cloudera assumes no responsibility nor liability arising from the use of products, except as expressly agreed to in writing by Cloudera. Cloudera, Cloudera Altus, HUE, Impala, Cloudera Impala, and other Cloudera marks are registered or unregistered trademarks in the United States and other countries. All other trademarks are the property of their respective owners. Disclaimer: EXCEPT AS EXPRESSLY PROVIDED IN A WRITTEN AGREEMENT WITH CLOUDERA, CLOUDERA DOES NOT MAKE NOR GIVE ANY REPRESENTATION, WARRANTY, NOR COVENANT OF ANY KIND, WHETHER EXPRESS OR IMPLIED, IN CONNECTION WITH CLOUDERA TECHNOLOGY OR RELATED SUPPORT PROVIDED IN CONNECTION THEREWITH.
    [Show full text]
  • Intel Threading Building Blocks
    Praise for Intel Threading Building Blocks “The Age of Serial Computing is over. With the advent of multi-core processors, parallel- computing technology that was once relegated to universities and research labs is now emerging as mainstream. Intel Threading Building Blocks updates and greatly expands the ‘work-stealing’ technology pioneered by the MIT Cilk system of 15 years ago, providing a modern industrial-strength C++ library for concurrent programming. “Not only does this book offer an excellent introduction to the library, it furnishes novices and experts alike with a clear and accessible discussion of the complexities of concurrency.” — Charles E. Leiserson, MIT Computer Science and Artificial Intelligence Laboratory “We used to say make it right, then make it fast. We can’t do that anymore. TBB lets us design for correctness and speed up front for Maya. This book shows you how to extract the most benefit from using TBB in your code.” — Martin Watt, Senior Software Engineer, Autodesk “TBB promises to change how parallel programming is done in C++. This book will be extremely useful to any C++ programmer. With this book, James achieves two important goals: • Presents an excellent introduction to parallel programming, illustrating the most com- mon parallel programming patterns and the forces governing their use. • Documents the Threading Building Blocks C++ library—a library that provides generic algorithms for these patterns. “TBB incorporates many of the best ideas that researchers in object-oriented parallel computing developed in the last two decades.” — Marc Snir, Head of the Computer Science Department, University of Illinois at Urbana-Champaign “This book was my first introduction to Intel Threading Building Blocks.
    [Show full text]
  • Intel® Math Kernel Library 10.1 for Windows*, Linux*, and Mac OS* X
    Intel® Math Kernel Library 10.1 for Windows*, Linux*, and Mac OS* X Product Brief The Flagship for High-Performance Computing Intel® Math Kernel Library 10.1 Math Software for Windows*, Linux*, and Mac OS* X Intel® Math Kernel Library (Intel® MKL) is a library of highly optimized, extensively threaded math routines for science, engineering, and financial applications that require maximum performance. Availability • Intel® C++ Compiler Professional Editions (Windows, Linux, Mac OS X) • Intel® Fortran Compiler Professional Editions (Windows, Linux, Mac OS X) • Intel® Cluster Toolkit Compiler Edition (Windows, Linux) • Intel® Math Kernel Library 10.1 (Windows, Linux, Mac OS X) Functionality “By adopting the • Linear Algebra—BLAS and LAPACK • Fast Fourier Transforms Intel MKL DGEMM • Linear Algebra—ScaLAPACK • Vector Math Library libraries, our standard • Linear Algebra—Sparse Solvers • Vector Random Number Generators benchmarks timing DGEMM Threaded Performance Intel® Xeon® Quad-Core Processor E5472 3.0GHZ, 8MB L2 Cache,16GB Memory Intel® Xeon® Quad-Core Processor improved between Redhat 5 Server Intel® MKL 10.1; ATLAS 3.8.0 DGEMM Function 43 percent and 71 Intel MKL - 8 Threads Intel MKL - 1 Thread ATLAS - 8 Threads 100 percent…” ATLAS - 1 Thread 90 Matt Dunbar 80 Software Developer, 70 ABAQUS, Inc. s 60 p GFlo 50 40 30 20 10 0 4 6 8 2 4 0 8 2 8 4 6 0 4 2 4 8 6 6 8 9 10 11 12 13 14 16 18 19 20 22 25 32 38 51 Matrix Size (M=20000, N=4000, K=64, ..., 512) Features and Benefits Vector Random Number Generators • Outstanding performance Intel MKL Vector Statistical Library (VSL) is a collection of 9 random number generators and 22 probability distributions • Multicore and multiprocessor ready that deliver significant performance improvements in physics, • Extensive parallelism and scaling chemistry, and financial analysis.
    [Show full text]
  • The BLAS API of BLASFEO: Optimizing Performance for Small Matrices
    The BLAS API of BLASFEO: optimizing performance for small matrices Gianluca Frison1, Tommaso Sartor1, Andrea Zanelli1, Moritz Diehl1;2 University of Freiburg, 1 Department of Microsystems Engineering (IMTEK), 2 Department of Mathematics email: [email protected] February 5, 2020 This research was supported by the German Federal Ministry for Economic Affairs and Energy (BMWi) via eco4wind (0324125B) and DyConPV (0324166B), and by DFG via Research Unit FOR 2401. Abstract BLASFEO is a dense linear algebra library providing high-performance implementations of BLAS- and LAPACK-like routines for use in embedded optimization and other applications targeting relatively small matrices. BLASFEO defines an API which uses a packed matrix format as its native format. This format is analogous to the internal memory buffers of optimized BLAS, but it is exposed to the user and it removes the packing cost from the routine call. For matrices fitting in cache, BLASFEO outperforms optimized BLAS implementations, both open-source and proprietary. This paper investigates the addition of a standard BLAS API to the BLASFEO framework, and proposes an implementation switching between two or more algorithms optimized for different matrix sizes. Thanks to the modular assembly framework in BLASFEO, tailored linear algebra kernels with mixed column- and panel-major arguments are easily developed. This BLAS API has lower performance than the BLASFEO API, but it nonetheless outperforms optimized BLAS and especially LAPACK libraries for matrices fitting in cache. Therefore, it can boost a wide range of applications, where standard BLAS and LAPACK libraries are employed and the matrix size is moderate. In particular, this paper investigates the benefits in scientific programming languages such as Octave, SciPy and Julia.
    [Show full text]
  • Intel Libraries
    Agenda • Intel® Math Kernel Library • Intel® Integrated Performance Primitives • Intel® Data Analytics Acceleration Library Intel IPP Overview 1 Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Intel® Math Kernel Library (Intel® MKL) 2 Powered by the Energy Science & Engineering Financial Signal Digital Research Design Analytics Processing Content Intel® Math Kernel Library (Intel® MKL) Creation ‒ Speeds math processing in scientific, ‒ Unleash the performance of Intel® Core, engineering and financial applications Intel® Xeon and Intel® Xeon Phi™ product ‒ Functionality for dense and sparse linear families algebra (BLAS, LAPACK, PARDISO), FFTs, ‒ Optimized for single core vectorization and vector math, summary statistics and cache utilization more ‒ Coupled with automatic OpenMP*-based ‒ Provides scientific programmers and parallelism for multi-core, manycore and domain scientists coprocessors 15 ‒ Interfaces to de-facto standard APIs from ‒ Scales to PetaFlop (10 floating-point C++, Fortran, C#, Python and more operations/second) clusters and beyond ‒ Support for Linux*, Windows* and OS X* ‒ Included in Intel® Parallel Studio XE and operating systems Intel® System Studio Suites ‒ Extract great performance with minimal effort **http://www.top500.org Used on the World’s Fastest Supercomputers** 3 Optimization Notice Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others. Optimized
    [Show full text]
  • Intel(R) Math Kernel Library for the Windows* OS User's Guide
    Intel® Math Kernel Library for the Windows* OS User’s Guide August 2008 Document Number: 315930-006US World Wide Web: http://developer.intel.com Version Version Information Date -001 Original issue. Documents Intel® Math Kernel Library (Intel® MKL) 9.1 beta January 2007 release. -002 Documents Intel® MKL 9.1 gold release. Document restructured. More June 2007 aspects of ILP64 interface discussed. Section “Selecting Between Static and Dynamic Linking” added to chapter 5; section “Changing the Number of Pro- cessors for Threading at Run Time” and details on redefining memory func- tions added to chapter 6; section ”Calling LAPACK, BLAS, and CBLAS Routines from C Language Environments” added to chapter 7. Cluster content is orga- nized into one separate chapter 9 “Working with Intel® Math Kernel Library Cluster Software” and restructured, appropriate links added. -003 Documents Intel® MKL 10.0 Beta release. Layered design model has been September 2007 described in chapter 3 and the content of the entire book adjusted to the model. New Intel MKL threading controls have been described in chapter 6. The User’s Guide for Intel MKL merged with the one for Intel MKL Cluster Edi- tion to reflect consolidation of the respective products. -004 Documents Intel® MKL 10.0 Gold release. Intel® Compatibility OpenMP* run- October 2007 time compiler library (libiomp) has been described. -005 Documents Intel® MKL 10.1 beta release. Information on dummy libraries in May 2008 Table "High-level directory structure" has been further detailed. Information on the Intel MKL configuration file removed. Instructions on creation/configur- ing of a project running an Intel MKL example in the Microsoft Visual Studio* IDE have been added to chapter 4.
    [Show full text]