PDF Linkchapter

Total Page:16

File Type:pdf, Size:1020Kb

PDF Linkchapter Index [Italic page numbers indicate major references] Absaroka fault, 423 arkose, 276, 519 389, 391 Absaroka sheet, 336, 337, 345, 349, Armstead anticline, 217, 229, 235 Beartooth Mountains, 469 355, 425 structural development models, 222 Beartooth thrust sheet, 470 Absaroka thrust, 79, 137, 335, 346, Armstead Hills, 86 Beaverhead basin, 500, 503, 505, 347, 349, 408, 414, 417, 422, Armstead thrust, 220, 229, 230, 233, 506 424, 425, 436 235 Beaverhead conglomerate, 229, 230, Absaroka thrust fault, 335, 336 Ashbough Canyon, 208, 209 235, 284, 309, 316, 508 Absaroka thrust sheet, 18, 94, 334, ashflow, rhyolitie, 309 Beaverhead County, 268 335, 337, 341, 345, 422, 425 Astoria Springs, 338 Beaverhead Divide fault zone, 258 Absaroka thrust system, 88, 89, 354, Atwell Guleh Member, 480 Beaverhead Formation, 219, 220, 355, 359, 421, 424, 432, 434, 272, 276 438 Baculites yokyamai, 423 Beaverhead Group, 205, 212, 213, Absaroka volcanic field, 480 Badge Pass fault, 173, 179 231, 235, 253, 268, 269, 271, Adaville Formation, 422 Badwater Fault zone, 483 272, 273, 275, 285, 287, 309, Agua Hedionda ranges, 153, 158 Bannack, Montana, 229, 233 310 Alberta foothills, 156, 159, 383 Bannack Pass, 237, 250, 253, 258 rocks, 311, 316 Alberta syncline, 156 Bannack thrust zone, 238 sandstone units, 231, 232, 233, Alberta triangle zone, 156, 161 Basal Conglomerate Member, 500 234, 235, 287 Alder Creek, 272 basalt, 279, 309 Beaverhead Mountains, 86, 237, 239, Alkali Creek, 293 basement, 99, 100, 111, 115,116, 263, 293, 303 Allen Valley Shale Member, 415 120, 121, 343, 363, 383, 397, central, 243, 258 alluvial fan system, 545, 552 403, 405, 359 southern, 238, 240, 243 , 246, alluvium, 212, 458 Archean, 121 251, 252, 254, 258 Alps, 169 block comers, 105 Beaverhead Mountains pluton, 342, American Cordillera, 143 block, 105, 107, 121, 138, 70, 246, 253, 254 American Fork area, 413 71, 333, 336 Beaverhead River Valley. 188, 196, Amoco No. 1 Snowline Grazing dry complex, Wyoming foreland, 11 203 hole, 270 corner, 105, 113, 117 Beaverhead sequence, 276 amphibolite, 230 crystalline, 57, 73, 120, 137, 143, bedding length, 54, 60, 62 Amsden Formation, 9, 196, 278, 146, 150, 151, 155, 157, 158, beds 323, 357 159, 432, 434, 443, 454, 475 coal, 420 Amsden Group, 310 deformation, 53, 54, 60 gypsum, 134 Ancestral Rocky Mountains, 36 deformed, 48, 56 limestone, 184, 211 Andan orogenic belt, 145 fault, 53, 104, 112, 115, 116, micrite, 562 Andean Cordillera, 143, 144, 145, 117, 354 red, 211, 320, 324, 326, 333, 156 geometry, 48, 50, 53, 56 336, 349, 420, 521, 559, 567 Andean segment, 144 length, 54, 62 sandstone, 231, 324 Andes Mountains, 143 mechanical, 13 sedimentary, 336 andesite, 454 mesoscopic structures, 123 belt angiosperms, 542, 562 microscopic structures, 123 Central Precordillera thrust, 146 anhydrite, 451 ramp anticlines, 72 Idaho-Utah-Wyoming thrust, 119, Animas Mountains, 458 rock, 45, 49, 76, 113, 361 120, 121, 130, 347, 357, 364 Antelope Island, 412 shortening, 402 Idaho-Wyoming thrust, 129, 137, anticlines strain, 126 155, 156, 240, 243, 247, 253, foreland, 86 thrusting, 466 333, 354, 516, 519, 520 ramp, 68, 73 models, 482 Idaho-Wyoming, 238 Antone Peak, 272, 278 Basin and Range province, 36, 557 thrust, 109, 362 Anvil Points Member, 480 Basin-Range extension, 309 thrust fault, 111 aplite, 243 basins Belt arch complex, 504 Appalachians, 111 foreland, 542,552 Belt basin, 82, 172, 177, 181, 196, Aquilapollenites senonicus Interval hydrographic, 480 320 zone, 272 intraforeland, 490, 498, 505 Belt Supergroup, 172, 177, 178, 179, Arapien Shale, 420 Battle Mountain, 376, 388 180, 196, 205, 258, 504 arc, magmatic, 36 Battle Mountain normal fault, 376 eastern slab, 165 Archean, 240 Battle Ridge monocline, 172, 178, kinematic model, 169 Archean craton, 412, 413, 425, 427 182 rocks, 217, 257, 262 Arco Hills formation, 254 Battleship reverse slip zone, 121 western slab, 169 Argentina, 143, 155, 156 BDT. See brittle-ductile transition Belt uplift, 505 west-central, 145 BDZ. See brittle deformation zone Bermejo basin, 151, 157, 158 argillites, 504 Beall Canyon thrust, 183 Bermejo Valley, 149, 150, 157 Arizona, 448, 449, 458 Bear Creek fold and fault system, 454 betonites, 561 southeastern, 34, 462 Bear Peak area, 454 Big Belt Mountains, 498 southern, 34 Bear thrust, 336, 376, 380, 387, Big Cottonwood Formation, 412, 434 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/955208/mem171-bm.pdf by guest on 01 October 2021 572 Index Big Cottonwood Group, 335 507 Canadian shield, 12 Big Hatchet Mountains, 451, 462 Boulder-Highland uplift, 498, 500, Canyon Range sheet, 425 Big Hole River, 194, 196 503, 505 carbonates, 44, 60, 100, 101, 151, Big Piney, 397 Bozeman, Montana, 177, 217, 504 159, 191, 192, 220, 221, 238, Big Snowy Formation, 323 breccia, oxidized, 205 246, 247, 251, 268, 270, 341, Big Snowy Group, 310 Bridger arch, 178, 179, 180, 182 357, 454, 478, 504, 535, 540, Bighorn basin, 18, 157, 469, 471 Bridger basin, 475 550, 551, 552, 564 Bighorn Dolomite, 43, 48, 49, 57, Bridger Formation, 477 marine, 451 60 Bridger Range, 91, 177, 178, 179, Care fault, 177 Bighorn monocline, 470 181 Carmichael anticline, 187 Bighorn Mountains, 5, 8, 14, 16, 17, foreland structure, 88 Carmichael syncline, 183, 185 403, 470, 471 British Columbia, 35, 168 Casper arch, 8, 15, 397, 471, 474, central 471 britde deformation zone, 121, 123, 482 Bighorn thrust, 471 124, 126, 127, 137 Casper arch thrust, 22, 15 Biltmore anticline, 194, 198, 204 brittle-ductile transition, 160 Casper Mountain, 16 Biltmore fault, 188, 196 Brockman Hills, 458 Casper Mountain fault, 15, 17 Biltmore foreland anticline, 188, 194 Brooks Creek anticline, 182, 183 cataclasis, 41, 42, 50, 70, 134, 137, Biltmore Hot Springs, 190 Brushy Basin Shale Member, 561 138, 278 biosparite, 184 Buckhom Conglomerate, 542, 543, Cedar Creek syncline, 221, 226 biotite, 518, 519 554, 559, 561 Cedar Hills, 566, 567 bioturbation, 503, 505, 548 Bull Creek anticline, 380, 388 Cedar Mountain, 420, 458 Birch Creek Valley, 253 Bull Creek blind thrust, 388 modal analyses, 564 Bisbee basin, 462 Bull Creek fault, 377, 388 Cedar Mountain Formation, 417, 533, Bisbee Group, 462 Bull Creek normal fault, 388 542, 543, 552, 557,559, 561, Bismark fault, 176, 180, 183 Bull Creek thrust, 376, 377, 380, 562, 564, 567, 568 Bitterroot lobe, 169 381, 387, 388, 391 Cedar Mountain strata, 553 bivalves, 542, 550 Bull Creek thrust plate, 377, 388 Cedar Mountain strike belt, 567 Black Forest massif, 88 Burro Canyon Formation, 542 Cenozoic, 94, 150, 151, 205, Black Hills, 471 Burro uplift, 454 557 Black Hills monocline, 471 buttressing, 88 late, 36, 146 Blackleaf Formation, 205, 271, 490, middle, 36 491, 498, 503, 504 , 506, 507, Cabin block, 262 Cental Montana-Crazy Mountains 508 Cabin Creek, 338 trough, 498 lithostratigraphic intervals, 504, Cabin plate, 247, 250, 253, 257 Centennial basin, 293 505,506, 507 Cabin sheet, 303 Centennial fault, 269 Blacktail Deer Creek, 205, 213, 293 Cabin thrust, 230, 238, 239, 250, Centennial Mountains, 269, 270 Blacktail fault, 176, 198, 203, 208, 258, 268 Centennial Valley, 269, 270 213 Cabin thrust fault, 243, 250, 253 Central Appalachian salient, 337 Blacktail Mountains, 179, 203, 204, model, 251 Central Montana embayment, 498 205, 208, 213, 214 Cabin thrust plate, 240, 247, 252, Central Precordillera, 146, 153, 155, northeast flank, 208 253, 257, 263 158, 159, 160, 161 Blacktail Mountains salient, 91, 179, Cabin thrust sheet, 254, 281 Central Precordillera thrust belt, 146, 196, 198, 203 Cache Creek blind fault, 380,383, 151 Blacktail normal fault, 214 387, 389, 390 chalcedony, 567 Blacktail reverse fault, 86 Cache Creek fault system, 380, 381, Chalk Creek drainage, 422 Blacktail syncline, 204, 208, 209, 383, 387, 389, 390, 291 Challis Volcanics, 251, 254 214 Cache Creek foreland thrust, 89 Chamberlain Creek, 243 Blacktail-Snowcrest foreland uplift, Cache Creek subfault, 380, 381, 386, Chappo Member, 424, 519, 520, 291 389, 390, 391 521 Blacktail-Snowcrest Laramide uplift, Cache Creek thrust, 335, 336, 343, Charleston allochthon, 432 271, 279 345, 390, 391, 516 Charleston thrust fault, 425 Blacktail-Snowcrest uplift, 79, 91, calcareous nodules, 561 Charleston thrust plate, 420 203, 204, 205, 214, 268, 273, calcite, 126, 127, 134, 285, 310, Charleston thrust sheet, 412, 417, 274, 281, 283, 285, 287, 291, 335, 349, 549, 564 428 309, 498, 500, 505, 507 veins, 129, 134, 185, 342 Charleston thrust system, 89, 420, gravity models, 294, 303 California, 36 432 gravity survey, 292 California uplift, 36 charophytes, 420 kocomant 1[\ 11 1 (\1 111 i f„..i, 1 en i i rcn W1UVO0, l/UOWJILWIlk, t XJ, I X, IV t , l^il, v.ai^ti lauii, ui UCLH1S, JJU 138, 172, 333, 336 Cambrian, 402 chert, 231, 247, 475, 518, 519, 535, crystalline basement, 151, 224 Camp Creek, 188, 191, 192 540, 543, 564, 568 Bloody Dick creek, 257, 258, 262 Camp Creek fault, 180, 191 Chevron Game Hill Unit well, 376, Blue Dome block, 254 Camp Creek thrust, 172, 177, 178, 380, 383 Bluebird Mountain Formation, 247, 182 Chevron, Inc. No. 1-34 Game Hill 250, 253, 254 Camp Creek thrust fault, 180 Unit well, 376, 380, 383 Bootlegger Member, 507 Camp Davis Formation, 336, 389 Chevron, Inc. Federal No. 1-33 Cabin Boquillas Formation, 454 Canadian Cordilleran thrust belt, Creek Unit well, 376 Boulder batholith, 89, 92, 302, 498, 156 Chica de Zonda, 153, 160 503 Canadian Foothills province, 240 Chicken Creek, 562, 567 Boulder River Sandstone Member, Canadian Rocky Mountains, 88, 252 Chihuahua, northern, 458 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/955208/mem171-bm.pdf
Recommended publications
  • Page 5 of the 2020 Antelope, Deer and Elk Regulations
    WYOMING GAME AND FISH COMMISSION Antelope, 2020 Deer and Elk Hunting Regulations Don't forget your conservation stamp Hunters and anglers must purchase a conservation stamp to hunt and fish in Wyoming. (See page 6) See page 18 for more information. wgfd.wyo.gov Wyoming Hunting Regulations | 1 CONTENTS Access on Lands Enrolled in the Department’s Walk-in Areas Elk or Hunter Management Areas .................................................... 4 Hunt area map ............................................................................. 46 Access Yes Program .......................................................................... 4 Hunting seasons .......................................................................... 47 Age Restrictions ................................................................................. 4 Characteristics ............................................................................. 47 Antelope Special archery seasons.............................................................. 57 Hunt area map ..............................................................................12 Disabled hunter season extension.............................................. 57 Hunting seasons ...........................................................................13 Elk Special Management Permit ................................................. 57 Characteristics ..............................................................................13 Youth elk hunters........................................................................
    [Show full text]
  • Geologic Map of South Dakota
    STATE OF SOUTH DAKOTA M. Michael Rounds, Governor DEPARTMENT OF ENVIRONMENT AND NATURAL RESOURCES Steven M. Pirner, Secretary DIVISION OF FINANCIAL AND TECHNICAL ASSISTANCE David Templeton, Director GEOLOGICAL SURVEY Derric L. Iles, State Geologist Geologic Map of South Dakota James E. Martin, J. Foster Sawyer, Mark D. Fahrenbach, Dennis W. Tomhave, Layne D. Schulz 2004 References to Accompany General Map 10 Agnew, A.F., 1957, Areal geology of the White River quadrangle: South Dakota Geological Survey Geologic Quadrangle Map, scale 1:62,500. ____1963, Geology of the Mission quadrangle: South Dakota Geological Survey Geologic Quadrangle Map, scale 1:62,500. Agnew, A.F., and Tychsen, P.C., 1965, A guide to the stratigraphy of South Dakota: South Dakota Geological Survey Bulletin 14, 195 p. Alkhazmi, R.A., 1973, Structural analysis of the Precambrian rocks of the Park Dome area, Custer County, Black Hills of South Dakota: Rapid City, South Dakota School of Mines and Technology, M.S. thesis, 92 p. Anna, L.O., 1973, Geology of the Kirk Hill area, Lawrence-Meade Counties, South Dakota: Rapid City, South Dakota School of Mines and Technology, M.S. thesis, 47 p. Atkinson, R.D., 1976, Geology of the Pony Gulch area near Mystic, South Dakota: Rapid City, South Dakota School of Mines and Technology, M.S. thesis, 21 p. Baird, J.D., 1957, Geology of the Alcester quadrangle, South Dakota–Iowa: Vermillion, University of South Dakota, M.A. thesis, 136 p. Baker, C.L., 1948, The Pennington-Haakon County central boundary area with general discussion of its surroundings: South Dakota Geological Survey Report of Investigations 64, 29 p.
    [Show full text]
  • Parker Mountain Adaptive Resources Management Group
    2006 ANNUAL REPORT PARKER MOUNTAIN ADAPTIVE RESOURCE MANAGEMENT GROUP (PARM) Cooperators Parker Mountain Grazing Association U. S. Bureau of Land Management U. S. Fish and Wildlife Service U. S. Forest Service U.S.D.A. Farm Services Agency U.S.D.A. Natural Resource Conservation Service U.S.D.A. Wildlife Services Utah Agricultural Experiment Station Utah Department of Agriculture and Food Utah Department of Natural Resources Utah Division of Wildlife Resources Utah Farm Bureau Federation Utah School and Institutional Trust Lands Administration Utah State University, Vice President for Research Utah State University, Vice President for Extension Wayne and Piute County Commissions Prepared by David Dahlgren, Michael Guttery, Michael Monsen, and Terry Messmer Quinney Professorship for Wildlife Conflict Management Jack H. Berryman Institute Department of Wildland Resources Utah State University, Logan Verl Bagley Utah State University Extension Service Wayne and Piute County Extension Office January 2007 -1- Table of Contents Page Introduction .......................................................................................................................3 Background ...........................................................................................................3 Objectives ...............................................................................................................3 Sage-grouse Research .......................................................................................................4 Sage-grouse Biology
    [Show full text]
  • By Douglas P. Klein with Plates by G.A. Abrams and P.L. Hill U.S. Geological Survey, Denver, Colorado
    U.S DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY STRUCTURE OF THE BASINS AND RANGES, SOUTHWEST NEW MEXICO, AN INTERPRETATION OF SEISMIC VELOCITY SECTIONS by Douglas P. Klein with plates by G.A. Abrams and P.L. Hill U.S. Geological Survey, Denver, Colorado Open-file Report 95-506 1995 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey editorial standards. The use of trade, product, or firm names in this papers is for descriptive purposes only, and does not imply endorsement by the U.S. Government. STRUCTURE OF THE BASINS AND RANGES, SOUTHWEST NEW MEXICO, AN INTERPRETATION OF SEISMIC VELOCITY SECTIONS by Douglas P. Klein CONTENTS INTRODUCTION .................................................. 1 DEEP SEISMIC CRUSTAL STUDIES .................................. 4 SEISMIC REFRACTION DATA ....................................... 7 RELIABILITY OF VELOCITY STRUCTURE ............................. 9 CHARACTER OF THE SEISMIC VELOCITY SECTION ..................... 13 DRILL HOLE DATA ............................................... 16 BASIN DEPOSITS AND BEDROCK STRUCTURE .......................... 20 Line 1 - Playas Valley ................................... 21 Cowboy Rim caldera .................................. 23 Valley floor ........................................ 24 Line 2 - San Luis Valley through the Alamo Hueco Mountains ....................................... 25 San Luis Valley ..................................... 26 San Luis and Whitewater Mountains ................... 26 Southern
    [Show full text]
  • Custer County,Idaho
    114o1230 44o5200 114o4830 44o4830 Custer County, er iv R n Tcv o Idaho Tgs m l Qa a Kgd Tgs S Tcv k Ys r Ys o Qa F Tgdd le The map on this page has been reduced by 40% from dd Ys Mi Tcv Ys the map on the big page. So it is not to 1:500,000 scale. The scale bar was reduced with it though and should be Tgs Tcv Tcv Tcv close to correct. Kgd Qa Os Qm Kgd Qa Salmon Qa Ds Kgdh R. Mtns. Kgd Kgd Tcv Qs OCZ P A Qm H Kgd Challis Tcv S Pzl Kgdh Kgd OCZ IM E Os Qa Qa Qs RO PPPs Tcv Tgdd Tcv Ds Qs I Kgdh Cs V Pzl Tgs A L Kgd Qm Tcv DSs L OCs DSs E OCs Y Cs Ss Qa Tcv Kgdh Ss Tcv Ds Ybe Kis Sunbeam OCs Tcv o Tgs Qa Cs 44 2130 Kis Kgd OCs Ss Ds 115o1730 Kgdh Kgd PPPs Kgd Qs Kis Ms OCs Os Ts Qm 21 Ybe OCs PPPs Os 75 Os PzZm Kgdh OCs Ds Qs Ybe Qa River Kgd OCs DSs Kis Kis on Ms OCs Tcv Qs m Os OCs Ss Ts Os Qs Qg al Qa Sawtooth Rge. S 25 DSOs Ms Ss Tgs OCs Ss Ms Tcv Qs Stanley o Qg Tcv Ds 44 1400 Kgd Ps PPPs Os Kgdh Tcv Tcv 93 Ms Qs Tcv Ms PzZm Qm Ts Redfish SOs Borah PK. Tcv Kgd Lk. Qa (12,662 ft) Ds Ts DSOs Qs Qm Ds Qm Qm Qa SOs Leatherman Kgd Pk Tgs Chilly Lost River Rge.
    [Show full text]
  • Geological Survey of Wyoming
    GEOLOGICAL SURVEY OF WYOMING SELECTED REFERENCES USED TO CO~IPILE THE ~IETALLIC AND INDUSTRIAL MI ERALS ~IAP OF WYOMING by Ray E. Harris and W. Dan Hausel OPEN FILE REPORT 85-1 1985 This report has no~ been reviewed for conformity with the editorial standards of the Geological Survey of Wyoming. CONTENTS District or Region Page Introduction . iii Absaroka Mountains ...........................•.......................... 1 Aladdin District . 1 Barlow Canyon District . 1 Bear Lodge District . 1 Big Creek District . 2 Bighorn Basin . 2 Bighorn Mountains ...•................................................... 3 Black Hills . 4 Carlile District ...........•............................................ 5 Centennial Ridge District . 5 Clay Spur District ...................................•.................. 5 Colony District . 6 Cooke City - New World District . 6 Copper Mountain District .........................................•...... 7 Cooper Hill District . 7 Crooks Gap-Green Mountain District . 7 Deer Creek District . 8 Denver Basin . 8 Elkhorn Creek District . 8 Esterbrook District . 8 Gas Hills District . 8 Gold Hill District . 9 Grand Encampment District . 9 Granite Mountains . 9 Green River Basin ................................•...................... 10 Gras Ventre Mountains ..................•...............•................ 11 Hanna Basin . 11 Hartville Uplift . 12 Hulett Creek District .........................................•......... 13 Iron Mountain District . 13 Iron Mountain Kimberlite District ......•...............................
    [Show full text]
  • Redalyc.Sr, C and O Isotope Composition of Marbles from The
    Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Murra, J.A.; Baldo, E.G.; Galindo, C.; Casquet, C.; Pankhurst, R.J.; Rapela, C.W.; Dahlquist, J. Sr, C and O isotope composition of marbles from the Sierra de Ancasti, Eastern Sierras Pampeanas, Argentina: age and constraints for the Neoproterozoic-Lower Paleozoic evolution of the proto- Gondwana margin Geologica Acta: an international earth science journal, vol. 9, núm. 1, marzo, 2011, pp. 79-92 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50522124008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.9, Nº 1, March 2011, 79-92 DOI: 10.1344/105.000001645 Available online at www.geologica-acta.com Sr, C and O isotope composition of marbles from the Sierra de Ancasti, Eastern Sierras Pampeanas, Argentina: age and constraints for the Neoproterozoic–Lower Paleozoic evolution of the proto-Gondwana margin 1 1 2 2 3 4 1 J.A. MURRA E.G. BALDO C. GALINDO C. CASQUET R.J. PANKHURST C.W. RAPELA J. DAHLQUIST 1 CICTERRA (Universidad Nacional de Córdoba - Conicet) Av. Vélez Sarsfield 1611, 5016 Córdoba, Argentina. Murra E-mail: [email protected] Baldo E-mail: [email protected] Dahlquist E-mail: [email protected] 2 Departamento. Petrología y Geoquímica Facultad de Ciencias Geológicas, Inst.
    [Show full text]
  • 1 KECK PROPOSAL: Eocene Tectonic Evolution of the Teton-Absaroka
    KECK PROPOSAL: Eocene Tectonic Evolution of the Teton-Absaroka Ranges, Wyoming (Year 2) Project Leaders: John Craddock (Macalester College; [email protected]) and Dave Malone (Illinois State University; [email protected]) Host Institution: Macalester College, St. Paul, MN Project Dates: ~July 15-August 14, 2011 Student Prerequisites: Structural Geology, Sedimentology. Preamble: This project is an expansion of a 2010 Keck project that was funded at a reduced level (Craddock, 3 students); Malone and 4 students participated with separate funding. We completed or are currently working on three 2010 projects: 1. Structure, geochemistry and geochronology (U-Pb zircon) of carbonate pseudotachylite injection, White Mtn. (J. Geary, Macalester; note that this was not part of last year’s proposal but a new discovery in 2010 caused us to redirect our efforts), 2. Calcite twinning strains within the S. Fork detachment allochthon, northwest, WY (K. Kravitz, Smith; note because of a heavy snow pack in the Tetons this past summer, we chose a different structure to study), and 3. Provenance of heavy minerals and detrital zircon geochronology, Eocene Absaroka volcanics, northwest, WY (R. McGaughey, Carleton). We did not sample the footwall folds proposed in the previous proposal (under snow) and will focus on this project and mapping efforts of White Mountain and the 40 x 10 km S. Fork detachment area near Cody, WY, in part depending on the results (calcite strains, detrital zircons) of the 2010-11 effort. All seven students are working on the detrital zircon geochronology project, and two abstracts are accepted at the 2011 Denver GSA meeting. Overview: This proposal requests funding for 2 faculty to engage 6 students researching a variety of outstanding problems in the tectonic evolution of the Sevier-Laramide orogens as exposed in the Teton and Absaroka ranges in northwest Wyoming.
    [Show full text]
  • Chapter 17. Quartzite Gravel Northwest Wyoming
    Chapter 17 Quartzite Gravel of Northwest Wyoming The quartzites of southwest Montana and adjacent Idaho extend eastward into Wyoming1 in a semi-continuous belt, as shown on Figure 16.1 of the previous chapter. This chapter will describe those deposits. Quartzite Gravel Lag John Hergenrather and I have found scattered surficial quartzites from near Interstate 15 in northeastern Idaho, just south of Lima, Montana, eastward to the northern Teton Mountains and over a four-wheel drive pass between Yellowstone and Grand Teton National Parks. These quartzites seem to have mostly formed a thin layer or lag deposit on the surface or were reworked by local mountain glaciation. This lag rep- resents the red hashed area in Figure 16.1. Quartzites on Top of the Northern Teton Mountains Probably the most fascinating quartz- ite location is on top of the northern Teton Mountains! Brent Carter and I took a Figure 17.1. Slightly dipping limestone at the top three day round trip hike to the top of Red of Red Mountain. Mountain in the northern Teton Moun- tains, 10,177 feet (3,102 m) msl!2,3 Red Mountain and Mount Moran (12,605 feet, 3,842 m msl) represent remnants of a flat-topped planation surface.2 Red Mountain is composed of slightly tilted limestones (Figure 17.1), while Mount Moran is composed of granite or gneiss with a 50-foot (15 m) thick cap of Flathead Sandstone on top (see Figure 33.7). The quartzites on top of Red Mountain are mainly a thin lag mixed with angular lime- stone cobbles and boulders (Figure 17.2).
    [Show full text]
  • Early Evolution of the Proto-Andean Margin of South America
    Early evolution of the Proto-Andean margin of South America C. W. Rapela Centro de Investigaciones Geológicas, Universidad Nacional de La Plata, Calle 1 No. 644, 1900 La Plata, Argentina R. J. Pankhurst British Antarctic Survey, Cambridge CB30ET, United Kingdom C. Casquet Departamento de Petrología y Geoquímica, Universidad Complutense, 28040 Madrid, Spain E. Baldo J. Saavedra CSIC, Instituto de Agrobiología y Recursos Naturales, 37071 Salamanca, Spain C. Galindo Departamento de Petrología y Geoquímica, Universidad Complutense, 28040 Madrid, Spain ABSTRACT INTRODUCTION From a detailed study of a 500 km transect in the Sierras Pampeanas, central-west Argen- The evolution of the Gondwana margin pro- tina, two pre-Silurian tectono-magmatic episodes are recognized and defined, each culminating posed here is based on new geochemical, isotopic, in micro-continental collisions against the proto-Andean margin of Gondwana. The Pampean petrological, and sedimentological data from a orogeny started in Early Cambrian time with short-lived subduction, indicated by ca. 535 Ma 500 km traverse across the Eastern Sierras Pam- calc-alkaline granitoids. Following Pampean terrane collision, burial to granulite facies condi- peanas and Precordillera (Fig. 1). Pre-Silurian tions (ca. 9 kbar) generated widespread migmatites and ca. 520 Ma highly peraluminous gran- metamorphic and magmatic history is inferred ites in the Eastern Sierras Pampeanas. After brief quiescence, a second major episode, the from (1) dating by conventional U-Pb on abraded Famatinian orogeny, started with subduction ca. 490 Ma, forming a wide continental arc and zircons, U-Pb SHRIMP analyses, and whole-rock ensialic backarc basin. This heralded the approach of Laurentia to Gondwana, during which Rb-Sr and K-Ar, (2) thermo-barometry based on the Precordillera terrane separated from the southern Appalachian region, finally colliding with microprobe mineral analyses, and (3) Nd and Sr Gondwana in Silurian–Devonian time.
    [Show full text]
  • GEOHYDROLOGY of TERTIARY ROCKS in the GREEN RIVER STRUCTURAL BASIN in WYOMING, UTAH, and COLORADO by Lawrence J
    GEOHYDROLOGY OF TERTIARY ROCKS IN THE GREEN RIVER STRUCTURAL BASIN IN WYOMING, UTAH, AND COLORADO by Lawrence J. Martin U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 92-4164 Prepared in cooperation with the WYOMING STATE ENGINEER Cheyenne, Wyoming 1996 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director The use of trade, product, industry, or firm names i$ for descriptive purposes only and does not imply endorsement by thelU.S. Government. For additional information Copies of this report can be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey, WRD Branch of Information Services 2617 E. Lincolnway, Suite B Box 25286, Denver Federal Center Cheyenne, Wyoming 82001-5662 Denver, Colorado 80225 CONTENTS Page Abstract ................................................................................................................................................................................ 1 Introduction .......................................................................................................................................................................... 1 Purpose and scope .................................................................................................................................................... 3 Criteria for data selection ......................................................................................................................................... 3 Previous investigations ............................................................................................................................................
    [Show full text]
  • Triangulation in Utah 1871-1934
    UNITED STATES DEPARTMENT OF THE INTERIOR Harold L. Ickes, Secretary GEOLOGICAL SURVEY W. C. Mendenhall, Director Bulletin 913 TRIANGULATION IN UTAH 1871-1934 J. G. STAACK Chief Topographic Engineer UNITED STATES GOVERNMENT PRINTING OFFICE WASHINGTON: 1940 Tor sale by the Superintendent of Documents, Washington, D. C. Price 20 cents (paper) CONTENTS Page Introduction ______________________________________________________ 1 Scope of report------__-_-_---_----_------------ --__---__ _ 1 Precision __ _ ________________________ _ __________________ _ ___ 1 Instruments used._ _ _ _ _ _ _ _ _ 2 Station marks___- _ _.__ __ __ _ 2 Datum_-_-_-__ __________________________ ______ ______-___.__ 3 Methods of readjustment..._____.-.__..________.___._._...___.__ 4 Form of results__-.________________________ _.___-_____.______ 5 Arrangement__.______________________________ _ ___ _ ________ 6 Descriptions of stations._______________________________________ 6 Azimuths and distances.__ ____-_.._---_--_________ -____ __ __ ^ 7 Maps.__----__-----_-_---__-_--_-___-_-___-__-__-_-_-___.-.__ 7 Personnel_ _ __-----_-_-_---_---------_--__-____-__-_.--_.___ . 7 Projects 9 Uinta Forest Reserve, 1897-98_ 9 Cottonwood and Park City special quadrangles, 1903____ _ 19 Iron Springs special quadrangle, 1905____________________________ 22 Northeastern Utah, 1909.. -_. 26 Eastern Utah, 1910 - . 30 Logan quadrangle, 1913._________-__-__'_--______-___:_____.____ 42 Uintah County, 1913___-__. 48 Eastern Utah, 1914.. ... _ _ .. 55 Northern Utah, 1915 (Hodgeson)_____-___ __-___-_-_-__-_--. _. 58 Northern Utah, 1915 <Urquhart)_.
    [Show full text]