2 Integral Calculus in Several Variables

Total Page:16

File Type:pdf, Size:1020Kb

2 Integral Calculus in Several Variables Mathematical Analysis II - Part B 2 Integral calculus in several variables In this section we approach the problem of integrating real functions of several real varia- bles. The knowledge of Riemann integral for functions of one real variable is required. 2.1 Lebesgue versus Riemann integral: motivation and a brief presentation A theory of Riemann integration for functions of several real variables (i.e. f : A R, ! with A Rn) could be constructed by adapting in a natural way the already known theory ⇢ for one variable: the role of intervals of R will be taken by the “n-dimensional intervals” I = I1 In,wheretheIj are intervals of R with extremities included or not; there ⇥···⇥ will still be the simple functions (or “step functions”, “staircase functions”) from which to start the definition of integral, the upper and lower sums, and so on. Figure 2.1: The integral of a function of two real variables. The problem of defining the integral is substantially equivalent to the one of providing a measure to subsets of Rn: one would say that E Rn is elementarily measurabile ⇢ (or measurable `ala Peano-Jordan) when its indicator function χE is Riemann-integrable, calling “measure of E” (or also “area”, “volume” in the cases n =2, 3) the value of such integral. Obvious good qualities of this theory are its simplicity and naturality; however, the drawbacks already observed in the case of one variable are still present. Let us mention three of them. Riemann-integrable functions (and, in parallel, elementarily measurable subsets) are • relatively few when one has to enlarge its scope beyond continuous functions, or rat- her beyond the functions having a “reasonable number of singular points”.(13) Na- (13)This is what happens since more than one century in the progress of exact sciences, as new important Corrado Marastoni 29 Mathematical Analysis II - Part B mely, on a compact n-dimensional interval a Riemann-integrable function must be bounded, and continuous “almost everywhere”:(14) for example, this fact says that the Dirichlet function χ (which is discontinuous in all points [0, 1]) cannot be Q [0,1] Riemann-integrable. \ The Riemann integral has no satisfactory interaction with the limit.Givenasequence • of integrable functions fn which converges to a function f in a sufficiently weak way (e.g. pointwise, or even less), we would like also f to be integrable and that it could be possible to “pass to limit under the sign of integral”, i.e. that f =lim fn. Now, in such a generality, this request is rather optimistic, because a weak convergence cannot R R control “mass dispersion” phenomena in the domain, as the following example shows. n n (n 1) Example. Let us define fn : R R as 2 on the interval [2− , 2− − ], and 0 elsewhere. Any of ! the fn is Riemann-integrable with fn = 1, and the sequence (fn) converges pointwise to the zero function f 0, which is obviously Riemann-integrable as well; but f =0=lim fn =1. ⌘ R 6 R R To prevent such phenomena, a reasonable request is that this should be true at least for sequences “dominated” by a fixed integrable function, i.e. such that there exists an integrable function g such that fn g for any n N. However, for the Riemann | | 2 integral also this is not enough: in fact the convergence should be uniform, because pointwise convergence could not work. Example. Let q : N Q be any bijection (we know that Q is countable), and define fn : R R ! ! as 1 onlu on the rationals qm with m n, and 0 elsewhere: any of the fn is Riemann-integrable (it has finitely many discontinuity points) with fn =0,butthesequence(fn) converges pointwise (not uniformly!) to Dirichlet function f = χ [0,1] , which is not Riemann-integrable. Q\ R The Riemann integral is linked to the properties of real numbers. Riemann’s costruction • depends a lot on the properties of real numbers (in particular on the total order), and the extendibility to the case of real functions defined on more general sets than Rn appears to be difficult. These reasons, among some others, suggested at the end of XIXth century to look for a more e↵ective integration theory, being prepared to pay a price in terms of simplicity but without loosing too much of its naturality: among various attempts, the one by Henri tools (for example, Fourier series) could generate highly irregular functions. (14)The precise meaning of this “almost everywhere” is —as we shall see later— “everywhere excepted a null set”, where “null set” means a set of points whose Lebesgue measure is zero: the exact statement is n that a bounded function with compact support f : R R is Riemann-integrable if and only if the set of its ! discontinuity points is a null set. The Lebesgue measure, as we shall see, is much larger than the elementary measure of Peano-Jordan. For example, all countable sets are Lebesgue-measurable (with measure zero), 1 while they could be not elementarily measurable: for example E = n : n N is elementarily measurable 1 1 { 12 } (if sn : R R is the simple function with values 1 on [0, n ] n 1 ,..., 2 , 1 and zero elsewhere, it holds ! 1 [{ − } χE sn and hence sn = is a upper sum for χE ), while the Dirichlet set Q [0, 1] is not. A classical R n \ example of Riemann-integrable function whose discontinuity set is Lebesgue-null but not elementarily R p measurable is f :[0, 1] R defined as 0 on [0, 1] Q and as 1 on Q [0, 1] with p, q 0 coprime, ! \ q q 2 \ ≥ whose discontinuity set is the Dirichlet set Q [0, 1]. \ Corrado Marastoni 30 Mathematical Analysis II - Part B Lebesgue’s (1875-1941) eventually turned out to be the most successful. Let us discuss why by making reference to the just mentioned Riemann’s drawbacks. When compared to Riemann theory, Lebesgue’s considerably enlarges the family of • measurable sets (and, in parallel, the family of measurable functions, possibly integra- ble), so that it is very complicated to describe non Lebesgue-measurable subsets of Rn; in particular, the Dirichlet function χ is Lebesgue-integrable with integral zero. Q [0,1] The role played by continuity in Riemann\ integral is played here by the property of “measurability” which is extremely weak and in practice satified all the time. Lebes- gue’s construction, which nowadays keeps having a large agreement(15), is in a certain sense the result of a process of completion of Riemann’s, similar to the construction of real numbers starting from rationals. The Lebesgue integral works much better under limit with respect to Riemann’s: if • we have a sequence of Lebesgue-integrable functions fn which converges pointwise “almost everywhere”(16) to a function f, in two very frequent cases (a monotone or a dominated sequence) also f is Lebesgue-integrable and f =lim fn. In particular the example with f = χ [0,1] is fixed (the sequence fn converges monotonically to f, Q\ R R which is Lebesgue-integrable and 0 = χ =lim f ), while the example with Q [0,1] n the “mass dispersion” keeps resisting (actually\ the sequence f converges pointwise R R n to f = 0 but neither in a monotone nor in a dominated way). Lebesgue theory is largely independent from particular properties (topological or not) • of the domain, and hence it naturally suits to real functions defined on any domain: in fact, to present the theory in full generality does not create more difficulties with respect to Rn (on the contrary, it rather helps to better clarify the situation). Anyway, we should point out that a large part of the results which are valid for • Lebesgue theory are valid also for Riemann’s: but usually the hypotheses in the latter are some heavier (and, after all, quite unessential). For what has been said, it should appear convenient to make reference to Lebesgue integral from now on. Let us briefly recall the main aspects of this theory, without proofs. Let X be any set, and let us plan to introduce a measure µ of the subsets of X: in other words, to a A X we want to associate a measure µ(A), that we expect to be a number ⇢ 0, possibly + . How can we do? The first requirement would be, at one side, to be able ≥ 1 to measure as many subsets of X as possible; but, on the other side, the measure should satisfy some natural properties, that we now list. (15)We should however say that, while Lebesgue theory fixes many problems, some unexpected others sin x appear: for example x is not Lebesgue-integrable on R although it has a generalized Riemann-integral (called “Dirichlet integral”); in fact it is not absolutely Riemann-integrable. (16)i.e., as said above, “excepted a null set”: it is clearly a rather weak notion of convergence. Corrado Marastoni 31 Mathematical Analysis II - Part B – Enough stability for the set-theoretical operations . We aim that the family of µ- measurable subsets, beyond than being rich of elements, would be stable under the main set-theoretical operations, in particular under the union and the intersection (even better, under countable union and intersection) and under complementation in X. In other words: if A, B X are µ-measurable, we aim that also A B, A B and ⇢ [ \ {X A = X A be so; and that, if An is a countable family of µ-measurable subsets, \ (17) also An and An be so.
Recommended publications
  • Geometric Integration Theory Contents
    Steven G. Krantz Harold R. Parks Geometric Integration Theory Contents Preface v 1 Basics 1 1.1 Smooth Functions . 1 1.2Measures.............................. 6 1.2.1 Lebesgue Measure . 11 1.3Integration............................. 14 1.3.1 Measurable Functions . 14 1.3.2 The Integral . 17 1.3.3 Lebesgue Spaces . 23 1.3.4 Product Measures and the Fubini–Tonelli Theorem . 25 1.4 The Exterior Algebra . 27 1.5 The Hausdorff Distance and Steiner Symmetrization . 30 1.6 Borel and Suslin Sets . 41 2 Carath´eodory’s Construction and Lower-Dimensional Mea- sures 53 2.1 The Basic Definition . 53 2.1.1 Hausdorff Measure and Spherical Measure . 55 2.1.2 A Measure Based on Parallelepipeds . 57 2.1.3 Projections and Convexity . 57 2.1.4 Other Geometric Measures . 59 2.1.5 Summary . 61 2.2 The Densities of a Measure . 64 2.3 A One-Dimensional Example . 66 2.4 Carath´eodory’s Construction and Mappings . 67 2.5 The Concept of Hausdorff Dimension . 70 2.6 Some Cantor Set Examples . 73 i ii CONTENTS 2.6.1 Basic Examples . 73 2.6.2 Some Generalized Cantor Sets . 76 2.6.3 Cantor Sets in Higher Dimensions . 78 3 Invariant Measures and the Construction of Haar Measure 81 3.1 The Fundamental Theorem . 82 3.2 Haar Measure for the Orthogonal Group and the Grassmanian 90 3.2.1 Remarks on the Manifold Structure of G(N,M).... 94 4 Covering Theorems and the Differentiation of Integrals 97 4.1 Wiener’s Covering Lemma and its Variants .
    [Show full text]
  • Some Inequalities in the Theory of Functions^)
    SOME INEQUALITIES IN THE THEORY OF FUNCTIONS^) BY ZEEV NEHARI 1. Introduction. Many of the inequalities of function theory and potential theory may be reduced to statements regarding the properties of harmonic domain functions with vanishing or constant boundary values, that is, func- tions which can be obtained from the Green's function by means of elementary processes. For the derivation of these inequalities a large number of different techniques and procedures have been used. It is the aim of this paper to show that many of the known inequalities of this type, and also others which are new, can be obtained as simple consequences of the classical minimum prop- erty of the Dirichlet integral. In addition to the resulting simplification, this method has the further advantage of being capable of generalization to a wide class of linear partial differential equations of elliptic type in two or more variables. The idea of using the positive-definite character of an integral as the point of departure for the derivation of function-theoretic inequalities is, of course, not new and it has been successfully used for this purpose by a num- ber of authors [l; 2; 8; 9; 16]. What the present paper attempts is to give a more or less systematic survey of the type of inequality obtainable in this way. 2. Monotonie functionals. 1. The domains we shall consider will be as- sumed to be bounded by a finite number of closed analytic curves and they will be embedded in a given closed Riemann surface R of finite genus. The symbol 5(a) will be used to denote a "singularity function" with the follow- ing properties: 5(a) is real, harmonic, and single-valued on R, with the excep- tion of a finite number of points at which 5(a) has specified singularities.
    [Show full text]
  • On Liouville Theorems for Harmonic Functions with Finite Dirichlet Integral Udc 517.95
    . C6opHHK Math. USSR Sbornik TOM 132(174)(1987), Ban. 4 Vol. 60(1988), No. 2 ON LIOUVILLE THEOREMS FOR HARMONIC FUNCTIONS WITH FINITE DIRICHLET INTEGRAL UDC 517.95 A. A. GRIGOR'YAN ABSTRACT. A criterion for the validity of the D-Liouville theorem is proved. In §1 it is shown that the question of L°°- and D-Liouville theorems reduces to the study of the so-called massive sets (in other words, the level sets of harmonic functions in the classes L°° and L°° Π D). In §2 some properties of capacity are presented. In §3 the criterion of D-massiveness is formulated—the central result of this article—and examples are presented. In §4 a criterion for the D-Liouville theorem is formulated, and corollaries are derived. In §§5-9 the main theorems are proved. Figures: 5. Bibliography: 17 titles. Introduction The classical theorem of Liouville states that any bounded harmonic function on Rn is constant. It is easy to verify that the following assertions are also true: 1) If the harmonic function u on R™ has finite Dirichlet integral then u = const. 2) If u € LP(R") is a harmonic function, 1 < ρ < oo, then «ΞΟ. The list of theorems of this kind can be extended; they are known in the literature under the general category of Liouville-type theorems. After Moser's paper [1], which in particular proved Liouville's theorem for entire solutions of the uniformly elliptic equation it became possible to study the solutions of the Laplace-Beltrami equation^) on arbitrary Riemannian manifolds. The main efforts here are directed towards finding under what geometric conditions one or another Liouville theorem is true.
    [Show full text]
  • Level-Set Volume-Preserving Diffusions
    Level-set volume-preserving diffusions Yann Brenier CNRS, Centre de mathématiques Laurent Schwartz Ecole Polytechnique, FR 91128 Palaiseau Fluid Mechanics, Hamiltonian Dynamics, and Numerical Aspects of Optimal Transportation, MSRI, October 14-18, 2013 Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 1 / 18 EQUIVALENCE OF TWO DIFFERENT FUNCTIONS WITH LEVEL SETS OF EQUAL VOLUME ' ∼ '0 1.5 volume and topology preservation 1 0.5 0 -0.5 -1 -1.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 2 / 18 MOTIVATION: MINIMIZATION PROBLEMS WITH VOLUME CONSTRAINTS ON LEVEL SETS 1.5 volume and topology preservation 1 0.5 0 -0.5 -1 -1.5 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 This goes back to Kelvin. See Th. B. Benjamin, G. Burton etc.... Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 3 / 18 This can be rephrased as Z Z 1 2 inf sup jr'(x)j dx + [F('(x)) − F('0(x))]dx ': ! D R F:R!R 2 D D Optimal solutions are formally solutions to − 4' + F0(') = 0 for some function F : R ! R , and, in 2d, are just stationary solutions to the Euler equations of incompressible fluids. An example in fluid mechanics d d Here D = T = (R=Z) is the flat torus and '0 is a given function on D. We want to minimize the Dirichlet integral among all ' ∼ '0. Yann Brenier (CNRS) Level-set volume-preserving diffusions October 2013 4 / 18 Optimal solutions are formally solutions to − 4' + F0(') = 0 for some function F : R ! R , and, in 2d, are just stationary solutions to the Euler equations of incompressible fluids.
    [Show full text]
  • A Brief Introduction to Lebesgue Theory
    CHAPTER 3 A BRIEF INTRODUCTION TO LEBESGUE THEORY Introduction The span from Newton and Leibniz to Lebesgue covers only 250 years (Figure 3.1). Lebesgue published his dissertation “Integrale,´ longueur, aire” (“Integral, length, area”) in the Annali di Matematica in 1902. Lebesgue developed “measure of a set” in the first chapter and an integral based on his measure in the second. Figure 3.1 From Newton and Leibniz to Lebesgue. Introduction to Real Analysis. By William C. Bauldry 125 Copyright c 2009 John Wiley & Sons, Inc. ⌅ 126 A BRIEF INTRODUCTION TO LEBESGUE THEORY Part of Lebesgue’s motivation were two problems that had arisen with Riemann’s integral. First, there were functions for which the integral of the derivative does not recover the original function and others for which the derivative of the integral is not the original. Second, the integral of the limit of a sequence of functions was not necessarily the limit of the integrals. We’ve seen that uniform convergence allows the interchange of limit and integral, but there are sequences that do not converge uniformly yet the limit of the integrals is equal to the integral of the limit. In Lebesgue’s own words from “Integral, length, area” (as quoted by Hochkirchen (2004, p. 272)), It thus seems to be natural to search for a definition of the integral which makes integration the inverse operation of differentiation in as large a range as possible. Lebesgue was able to combine Darboux’s work on defining the Riemann integral with Borel’s research on the “content” of a set.
    [Show full text]
  • A Generalization of the Mehler-Dirichlet Integral
    MATHEMATICS A GENERALIZATION OF THE MEHLER-DIRICHLET INTEGRAL BY R. L. VAN DE WETERING (Communicated by Prof. H. D. KLOOSTERMAN at the meeting of November 25, 1967) The main results of this paper are the representation of the generalized Legendre's functions PZ'·n(z) of KuiPERS-MEULENBELD by means of integrals which include a generalization of the Mehler-Dirichlet integral [1, pg 267 (127)]. The principal properties of P;:·n(z), which is one of the solutions of the differential equation: d2w dw { m2 n2 } (1) (1-z2) dz2 - 2z dz + k(k+1)- 2(1-z)- 2(1+z) w=O, are found in [2], [3] and [4 ]. In order to obtain these integral representa­ tions it is necessary to extend a result of KuiPERS-MEULENBELD [5, (10)]. From [5, (7)] we have P;;'·n(z) = F(iX+ 1) (z+ 1)Hn-m) J' e-imu{z+ (z2-1)! cos u}~· (2) 1 2nF(fJ+ 1)2m-n u,-2n · {z + 1 + (z2 -1 )! eiu}m-n du, where for the sake of brevity we write m+n m-n m-n m+n iX=k+ -2-· '{J=k- -2-, y=k+ -2-, b=k- -2-. In (2), u1=n+ix+i log (iz+1jljz-1j-!)1) where X is given by [5, Fig. 1]. This integral representation is valid for Re (z)>O, jarg (z-1)1 <n, Re (fJ)> -1 and iX not a negative integer. From (2) we get: F(iX+ 1)(z+ 1)Hm-n) u, P;:·n(z)= 2nF(fJ+1)2m-n J e-imu{z+(z2-1)icosu}~· u 1 -2n .
    [Show full text]
  • Green's Function, Harmonic Transplantation, and Best
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 350, Number 3, March 1998, Pages 1103{1128 S 0002-9947(98)02085-6 GREEN'S FUNCTION, HARMONIC TRANSPLANTATION, AND BEST SOBOLEV CONSTANT IN SPACES OF CONSTANT CURVATURE C. BANDLE, A. BRILLARD, AND M. FLUCHER Abstract. We extend the method of harmonic transplantation from Eu- clidean domains to spaces of constant positive or negative curvature. To this end the structure of the Green’s function of the corresponding Laplace- Beltrami operator is investigated. By means of isoperimetric inequalities we derive complementary estimates for its distribution function. We apply the method of harmonic transplantation to the question of whether the best Sobolev constant for the critical exponent is attained, i.e. whether there is an extremal function for the best Sobolev constant in spaces of constant curva- ture. A fairly complete answer is given, based on a concentration-compactness argument and a Pohozaev identity. The result depends on the curvature. 1. Introduction Harmonic transplantation is a device to construct test functions for variational problems of the form v(x) 2 dx J[D]:= inf D|∇ | . vH1(D) p 2=p ∈0 Rv(x) dx D | | D is a domain in RN with smooth boundary.R Harmonic transplantation replaces conformal transplantation for simply connected planar domains. If f : B D is a Riemann map from the unit disk to D and u an arbitrary function defined→ in 1 B, then the function U = u f − is called the conformal transplantation of u into D. It has the following fundamental◦ properties. The Dirichlet integral is invariant under conformal transplantation, i.e.
    [Show full text]
  • The Dirichlet Problem 1
    43 The Dirichlet Problem 1 Lars G~rding Dirichlet's problem is one of the fundamental boundary problems of physics. It appears in electrostatics, heat con- duction, and elasticity theory and it can be solved in many ways. For the mathematicians of the nineteenth century it was a fruitful challenge that they met with new methods and sharper tools. I am going to give a sketch of the prob- lem and its history. Dirichlet did most of his work in number theory and is best known for having proved that every arithmetic pro- gression a, a + b, a + 2b,... contains infinitely many primes when a and b are relatively prime. In 1855, towards the end of his life, he moved from Berlin to G6ttingen to become the successor of Gauss. In Berlin he had lectured on many things including the grand subjects of contemporary physics, electricity, and heat conduction. Through one of his listeners, Bernhard Riemann, Dirichlet's name became attached to a fundamental physical problem. In bare mathe- matical terms it can be stated as follows. 2 h real-valued function u(x) = u(x I ..... Xn) from an open part ~ of Rn is said to be harmonic there if Au = 0 where A = 0~ +... + 02, 0k = O/Oxk, is the Laplace opera- tor. Dirichlet's problem: given ~2 and a continuous function fon the boundary P of ~2, find u harmonic in ~2 and con- tinuous in ~2 U F such that u =fon F. When n = 1, the harmonic functions are of the form axl + b, and conversely, so that the reader may solve Dirichlet's problem by himself when ~2 is an interval on the real axis.
    [Show full text]
  • Asymptotic Formula for Solutions to the Dirichlet Problem for Elliptic Equations with Discontinuous Coefficients Near the Boundary
    Asymptotic formula for solutions to the Dirichlet problem for elliptic equations with discontinuous coefficients near the boundary Vladimir Kozlov, Vladimir Maz'ya∗(Link¨oping) Abstract. We derive an asymptotic formula of a new type for variational solutions of the Dirichlet problem for elliptic equations of arbitrary order. The only a priori assumption on the coefficients of the principal part of the equation is the smallness of the local oscillation near the point. 1 Introduction In the present paper, we consider solutions to the Dirichlet problem for arbitrary even order 2m strongly elliptic equations in divergence form near a point O at the smooth boundary. We require only that the coefficients of the principal part of the operator have small oscillation near this point and the coefficients in lower order terms are allowed to have singularities at the boundary. It is well known that under such conditions, any variational solution belongs to the Sobolev space W m;p with sufficiently large p (see [ADN] and [GT]). Our objective is to prove an explicit asymptotic formula for such a solution near O. Formulae of this type did not appear in the literature so far even for equations of second order. The approach we use is new and may have various other applications. To give an idea of our results we consider the uniformly elliptic equation −div (A(x) grad u(x)) = f(x) in G (1) complemented by the Dirichlet condition u = 0 on @G, (2) where G is a domain in Rn with smooth boundary. We assume that the elements of the n×n-matrix A(x) are measurable and bounded complex-valued functions.
    [Show full text]
  • The Laplacian in Its Different Guises
    U.U.D.M. Project Report 2019:8 The Laplacian in its different guises Oskar Tegby Examensarbete i matematik, 15 hp Handledare: Martin Strömqvist Examinator: Jörgen Östensson Februari 2019 Department of Mathematics Uppsala University Contents 1 p = 2: The Laplacian 3 1.1 In the Dirichlet problem . 3 1.2 In vector calculus . 6 1.3 As a minimizer . 8 1.4 In the complex plane . 13 1.5 As the mean value property . 16 1.6 Viscosity solutions . 17 1.7 In stochastic processes . 18 2 2 < p < and p = : The p-Laplacian and -Laplacian 20 2.1 Ded∞uction of th∞e p-Laplacian and -Laplaci∞an . 20 2.2 As a minimizer . ∞. 22 2.3 Uniqueness of its solutions . 24 2.4 Existence of its solutions . 25 2.4.1 Method 1: Weak solutions and Sobolev spaces . 25 2.4.2 Method 2: Viscosity solutions and Perron’s method . 27 2.5 In the complex plane . 28 2.5.1 The nonlinear Cauchy-Riemann equations . 28 2.5.2 Quasiconformal maps . 29 2.6 In the asymptotic expansion . 36 2.7 As a Tug of War game with or without drift . 41 2.8 Uniqueness of the solutions . 44 1 Introduction The Laplacian n ∂2u ∆u := u = ∇ · ∇ ∂x2 i=1 i � is a scalar operator which gives the divergence of the gradient of a scalar field. It is prevalent in the famous Dirichlet problem, whose importance cannot be overstated. It entails finding the solution u to the problem ∆u = 0 in Ω �u = g on ∂Ω. The Dirichlet problem is of fundamental importance in mathematics and its applications, and the efforts to solve the problem has led to many revolutionary ideas and important advances in mathematics.
    [Show full text]
  • The Direct Method
    Early Research Directions: Calculus of Variations The Direct Method Andrejs Treibergs University of Utah Friday, March 19, 2010 2. ERD Lectures on the Calculus of Variations Notes for the first of three lectures on Calculus of Variations. 1 Andrejs Treibergs, “The Direct Method,” March 19, 2010, 2 Predrag Krtolica, “Falling Dominoes,” April 2, 2010, 3 Andrej Cherkaev, “ ‘Solving’ Problems that Have No Solutions,” April 9, 2010. The URL for these Beamer Slides: “The Direct Method” http://www.math.utah.edu/~treiberg/DirectMethodSlides.pdf 3. References Richard Courant, Dirichlet’s Principle, Conformal Mapping and Minimal Surfaces, Dover (2005); origianlly pub. in series: Pure and Applied Mathematics 3, Interscience Publishers, Inc. (1950). Lawrence C. Evans, Partial Differential Equations, Graduate Studies in Math. 19, American Mathematical Society (1998). Mario Giaquinta, Multiple Integrals in the Calculus of Variations, Annals of Math. Studies 105, Princeton University Press, 1983. Robert McOwen, Partial Differential Equations: Methods and Applications 2nd ed., Prentice Hall (2003). Richard Schoen & S. T. Yau, Lectures on Differential Geometry, Conf. Proc. & Lecture Notes in Geometry and Topology 1, International Press (1994). 4. Outline. Euler Lagrange Equations for Constrained Problems Solution of Minimization Problems Dirichlet’s principle and the Yamabe Problem. Outline of the Direct Method. Examples of failure of the Direct Method. Solve in a special case: Poisson’s Minimization Problem. Cast the minimization problem in Hilbert Space. Coercivity of the functional. Continuity of the functional. Differentiability of the functional. Convexity of the functional and uniqueness. Regularity 5. First Example of a Variational Problem: Shortest Length. To find the shortest curve γ(t) = (t, u(t)) in the Euclidean plane from (a, y1) to (b, y2) we seek the function u ∈ A, the admissible set 1 A = {w ∈ C ([a, b]) : w(a) = y1, w(b) = y2} that minimizes the length integral Z q L(u) = 1 +u ˙ 2(t) dt.
    [Show full text]
  • Sobolev Spaces and Calculus of Variations
    Sobolev spaces and calculus of variations Piotr Haj lasz Introduction Lecture 1: Dirichlet problem, direct method of the calculus of variations and the ori- gin of the Sobolev space. Lecture 2: Sobolev space, basic results: Poincar´einequality, Meyers-Serrin theorem, imbedding theorem ACL-characterisation, Rellich-Kondrachov theorem, trace theorem, extension theorem. Lecture 3: Euler-Lagrange equations, non coercive problems, Mountain-Pass theorem, bootstrap methd. Lecture 4: Pointwie inequalitie and harmonic meatsures, Brenann' conjecture and Øksendal’s theorem, Har- nack' inequality and exitence of non-tangential limits. Lecture 5: Sobolev spaces on metric spaces, Sobolev meet Poincar´e.Lecture 6: Sobolev mappings between manifod and p-harmonic mapping, proof that x=jxj minimize 2-energy. Euler-Lagrange equa- tions. Lecture 7: Bethuel-Brezis-Coron, Riviere and regularity for minimizers. Lecture 8: Sobolev mapping and algebraic topology. Bethuel's theorem and Poincae´econ- jecture. Lecture 9: M¨ullerstheorem on the higher integrability of the Jacobian and existence theorems in nonlinear ellasticity. Lecture 10: Theory of elliptic equations, Minty-Browder's theorem, Harnack's inequality, Liouville's theorem and minimal sur- faces. These are the notes from the lectures that I delivered in August 97 at the De- partment of Mathematics in Helsinki. It is a pleasure for me to thank for this kind invitation and the hospitality. The theory of Sobolev spaces and calculus of variations develop for more than one houndred years and it is not possible even to sketch all the main directions of the theory within ten lectures. Thus I decided to select some topics that will show links between many different ideas and areas in mathematics.
    [Show full text]