Chapter 9: Coal (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 9: Coal (PDF) 9. Coal The next three chapters cover the representation and underlying assumptions for fuels in EPA Base Case v.5.13. The current chapter focuses on coal, chapter 10 on natural gas, and chapter 11 on other fuels (fuel oil, biomass, nuclear fuel, and waste fuels) represented in the base case. This chapter presents four main topics. The first is a description of how the coal market is represented in EPA Base Case v.5.13. This includes a discussion of coal supply and demand regions, coal quality characteristics, and the assignment of coals to power plants. The next topic is the coal supply curves which were developed for EPA Base Case v.5.13 and the bottom-up, mine-based approach used to develop curves that would depict the coal choices and associated prices that power plants will face over the modeling time horizon. Included are discussions of the methods and data used to quantify the economically recoverable coal reserves, characterize their cost, and build the 67 coal supply curves that are implemented in EPA Base Case v.5.13. Illustrative examples are included of the step-by-step approach employed in developing the supply curves. The third topic is coal transportation. It includes a description of the transport network, the methodology used to assign costs to the links in the network, and a discussion of the geographic, infrastructure, and regulatory considerations that come into play in developing specific rail, barge and truck transport rates. The last topic covered in this chapter is coal exports, imports, and non-electric sector demand. The assumptions for the coal supply curves and coal transportation were finalized in June 2013, and were developed through a collaborative process with EPA supported by the following team of coal experts (with key areas of responsibility noted in parenthesis): TetraTech (coal transportation and team coordination), Wood Mackenzie (coal supply curve development), Hellerworx (coal transportation and third party review), and ICF (representation in IPM). The coal supply curves and transportation matrix implemented in EPA Base Case v.5.13 are included in tables and attachments at the end of this chapter. 9.1 Coal Market Representation in EPA Base Case v.5.13 Coal supply, coal demand, coal quality, and the assignment of specific types of coals to individual coal fired generating units are the four key components of the endogenous coal market modeling framework in EPA Base Case v.5.13. The modeling representation attempts to realistically reflect the actual options available to each existing coal fired power plant while aggregating data sufficiently to keep the model size and solution time within acceptable bounds. Each coal-fired power plant modeled is reflected as its own coal demand region. The demand regions are defined to reflect the coal transportation options (rail, barge, truck, conveyer belt) that are available to the plant. These demand regions are interconnected by a transportation network to at least one of the 36 geographically dispersed coal supply regions. The model’s supply-demand region links reflect actual on- the-ground transportation configurations. Every coal supply region can produce and each coal demand region can demand at least one grade of coal. Based on historical and engineering data (as described in Section 9.1.5 below), each coal fired unit is also assigned several coal grades which it may use if that coal type is available within its demand region. In EPA Base Case v.5.13 the endogenous demand for coal is generated by coal fired power plants interacting with a set of exogenous supply curves (see Table 9-24 for coal supply curve data) for each coal grade in each supply region. The curves show the supply of coal (by coal supply region and coal grade) that is available to meet the demand at a given price. The supply of and demand for each grade of coal is linked to and affected by the supply of and demand for every other coal grade across supply and demand regions. The transportation network or matrix (see Excerpt from Table 9-23 for coal transportation matrix data) also factors into the final determination of delivered coal prices, given coal demand and supply. IPM derives the equilibrium coal consumption and 9-1 prices that result when the entire electric system is operating, emission, and other requirements are met and total electric system costs over the modeling time horizon are minimized. 9.1.1 Coal Supply Regions There are 36 coal supply regions in EPA Base Case v.5.13, each representing geographic aggregations of coal-mining areas that supply one or more coal grades. Coal supply regions may differ from one another in the types and quality of coal they can supply. Table 9-1 lists the coal supply regions included in EPA Base Case v.5.13. Figure 9-1 provides a map showing the location of both the coal supply regions listed in Table 9-1 and the broader supply basins commonly used when referring to U.S. coal reserves. Table 9-1 Coal Supply Regions in EPA Base Case Region State Supply Region Central Appalachia Kentucky, East KE Central Appalachia Tennessee TN Central Appalachia Virginia VA Central Appalachia West Virginia, South WS Dakota Lignite Montana, East ME Dakota Lignite North Dakota ND East Interior Illinois IL East Interior Indiana IN East Interior Kentucky, West KW Gulf Lignite Mississippi MS Gulf Lignite Louisiana LA Gulf Lignite Texas TX Northern Appalachia Maryland MD Northern Appalachia Ohio OH Northern Appalachia Pennsylvania, Central PC Northern Appalachia Pennsylvania, West PW Northern Appalachia West Virginia, North WN Rocky Mountains Colorado, Green River CG Rocky Mountains Colorado, Raton CR Rocky Mountains Colorado, Uinta CU Rocky Mountains Utah UT Southern Appalachia Alabama AL Southwest Arizona AZ Southwest New Mexico, San Juan NS West Interior Arkansas, North AN West Interior Kansas KS West Interior Missouri MO West Interior Oklahoma OK Western Montana Montana, Bull Mountains MT Western Montana Montana, Powder River MP Western Wyoming Wyoming, Green River WG Wyoming Northern PRB Wyoming, Powder River Basin WH Wyoming Southern PRB Wyoming, Powder River Basin WL Alberta Alberta, Canada AB British Columbia British Columbia, Canada BC Saskatchewan Saskatchewan, Canada SK 9-2 Figure 9-1 Map of the Coal Supply Regions in EPA Base Case v.5.13 9.1.2 Coal Demand Regions Coal demand regions are designed to reflect coal transportation options available to power plants. Each existing coal plant is reflected as its own individual demand region. The transportation infrastructure (i.e., rail, barge, or truck/conveyor belt), proximity to mine (i.e., mine mouth or not mine mouth), and transportation competitiveness levels (i.e., non-competitive, low-cost competitive, or high-cost competitive) are developed specific to each coal plant (demand region). When IPM is run, it determines the amount and type of new generation capacity to add within each of IPM’s 64 US model regions. These model regions reflect the administrative, operational, and transmission geographic structure of the electricity grid. Since these new plants could be located at various locations within the region, a generic transportation cost for different coal types is developed for these new plants and the methodology for deriving that cost is described in the transportation section of this chapter. See Table 9-2 for the list of coal plant demand regions reflected in the transportation matrix. 9-3 Table 9-2 Coal Demand Regions in EPA Base Case Plant ORIS Coal Demand IPM Model Region for Which the Existing Code Plant Name Region Codes Demand Region Serves as the Surrogate* 1004 Edwardsport C181 1010 Wabash River C183 10684 Argus Cogen Plant C563 1077 Sutherland C194 1554 Herbert A Wagner C227 1606 Mount Tom C232 1943 Hoot Lake C259 2682 S A Carlson C303 2943 Shelby Municipal Light Plant C339 3319 Jefferies C365 511 Trinidad C131 54407 Waupun Correctional Central Heating Plt C624 55856 Prairie State Generatng Station C637 MIS_IL 56564 John W Turk Jr Power Plant C644 SPP_WEST 56785 Virginia Tech Power Plant C651 56808 Virginia City Hybrid Energy Center C653 7 Gadsden C101 7242 Polk C495 728 Yates C151 991 Eagle Valley C176 10 Greene County C103 10003 Colorado Energy Nations Company C514 1001 Cayuga C180 10043 Logan Generating Company LP C517 10071 Portsmouth Genco LLC C518 10075 Taconite Harbor Energy Center C519 1008 R Gallagher C182 10113 John B Rich Memorial Power Station C520 1012 F B Culley C184 10143 Colver Power Project C521 10148 White Pine Electric Power C522 10151 Grant Town Power Plant C523 1024 Crawfordsville C185 1032 Logansport C186 10328 T B Simon Power Plant C528 10333 Central Power & Lime C529 10343 Foster Wheeler Mt Carmel Cogen C530 1037 Peru C187 10377 James River Genco LLC C540 10378 CPI USA NC Southport C541 10380 Elizabethtown Power LLC C542 10382 Lumberton C543 10384 Edgecombe Genco LLC C544 1040 Whitewater Valley C188 1043 Frank E Ratts C189 10464 Black River Generation C546 1047 Lansing C191 1048 Milton L Kapp C192 10495 Rumford Cogeneration C548 NENG_ME 10566 Chambers Cogeneration LP C550 10603 Ebensburg Power C552 10640 Stockton Cogen C554 WEC_CALN 10641 Cambria Cogen C555 10670 AES Deepwater C556 9-4 Plant ORIS Coal Demand IPM Model Region for Which the Existing Code Plant Name Region Codes Demand Region Serves as the Surrogate* 10671 AES Shady Point LLC C557 10672 Cedar Bay Generating Company LP C558 10675 AES Thames C560 NENG_CT 10676 AES Beaver Valley Partners Beaver Valley C561 10678 AES Warrior Run Cogeneration Facility C562 1073 Prairie Creek C193 10743 Morgantown
Recommended publications
  • Table 9. Major U.S. Coal Mines, 2019
    Table 9. Major U.S. Coal Mines, 2020 Rank Mine Name / Operating Company Mine Type State Production (short tons) 1 North Antelope Rochelle Mine / Peabody Powder River Mining LLC Surface Wyoming 66,111,840 2 Black Thunder / Thunder Basin Coal Company LLC Surface Wyoming 50,188,766 3 Antelope Coal Mine / Navajo Transitional Energy Com Surface Wyoming 19,809,826 4 Freedom Mine / The Coteau Properties Company Surface North Dakota 12,592,297 5 Eagle Butte Mine / Eagle Specialty Materials LLC Surface Wyoming 12,303,698 6 Caballo Mine / Peabody Caballo Mining, LLC Surface Wyoming 11,626,318 7 Belle Ayr Mine / Eagle Specialty Materials LLC Surface Wyoming 11,174,953 8 Kosse Strip / Luminant Mining Company LLC Surface Texas 10,104,901 9 Cordero Rojo Mine / Navajo Transitional Energy Com Surface Wyoming 9,773,845 10 Buckskin Mine / Buckskin Mining Company Surface Wyoming 9,699,282 11 Spring Creek Coal Company / Navajo Transitional Energy Com Surface Montana 9,513,255 12 Rawhide Mine / Peabody Caballo Mining, LLC Surface Wyoming 9,494,090 13 River View Mine / River View Coal LLC Underground Kentucky 9,412,068 14 Marshall County Mine / Marshall County Coal Resources Underground West Virginia 8,854,604 15 Bailey Mine / Consol Pennsylvania Coal Company Underground Pennsylvania 8,668,477 16 Falkirk Mine / Falkirk Mining Company Surface North Dakota 7,261,161 17 Mc#1 Mine / M-Class Mining LLC Underground Illinois 7,196,444 18 Tunnel Ridge Mine / Tunnel Ridge, LLC Underground West Virginia 6,756,696 19 Lively Grove Mine / Prairie State Generating Company
    [Show full text]
  • REFERENCE GUIDE to Treatment Technologies for Mining-Influenced Water
    REFERENCE GUIDE to Treatment Technologies for Mining-Influenced Water March 2014 U.S. Environmental Protection Agency Office of Superfund Remediation and Technology Innovation EPA 542-R-14-001 Contents Contents .......................................................................................................................................... 2 Acronyms and Abbreviations ......................................................................................................... 5 Notice and Disclaimer..................................................................................................................... 7 Introduction ..................................................................................................................................... 8 Methodology ................................................................................................................................... 9 Passive Technologies Technology: Anoxic Limestone Drains ........................................................................................ 11 Technology: Successive Alkalinity Producing Systems (SAPS).................................................. 16 Technology: Aluminator© ............................................................................................................ 19 Technology: Constructed Wetlands .............................................................................................. 23 Technology: Biochemical Reactors .............................................................................................
    [Show full text]
  • Coal and Coal Mining in Washington
    State of Washington ARTHUR B. LANGLIE, Governor Department of Conservation and Development ED DAVIS , Director DIVISION OF MINES AND MINING SHELDON L. GLOVER, Supervisor • Report of Investigations No. 4 Coal and Coal Mining in Washington By STEPHEN H. GREEN OLYMPIA STA1'E PRINTING PL ANT 19'1 (' CONTENTS Page Foreword .. 3 Introduction . • . 5 Selected bibliography . 6 Historical . 7 Coal areas of the State. 8 :Northwestern Washington ..................................... 8 King County . 9 Pierce County . 10 Southwestern Washington ..................................... 11 Kittitas County .. ............ .. ........................... 11 Anthracite . 12 Whatcom County ............................ .................... 12 Lewis County ........ ................... ....................... 13 Coal production ..................................... .. ..... ........ 18 Coal mining methods.. 20 Coke industry ...... ·.... -· ................ , ......... : ................ 16 Conditions affecting mining.. 20 Carbonization and hydrogenation of coal. ............................... 17 Fuel briquets . 16 :New prospects and developments.. 41 Present status of the coal mining industry ............................... 24 Properties operating in 1943. 25 King County . 26 Kittitas County . 38 Lewis County . 36 Pierce County . 33 Thurston County . 35 Whatcom County .......................... ..... ................ 25 ILLUSTRATIONS Figure 1. Map showing principal coal areas of Washington ........ Facing 8 Figure 2. Graph of production 1860-1942, inclusive .
    [Show full text]
  • Health Impact Assessment of Coal and Clean Energy Options in Kentucky
    Health Impact Assessment of Coal and Clean Energy Options in Kentucky A Report from Kentucky Environmental Foundation By Elizabeth Walker, PhD Deborah Payne, MPH Acknowledgements The authors thankfully acknowledge the following experts for reviews and comments on drafts of this report: Carla Baumann, MSN, RN Philip Curd, M.D., MSPH Richard Futrell, PhD Michael Hendryx, PhD David Mannino, MD John Patterson, MD, MSPH Monica Unseld, PhD Any remaining errors are entirely our own. The authors also thank contributions of interviews carried out by students of Berea College’s Health in Appalachia course (HEA/APS 210), Fall 2010 and 2011. About Kentucky Environmental Foundation: The Kentucky Environmental Foundation (KEF) is a non-pro!t organization dedicated to securing solutions to environmental problems in a manner, which safeguards human health, promotes environmental justice, preserves ecological systems and encourages sustainability. Design and layout: Rob Gorstein Graphic Design, Inc. i Health Impact Assessment of Coal and Clean Energy Options in Kentucky Table of Contents Introduction .......................................................................................................................1 Executive Summary ............................................................................................................3 Health Impacts of Coal Mining ............................................................................................5 1. Surface mining ...........................................................................................................6
    [Show full text]
  • Study of Waste Water Quality Management in Iilawarra Coal Mines
    University of Wollongong Research Online Faculty of Engineering and Information Coal Operators' Conference Sciences 1998 Study of Waste Water Quality Management in IIlawarra Coal Mines R. N. Singh University of Wollongong H. B. Dharmappa University of Wollongong Muttucumaru Sivakumar University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/coal Recommended Citation R. N. Singh, H. B. Dharmappa, and Muttucumaru Sivakumar, Study of Waste Water Quality Management in IIlawarra Coal Mines, in Naj Aziz and Bob Kininmonth (eds.), Proceedings of the 1998 Coal Operators' Conference, Mining Engineering, University of Wollongong, 18-20 February 2019 https://ro.uow.edu.au/coal/268 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Study of Waste Water Quality Management in IIlawarra Coal Mines ABSTRACT This paper is concerned with two case histories of wastewater quality management in underground coal mines in the I1lawarra region. The first investigation briefly presents an analysis of mine water discharge having an extremely high concentration of suspended solids and consistently high barium concentrations, averaging 14.4 mg/l Barium, over the sampling period. A laboratory study of chemical precipitation processes has indicated that about 91% of barium could be removed by using ferric sulphate and lime. On the basis of the information obtained from the environmental audit process an alternative water treatment and reuse system incorporating 51% reduction in the water consumption with 32% less off-site discharge has been suggested (Thomas, 1995). The second case history is concerned with the storm water management at a mine situated in the Illawarra escarpment where only 20% of the wastewater generated in the colliery is discharged off -site.
    [Show full text]
  • The Environmental Impacts from Coal Cradle to Grave: the Environmental Impacts from Coal © 2001, Photostogo © 2001, Photostogo
    Cradle to Grave: The Environmental Impacts from Coal Cradle to Grave: The Environmental Impacts from Coal © 2001, PhotosToGo © 2001, PhotosToGo Clean Air Task Force 77 Summer Street, Boston, MA 02110 June, 2001 Clean Air Task Force 77 Summer Street, Boston, MA 02110 Tel: (617) 292-0234 Fax: (617) 292-4933 CATF gratefully acknowledges support for this report from the following foundations: The Turner Foundation The John Merck Fund The Joyce Foundation The Heinz Endowments The Rockefeller Brothers Fund The Energy Foundation The Kapor Foundation Credits: Writer: Martha Keating, Clean Air Task Force Editing: Ellen Baum, Clean Air Task Force Amy Hennen, Izaak Walton League of America Design Editor: Bruce Hill, Clean Air Task Force Design: Jill Bock Design Printing: Spectrum Printing & Graphics, Inc. June, 2001 Cradle to Grave: The Environmental Impacts from Coal Cradle to Grave: The Environmental Impacts from Coal he electric power industry is health. Some are known to cause the largest toxic polluter in cancer, others impair reproduc- the country, and coal, which tion and the normal development Tis used to generate over half of of children, and still others the electricity produced in the damage the nervous and immune U.S., is the dirtiest of all fuels.1 systems. Many are also respira- From mining to coal cleaning, tory irritants that can worsen from transportation to electricity respiratory conditions such as generation to disposal, coal asthma. They are an environmen- © 2001, PhotosToGo releases numerous toxic pollut- tal concern because they ants into our air, our waters and onto our lands.2 Nation- damage ecosystems. Power plants also emit large ally, the cumulative impact of all of these effects is quantities of carbon dioxide (CO2), the “greenhouse gas” magnified by the enormous quantities of coal burned each largely responsible for climate change.
    [Show full text]
  • 2021 River Basin Management Plan
    2021 River Basin Management Plan Mine waters challenge Published: 22/10/2019 Contents 1. Summary .................................................................................................................. 1 2. Mine water pressures ............................................................................................... 3 3. Addressing the challenge ......................................................................................... 6 4. Future challenges and actions .................................................................................. 9 5. Case studies: abandoned metal mines ................................................................... 12 6. Choices ................................................................................................................... 17 7. Contacts and supporting information ...................................................................... 18 8. References ............................................................................................................. 18 1. Summary Mining played a major part in Britain’s rich industrial history, but this also led to thousands of abandoned mines left scattered across our landscape. Most of these mines closed well over 100 years ago but they still pollute our rivers, harm fish, river insects and ecosystems and can have an adverse impact on economic activity. Discharges from abandoned mines continue to pollute over 1,500km (3%) of rivers in England. Pollution from coal mines is easy to see, because the iron rich water they
    [Show full text]
  • Air Pollution Due to Opencast Coal Mining and It's Control in Indian Context M K Ghose • and S R Maj Ee Centre of Mining Environment
    Jou rn al of Scientific & Industrial Research Vol. 60, October 200 I, pp 786-797 Air Pollution due to Opencast Coal Mining and It's Control in Indian Context M K Ghose • and S R Maj ee Centre of Mining Environment. In dian School of Mines, Dhanb ad 826004, India Received: 29 Janu ary 200 I; accept ed : 29 June 200 I Open cast mining dominates th e coal production scenario in India. It creates more serious air pollution prob le m in the area. Coal producti on scenari o and its impact on air quality is descri bed. To maint ain th e energy demand in opencast min ing i~ growing at a phenomenon rate. There is no wcll-clefinccl method for assess in g the impact on air qu alit y clu e to minin g projects. An investi gati on is condu cted to evalu ate th e impact on ai r enviro nment due to opcncast coal mining. Emi ssion fac tor dat a arc utili zed for computati on of du st ge neration due to different mining ac ti viti es. Approach for the selec ti on of work zo ne and ambient air monitoring stations arc cl cscribccl. Work zone air qu alit y, ambient air qu alit y, and seasonal va riati ons arc di sc ussed. whi ch shows hi gh po llution potential clue to SPM. The statu s of air pollution clue to opencast mining is evaluated and its impac t on air environment is assessed. Characteristics SPM show a great concern to human hea lth .
    [Show full text]
  • Coal Mine Methane (CMM) Finance Guide Updated July 2019
    EPA-400-D-09-001 Coal Mine Methane (CMM) Finance Guide Updated July 2019 Introduction such as the Kyoto Protocol’s Clean Development Mechanism and Joint Global methane emissions from the coal Implementation originally created financial mining sector can be reduced through markets and incentives to develop projects recovery and utilization projects that collect that reduce GHG emissions, and the California methane gas from coal mines for productive and Quebec Cap-and-Trade programs have use or through destruction when an economic expanded to include CMM offsets. More use is not feasible. recently, Article 6 of the Paris Agreement The U.S. Environmental Protection Agency’s provides a pathway for international (EPA’s) Coalbed Methane Outreach Program cooperation through markets and carbon (CMOP) is a voluntary program with the goal pricing associated with Nationally Determined of reducing methane emissions from coal Contributions. Third, multinational mining activities. Our mission is to promote collaborative initiatives such as the Global the profitable recovery and utilization of coal Methane Initiative (www.globalmethane.org) mine methane (CMM), a potent greenhouse have focused on overcoming policy, gas (GHG) that contributes to climate change regulatory, legal, and technical barriers that if emitted to the atmosphere. When collected inhibit project development. and used for energy, CMM is a valuable fuel Often, the critical barrier to developing CMM source. projects is securing financing. This is due, in CMOP estimates that more than 200 CMM part, to the lack of awareness of the sources projects exist worldwide. Many more project of finance and limited understanding of the opportunities exist in emerging market requirements to secure financing.
    [Show full text]
  • Characterization of Particulate Matter (PM10) Related to Surface Coal Mining Operations in Appalachia
    Atmospheric Environment 54 (2012) 496e501 Contents lists available at SciVerse ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv Short communication Characterization of particulate matter (PM10) related to surface coal mining operations in Appalachia Viney P. Aneja a,*, Aaron Isherwood b, Peter Morgan b a Department of Marine, Earth, and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695-8208, USA b Sierra Club Environmental Law Program, San Francisco, CA 94105-3441, USA article info abstract Article history: This study investigates the environmental exposure of residents of a community in southwest Virginia to Received 20 June 2011 respirable concentrations of dust (PM-10 i.e. PM10) generated by trucks hauling coal from surface coal Received in revised form mining operations. The study site is representative of communities in southwest Virginia and other parts 13 February 2012 of Appalachia that are located in narrow hollows where homes are placed directly along roads that Accepted 15 February 2012 experience heavy coal truck traffic. Preliminary air sampling (Particulate Matter i.e. PM10) was conducted for a period of approximately Keywords: two weeks during early August 2008 in the unincorporated community of Roda, Virginia, at two locations Surface coal mining (about a mile apart along Roda Road (Route 685) in Wise County, Virginia). For the purposes of this study PM10 Elemental analysis (a combination of logistics, resource, and characterization of PM) we sited the PM samplers near the road Electron microscopy to ascertain the micro exposure from the road. The results revealed high levels of PM10 (the mean 3 3 Air toxic adjusted 24-h concentration at the Campbell Site 250.2 mgmÀ ( 135.0 mgmÀ ); and at the Willis 3 ¼ Æ 3 Site 144.8 60.0 mgmÀ ).
    [Show full text]
  • Environmental Impact of Methane Released from Coal Mines
    MATEC Web of Conferences 305, 00030 (2020) https://doi.org/10.1051/matecconf/202030500030 SESAM 2019 Environmental impact of methane released from coal mines Nicolae Ianc1*, Corneliu Boantă1, Ion Gherghe1, Cristian Tomescu1 1National Institute for Research and Development in Mine Safety and Protection to Explosion – INSEMEX, 32-34 G-ral Vasile Milea Street, Petrosani, Hunedoara, Romania Abstract. Methane gas accompanying coal deposits was formed as a result of successive stages of the anaerobic process of vegetal material transformation into coal, at high temperatures and pressures, without external oxygen supply. During the metamorphism process, the content of C, H and O is modified, meaning an increase in carbon content, a decrease in hydrogen and oxygen, the nitrogen and sulphur content remaining constant. During this process, water and carbon dioxide is generated, the water being generated in the first transformation phases. Within the slow oxidation process, gas products result by using the oxygen content in plants, especially methane and carbon dioxide due to the fermentation stimulated by bacteria. Methane released into the atmosphere following the mining of coal have double ecological impact, participating in the destruction of the ozone layer and at the same time contributing to the enhancement of the greenhouse effect. At the same time, methane gas released into the atmosphere during coal mining may be used by mining operators as primary power resource for covering the power requirements of the mine or it can be used for commercial purposes. 1 Introduction The methane gas that accompanies the coal deposits was formed as a product in the successive stages of the process of anaerobic conversion of the vegetal material into coal at high temperatures and pressures, during the carbonization process, without oxygen supply from the outside.
    [Show full text]
  • Texas and Coal Ash Disposal in Ponds and Landfills
    Texas and Coal Ash Disposal in Ponds and Landfills Plant Operator Disposal Units County Oklaunion Power Station Public Service Co. of OK 3 unlined ponds, 1 unlined Wilbarger landfill Pirkey Power Station Southwestern Electric Power 3 unlined ponds,1landfill Harrison Welsh Plant Southwestern Electric Power 3 ponds (1 lined), 1 unlined Titus landfill Coleto Creek Power Station ANP 2 ponds (clay liners) Goliad Fayette Power Project Power Lower CO River Authority 2 ponds (clay-lined), 1 Fayette landfill (no composite liner) Limestone Electric Gen. Station NRG Energy 2 unlined ponds, 1 landfill Limestone (no composite liner W. A. Parish Electric Gen. Station NRG Energy 5 unlined ponds, 1 landfill Fort Bend (no composite liner) Martin lake TXU Generation Co. LP 4 ponds, clay-lined, 1 Rusk landfill (no composite liner) Monticello (TXUGEN) TXU Generation Co. LP 1 clay-lined pond, 1 landfill Titus (no composite liner) San Miguel (SMIG) San Miguel Co-op Inc. 2 clay-lined ponds, 1 Atascosa landfill (no composite liner) Sandow 4 & 5 TXU Generation Co. LP 1 clay-lined pond, 4 unlined Milam landfills Big Brown TXU Generation Co. LP 2 ponds (1 unlined, 1 clay- Freestone lined), 1 landfill (no composite liner) Twin Oaks Power One PNM Altura 1 landfill (no composite Robertson liner) Tolk Southwestern Public Service 1 unlined landfill Lamb Harrington Southwestern Public Service C 1 landfill (no composite Potter liner) J. T. Deely CPS Energy 2 unlined ponds, 2 landfills Bexar (1 unlined) J. K. Spruce CPS Energy 2 lined ponds, 1 unlined Bexar landfill Gibbons Creek Texas Municipal Power 4 ponds (one unlined, 3 Grimes Agency clay-lined), 2 landfills (no composite liner) Amount of coal ash generated per year: 12.2 million tons.
    [Show full text]