Endoplasmic Reticulum Associated Protein Degradation (ERAD): the Function of Dfm1 and Other Novel Components of the Pathway

Total Page:16

File Type:pdf, Size:1020Kb

Endoplasmic Reticulum Associated Protein Degradation (ERAD): the Function of Dfm1 and Other Novel Components of the Pathway Endoplasmic Reticulum Associated Protein Degradation (ERAD): The Function of Dfm1 and Other Novel Components of the Pathway Von der Fakultät Energie-, Verfahrens- und Biotechnik der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung Vorgelegt von Dipl.-Biochem. Alexandra Stolz aus Nürnberg Hauptberichter: Prof. Dr. Dieter H. Wolf Mitberichter: Priv. Doz. Dr. Wolfgang Hilt Tag der mündlichen Prüfung: 20.12.2011 Institut für Biochemie der Universität Stuttgart 2011 2 Eidesstattliche Erklärung Hiermit versichere ich, dass ich diese Arbeit selbst verfasst und dabei keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Stuttgart, den 11.11.11 Alexandra Stolz 3 4 Table of Contents Abbreviations 7 Abstract 9 Zusammenfassung 11 1. Introduction 13 1.1 Protein synthesis and degradation 13 1.2 The secretory pathway 14 1.3 The chaperone equipment 14 1.4 The ubiquitin system 16 1.5 The proteasome 17 1.6 The AAA type ATPase Cdc48 19 1.7 ER associated protein degradation 21 1.8 Model substrates of ERAD 23 2. Results and discussion 24 2.1 Mnl2, a putative mannosidase of ERAD 24 2.2 Yos9 is involved in the ERAD process of unglycosylated CPY* 27 2.3 Dfm1, a new component of ERAD 28 2.3.1 Dfm1 is necessary for cell homeostasis 28 2.3.2 Dfm1 function in ERAD 30 2.3.3 A novel role for the E3 ubiquitin ligase Ubr1 35 3. The current view of ERAD 43 4. Bibliography 45 5. Danksagung 53 5 Appendix 1. Mnl2, a novel component of the ER associated protein degradation pathway 2. Yos9, a control protein for misfolded glycosylated and non-glycosylated proteins in ERAD 3. Dfm1 forms distinct complexes with Cdc48 and the ER ubiquitin ligases and is required for ERAD 4. ERAD without canonical ER ubiquitin ligases: A novel role for Ubr1 5. Endoplasmic reticulum associated protein degradation: A chaperone assisted journey to hell 6. Use of CPY* and its derivatives to study protein quality control in various cell compartments 7. Cdc48: a power machine in protein degradation 8. The Cdc48 machine in endoplasmic reticulum associated protein degradation 6 Abbreviations AAA ATPases associated with diverse cellular activities ADP Adenosine 5’-diphosphate ATP Adenosine 5’-triphosphate C-terminal Carboxy-terminal CP Core particle DNA Desoxyribonucleic acid DRiPs Defective ribosomal products DUB Deubiquitylating enzyme E1 Ubiquitin activating enzyme E2 Ubiquitin conjugating enzyme E3 Ubiquitin ligase ER Endoplasmic reticulum ERAD ER-associated protein degradation ERAD-C ERAD-cytosolic ERAD-L ERAD-lumenal ERAD-M ERAD-membrane ERQD ER quality control and associated protein degradation Fig Figure GFP Green fluorescent protein HA Hemagglutinin HECT Homologous to the E6-AP carboxyl terminus Hsp Heat shock protein K48 Lysine residue at position 48 kDa Kilodalton MDa Megadalton mRNA Messenger RNA MRH Mannose 6-phosphate receptor homology MVB Multivesicular body N-linked Amino-linked N-terminal Amino-terminal 7 NBD Nucleotide-binding domain NEF Nucleotide exchange factor OST Oligosaccharyl transferase PDI Protein disulfide isomerase PGK 3-phosphoglycerate kinase RING Really interesting new gene RNA Ribonucleic acid ROS Reactive oxygen species RP Regulatory particle SRH Second region of homology TM Transmembrane TS Temperature sensitive UPR Unfolded protein response UPS Ubiquitin proteasome system WT Wild type 8 Abstract Proteins, featured with a multitude of enzymatic activities as well as structural and other physiological functions are the main operators in the cell. Proteins are synthesized in the cytosol by ribosomes, which use m-RNA as a template to translate DNA based structural information into an amino acid sequence. During translation many errors occur resulting in so-called defective ribosomal products. In addition, stresses as heat, heavy metal ions and oxygen lead to the formation of partially unfolded and misfolded proteins. In human accumulation of these proteins results in severe diseases as are Alzheimerʼs disease, Parkinsonʼs disease, Huntingtonʼs disease and many others. Therefore quality control systems exist, which recognize unfolded or misfolded proteins and support their folding process. If a protein is unable to reach its native conformation or to refold, the quality control system marks it as terminally misfolded and hands it over to the degradation machinery of the cell. In case of proteins of the secretory pathway this process is called endoplasmic reticulum quality control and associated protein degradation (ERQD). ERQD includes the recognition of the misfolded protein species, the trimming of glycan trees to signal misfolding, retrograde transport out of the ER lumen into the cytosol, ubiquitylation of the misfolded protein and degradation by the proteasome. The following thesis was engaged in the identification of new components of ERQD and tried to get insights into some mechanistic functions of the involved proteins. The proteins Dfm1, Mnl2 and Ubr1 were found as new components of the endoplasmic reticulum associated protein degradation (ERAD) machinery. Mnl2 was identified as a putative α-1,2-mannosidase. It was shown to be involved in the degradation of the misfolded glycoprotein CPY*. Most probably Mnl2 trims down the glycan trees of ERAD substrates, which are subsequently recognized by the lectin Yos9. Yos9 accelerates the degradation of terminally misfolded glycoproteins which expose these glycan structures. However, Yos9 does not seem to act only on glycosylated proteins but also seems to affect the degradation kinetics of unglycosylated ERAD substrates. In contrast to misfolded glycoproteins Yos9 delays degradation in case of the unglycosylated ERAD substrate CPY*0000. Most likely Yos9 has a chaperone like function in addition to its lectin function and provides more time for refolding of the 9 misfolded protein. This function is, however, independent of its MRH domain that recognizes glycans. The other new ERAD component, the polytopic ER membrane localized Dfm1 protein, was found to form distinct complexes with the ligases Hrd1/Der3 and Doa10 as well as with the AAA type ATPase Cdc48. Degradation of different ERAD substrates containing a transmembrane domain was tested for Dfm1 involvement. The degradation and ubiquitylation of the ERAD-C substrate Ste6* was shown to depend on Dfm1. In addition, Dfm1 seems to be involved in a new degradation pathway, which acts independently of the ubiquitin ligases Hrd1/Der3 and Doa10. In the absence of these canonical ER ligases the cytosolic ubiquitin ligase Ubr1 seems to be recruited to maintain degradation of at least some ERAD substrates by the proteasome. Extraction of the misfolded protein species no longer depends on Cdc48 in all cases, but the driving force of other machines, most probably chaperones of the Ssa family of Hsp70 chaperones, were found to be sufficient to keep extraction and degradation of the substrates going. 10 Zusammenfassung Proteine, ausgestattet mit einer Vielzahl an enzymatischen Aktivitäten sowie strukturellen und physiologischen Funktionen, sind die eigentlichen Maschinen der Zelle. Sie werden im Cytosol an Ribosomen synthetisiert, die m-RNA als Matrize verwenden um auf DNA basierende Information in eine Aminosäuresequenz zu übersetzen. Während dieses Vorgangs können Fehler auftreten, die zu sogenannten defekten ribosomalen Produkten führen. Streßzustände wie Hitze, Schwermetallbelastung und Oxidation können zusätzlich die Entstehung von teilentfalteten bzw. mißgefalteten Proteinen fördern. Die Zusammenlagerung von Proteinen kann beim Menschen zu schwerwiegenden Erkrankungen führen, wie beispielsweise in der Alzheimer-, der Parkinson- oder der Huntingtonkrankheit. Um dies zu verhindern gibt es eine zelluläre Qualitätskontrolle, die unvollständig gefaltete und fehlgefaltete Proteine erkennt und ihren Faltungsprozeß bzw. ihre Rückfaltung unterstützt. Falls ein Protein trotz Hilfe seine native Konformation nicht erreichen kann, wird es als definitiv fehlgefaltet markiert und an die Degradationsmaschinerie der Zelle weitergeleitet. Im Falle von Proteinen des sekretorischen Weges wird dieser Prozeß als endoplasmatische Reticulum assoziierte Qualitätskontrolle und Degradation (ERQD) bezeichnet. Die ERQD beinhaltet das Erkennen fehlgefalteter Proteine, die Verkürzung von Kohlenhydratstrukturen auf Glykoproteinen um Fehlfaltung zu signalisieren, den retrograden Transport der Proteine aus dem ER in das Zytosol, ihre Ubiquitylierung und den proteasomalen Abbau der fehlgefalteten Proteine. Die nachfolgende Dissertation beschäftigt sich mit der Identifizierung neuer Komponenten der ER assoziierten Degradation und deren Funktionsweise. Das ER Membranprotein Dfm1, die putative α-1,2-Mannosidase Mnl2 und die Ubiquitinligase Ubr1 konnten als neue Komponenten identifiziert werden. Es kann vermutet werden, dass Mnl2 mit seiner anzunehmenden Mannosidaseaktivität die Kohlenhydratstrukturen fehlgefalteter Glykoproteine verkürzt. Diese werden anschließend von dem Lektin Yos9 mit seiner MRH Domäne erkannt und dem Proteinabbau zugeführt. Interessanterweise scheint Yos9 auch an dem ERQD Prozeß unglykosylierter Proteine beteiligt zu sein. Hier hat die Anwesenheit von Yos9 jedoch den gegenteiligen Effekt. Während es den Abbau von fehlgefalteten 11 Glykoproteinen beschleunigt, verzögert es den Abbau von nicht glykosilierten Proteinen, hier getestet an dem Substrat CPY*0000. Anscheinend besitzt Yos9 eine Chaperon-ähnliche Eigenschaft, die nicht glykosylierten Proteinen ein längeres Zeitfenster für den Faltungsprozeß
Recommended publications
  • Protein Folding and Quality Control in the Endoplasmic Reticulum Bertrand Kleizen and Ineke Braakman1
    Protein folding and quality control in the endoplasmic reticulum Bertrand Kleizen and Ineke Braakman1 The endoplasmic reticulum (ER) is a highly versatile protein >100 mg/ml. In this gel-like protein matrix, chaperones factory that is equipped with chaperones and folding enzymes and folding enzymes are abundant, greatly outnumbering essential for protein folding. ER quality control guided by the newly synthesised substrates [8]. These folding fac- these chaperones is essential for life. Whereas correctly tors in general prevent aggregation and thereby allow folded proteins are exported from the ER, misfolded proteins more efficient folding of a large variety of proteins. In this are retained and selectively degraded. At least two main review, we highlight the latest advances in understanding chaperone classes, BiP and calnexin/calreticulin, are active how these chaperones and folding enzymes cooperate in in ER quality control. Folding factors usually are found in assisting protein folding and mediating quality control. complexes. Recent work emphasises more than ever that chaperones act in concert with co-factors and with each other. Co-translational and post-translational folding Addresses Mammalian secretory and membrane proteins are synthe- Department of Bio-Organic Chemistry 1, Utrecht University, sised and translocated into the ER by the ribosome/sec61 Padualaan 8, 3584 CH Utrecht, The Netherlands 1 translation/translocation machinery, of which various e-mail: [email protected] enlightening X-ray structures have recently been deter- mined [9,10]. During translation/translocation newly Current Opinion in Cell Biology 2004, 16:343–349 synthesised proteins immediately start to fold. Combin- ing these processes allows sequential folding which may This review comes from a themed issue on greatly enhance folding efficiency, especially of multi- Membranes and organelles Edited by Judith Klumperman and Gillian Griffiths domain proteins [11].
    [Show full text]
  • A Clearer Picture of the ER Translocon Complex Max Gemmer and Friedrich Förster*
    © 2020. Published by The Company of Biologists Ltd | Journal of Cell Science (2020) 133, jcs231340. doi:10.1242/jcs.231340 REVIEW A clearer picture of the ER translocon complex Max Gemmer and Friedrich Förster* ABSTRACT et al., 1986). SP-equivalent N-terminal transmembrane helices that The endoplasmic reticulum (ER) translocon complex is the main gate are not cleaved off can also target proteins to the ER through the into the secretory pathway, facilitating the translocation of nascent same mechanism. In this SRP-dependent co-translational ER- peptides into the ER lumen or their integration into the lipid membrane. targeting mode, ribosomes associate with the ER membrane via ER Protein biogenesis in the ER involves additional processes, many of translocon complexes. These membrane protein complexes them occurring co-translationally while the nascent protein resides at translocate nascent soluble proteins into the ER, integrate nascent the translocon complex, including recruitment of ER-targeted membrane proteins into the ER membrane, mediate protein folding ribosome–nascent-chain complexes, glycosylation, signal peptide and membrane protein topogenesis, and modify them chemically. In cleavage, membrane protein topogenesis and folding. To perform addition to co-translational protein import and translocation, distinct such varied functions on a broad range of substrates, the ER ER translocon complexes enable post-translational translocation and translocon complex has different accessory components that membrane integration. This post-translational pathway is widespread associate with it either stably or transiently. Here, we review recent in yeast (Panzner et al., 1995), whereas higher eukaryotes primarily structural and functional insights into this dynamically constituted use it for relatively short peptides (Schlenstedt and Zimmermann, central hub in the ER and its components.
    [Show full text]
  • The Unfolded Protein Response: an Overview
    biology Review The Unfolded Protein Response: An Overview Adam Read 1,2 and Martin Schröder 1,2,* 1 Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK; [email protected] 2 Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK * Correspondence: [email protected]; Tel.: +44-191-334-1316 Simple Summary: The unfolded protein response (UPR) is the cells’ way of maintaining the balance of protein folding in the endoplasmic reticulum, which is the section of the cell designated for folding proteins with specific destinations such as other organelles or to be secreted by the cell. The UPR is activated when unfolded proteins accumulate in the endoplasmic reticulum. This accumulation puts a greater load on the molecules in charge of folding the proteins, and therefore the UPR works to balance this by lowering the number of unfolded proteins present in the cell. This is done in multiple ways, such as lowering the number of proteins that need to be folded; increasing the folding ability of the endoplasmic reticulum and by removing some of the unfolded proteins which take longer to fold. If the UPR is successful at reducing the number of unfolded proteins, the UPR is inactivated and the cells protein folding balance is returned to normal. However, if the UPR is unsuccessful, then this can lead to cell death. Abstract: The unfolded protein response is the mechanism by which cells control endoplasmic reticulum (ER) protein homeostasis. Under normal conditions, the UPR is not activated; however, under certain stresses, such as hypoxia or altered glycosylation, the UPR can be activated due to an accumulation of unfolded proteins.
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Genetic Editing of SEC61, SEC62, and SEC63 Abrogates Human
    bioRxiv preprint doi: https://doi.org/10.1101/653857; this version posted May 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Genetic editing of SEC61, SEC62, and 2 SEC63 abrogates human cytomegalovirus 3 US2 expression in a signal peptide- 4 dependent manner 5 6 7 Anouk B.C. Schuren 1, Ingrid G.J. Boer1, Ellen Bouma1,2, Robert Jan Lebbink1, Emmanuel 8 J.H.J. Wiertz 1,* 9 1Department of Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands. 10 2 Current address: Department of Medical Microbiology, University Medical Center Groningen, Postbus 30001, 9700 RB 11 Groningen, The Netherlands 12 *Correspondence: [email protected] (E.J.H.J.W.) 13 14 Abstract 15 Newly translated proteins enter the ER through the SEC61 complex, via either co- or post- 16 translational translocation. In mammalian cells, few substrates of post-translational SEC62- and 17 SEC63-dependent translocation have been described. Here, we targeted all components of the 18 SEC61/62/63 complex by CRISPR/Cas9, creating knock-outs or mutants of the individual subunits of 19 the complex. We show that functionality of the human cytomegalovirus protein US2, which is an 1 bioRxiv preprint doi: https://doi.org/10.1101/653857; this version posted May 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Membrane Phospholipid Alteration Causes Chronic ER Stress Through
    www.nature.com/scientificreports OPEN Membrane phospholipid alteration causes chronic ER stress through early degradation of homeostatic Received: 5 February 2019 Accepted: 29 May 2019 ER-resident proteins Published: xx xx xxxx Peter Shyu Jr., Benjamin S. H. Ng, Nurulain Ho, Ruijie Chaw, Yi Ling Seah, Charlie Marvalim & Guillaume Thibault Phospholipid homeostasis in biological membranes is essential to maintain functions of organelles such as the endoplasmic reticulum. Phospholipid perturbation has been associated to cellular stress responses. However, in most cases, the implication of membrane lipid changes to homeostatic cellular response has not been clearly defned. Previously, we reported that Saccharomyces cerevisiae adapts to lipid bilayer stress by upregulating several protein quality control pathways such as the endoplasmic reticulum-associated degradation (ERAD) pathway and the unfolded protein response (UPR). Surprisingly, we observed certain ER-resident transmembrane proteins, which form part of the UPR programme, to be destabilised under lipid bilayer stress. Among these, the protein translocon subunit Sbh1 was prematurely degraded by membrane stifening at the ER. Moreover, our fndings suggest that the Doa10 complex recognises free Sbh1 that becomes increasingly accessible during lipid bilayer stress, perhaps due to the change in ER membrane properties. Premature removal of key ER-resident transmembrane proteins might be an underlying cause of chronic ER stress as a result of lipid bilayer stress. Phospholipid homeostasis is crucial in the maintenance of various cellular processes and functions. Phospholipids participate extensively in the formation of biological membranes, which give rise to distinct intracellular com- partments known as organelles for metabolic reactions, storage of biomolecules, signalling, as well as sequestra- tion of metabolites.
    [Show full text]
  • Sec63 and Xbp1 Regulate Ire1α Activity and Polycystic Disease Severity
    Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity Sorin V. Fedeles, … , Stefan Somlo, Ann-Hwee Lee J Clin Invest. 2015;125(5):1955-1967. https://doi.org/10.1172/JCI78863. Research Article Nephrology The HSP40 cochaperone SEC63 is associated with the SEC61 translocon complex in the ER. Mutations in the gene encoding SEC63 cause polycystic liver disease in humans; however, it is not clear how altered SEC63 influences disease manifestations. In mice, loss of SEC63 induces cyst formation both in liver and kidney as the result of reduced polycystin- 1 (PC1). Here we report that inactivation of SEC63 induces an unfolded protein response (UPR) pathway that is protective against cyst formation. Specifically, using murine genetic models, we determined that SEC63 deficiency selectively activates the IRE1α-XBP1 branch of UPR and that SEC63 exists in a complex with PC1. Concomitant inactivation of both SEC63 and XBP1 exacerbated the polycystic kidney phenotype in mice by markedly suppressing cleavage at the G protein–coupled receptor proteolysis site (GPS) in PC1. Enforced expression of spliced XBP1 (XBP1s) enhanced GPS cleavage of PC1 in SEC63-deficient cells, and XBP1 overexpression in vivo ameliorated cystic disease in a murine model with reduced PC1 function that is unrelated to SEC63 inactivation. Collectively, the findings show that SEC63 function regulates IRE1α/XBP1 activation, SEC63 and XBP1 are required for GPS cleavage and maturation of PC1, and activation of XBP1 can protect against polycystic disease in the setting of impaired biogenesis of PC1. Find the latest version: https://jci.me/78863/pdf The Journal of Clinical Investigation RESEARCH ARTICLE Sec63 and Xbp1 regulate IRE1α activity and polycystic disease severity Sorin V.
    [Show full text]
  • Endoplasmic Reticulum-Associated Degradation of Glycoproteins in Plants
    MINI REVIEW ARTICLE published: 05 April 2012 doi: 10.3389/fpls.2012.00067 Endoplasmic reticulum-associated degradation of glycoproteins in plants Silvia Hüttner and Richard Strasser* Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria Edited by: In all eukaryotes the endoplasmic reticulum (ER) has a central role in protein folding and Marisa Otegui, University of maturation of secretory and membrane proteins. Upon translocation into the ER polypep- Wisconsin at Madison, USA tides are immediately subjected to folding and modifications involving the formation of Reviewed by: Lorenzo Frigerio, University of disulfide bridges, assembly of subunits to multi-protein complexes, and glycosylation. Dur- Warwick, UK ing these processes incompletely folded, terminally misfolded, and unassembled proteins Federica Brandizzi, Michigan State can accumulate which endanger the cellular homeostasis and subsequently the survival University, USA of cells and tissues. Consequently, organisms have developed a quality control system to *Correspondence: cope with this problem and remove the unwanted protein load from the ER by a process Richard Strasser, Department of Applied Genetics and Cell Biology, collectively referred to as ER-associated degradation (ERAD) pathway. Recent studies in University of Natural Resources and Arabidopsis have identified plant ERAD components involved in the degradation of aber- Life Sciences, Muthgasse 18, 1190 rant proteins and evidence was provided for a specific role
    [Show full text]
  • Interdomain Conformational Flexibility Underpins the Activity of UGGT, the Eukaryotic Glycoprotein Secretion Checkpoint
    Interdomain conformational flexibility underpins the activity of UGGT, the eukaryotic glycoprotein secretion checkpoint Pietro Roversia,1,2, Lucia Martib,1, Alessandro T. Caputoa,1, Dominic S. Alonzia,1, Johan C. Hilla,1, Kyle C. Dentc, Abhinav Kumara, Mikail D. Levasseura, Andrea Liaa,b, Thomas Waksmana, Souradeep Basua, Yentli Soto Albrechta, Kristin Qiana, James Patrick McIvora, Colette B. Lippa, Dritan Siliqid, Snezana Vasiljevica, Shabaz Mohammeda, Petra Lukacikc, Martin A. Walshc, Angelo Santinob, and Nicole Zitzmanna,2 aOxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom; bInstitute of Sciences of Food Production, Consiglio Nazionale delle Ricerche (CNR) Unit of Lecce, I-73100 Lecce, Italy; cDiamond Light Source and Research Complex at Harwell, Didcot OX11 0DE, United Kingdom; and dIstituto di Cristallografia, Consiglio Nazionale delle Ricerche, I-70126 Bari, Italy Edited by Peter Cresswell, Yale University School of Medicine, New Haven, CT, and approved June 26, 2017 (received for review March 4, 2017) − − Glycoproteins traversing the eukaryotic secretory pathway begin homozygous UGGT1 / knockout of the gene is embryonically life in the endoplasmic reticulum (ER), where their folding is lethal in mice, although cells derived from those embryos are + − surveyed by the 170-kDa UDP-glucose:glycoprotein glucosyltrans- viable (11). More recently, heterozygous UGGT1 / knockout ferase (UGGT). The enzyme acts as the single glycoprotein folding mice have been reported to express approximately half of the quality control checkpoint: it selectively reglucosylates misfolded wild-type (WT) amount of UGGT1 but they undergo normal glycoproteins, promotes their association with ER lectins and development and have no obvious aberrant phenotype (12). associated chaperones, and prevents premature secretion from In healthy cells enjoying steady-state glycoprotein homeosta- the ER.
    [Show full text]
  • UDP-Glucose: Glycoprotein Glucosyltransferase 1 (UGGT1) Substrate Characterization
    UDP-glucose: glycoprotein glucosyltransferase 1 (UGGT1) substrate characterization by Nathan Masashi Doner A thesis submitted in conformity with the requirements for the degree of Master of Science Department of Molecular Genetics University of Toronto © Copyright by Nathan Masashi Doner 2018 UDP-glucose: glycoprotein glucosyltransferase 1 (UGGT1) substrate characterization Nathan Doner Master of Science Department of Molecular Genetics University of Toronto 2018 Abstract UDP-glucose: glycoprotein glucosyltransferase 1 (UGGT1) plays a quality control role in the ER by recognizing misfolded glycoproteins and glucosylating their Man9 N-glycans. To study the substrate specificity of UGGT1 and to produce an acceptor substrate for co-crystallization with UGGT1, I have purified Man9-glycosylated forms of bovine RiboB, RiboS, and S-protein. I have also produced variants of these proteins with the single N-glycan at Asn34 re-located to other sites. Using circular dichroism, I have established that RiboB is more thermostable than S-protein and RiboS. Accordingly, S-protein and RiboS are readily glucosylated and bound by human UGGT1. N34Q/Y76N The Man9 form of the S-protein variant bound to UGGT1 with a KD of 76 μM. This substrate is a candidate for co-crystallization with UGGT1. The methods described here can also be used to study other UGGT1 substrates and will facilitate work aimed at understanding how UGGT1 recognizes its misfolded glycoprotein substrates. ii Acknowledgements I would like to thank my supervisor, Dr. James Rini, for being an integral part of my learning process throughout my research. The countless discussions that we had about science, both pertaining to my research, and about other unanswered biological questions, were always stimulating and have contributed to my growth as a scientist.
    [Show full text]
  • A Plant-Specific Calreticulin Is a Key Retention Factor for a Defective Brassinosteroid Receptor in the Endoplasmic Reticulum
    A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum Hua Jin1, Zhi Hong, Wei Su, and Jianming Li2 Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048 Communicated by Joanne Chory, The Salk Institute for Biological Studies, La Jolla, CA, June 4, 2009 (received for review May 11, 2009) -Mammalian calreticulin (CRT) is a multifunctional Ca2؉-binding mutant suggested that the Arabidopsis CRT1, which can sub protein involved in more than 40 cellular processes in various stitute the mammalian CRT function in cell culture, plays a role .(subcellular compartments, such as Ca2؉ storage and protein fold- in ER stress response (16 ing in the endoplasmic reticulum (ER). CRT homologues were An Arabidopsis dwarf mutant, bri1–9, is an excellent genetic discovered in plants almost 15 years ago, and recent studies system in which to study plant ER quality control (17). BRI1 is revealed that many plant species contain 2 or more CRTs that are a leucine-rich repeat receptor-like kinase that functions as a cell members of 2 distinct families, the CRT1/2 family and the plant- surface receptor for the plant steroid hormone brassinosteroids specific CRT3 family. However, little is known about their physio- (BRs) (18). We have recently discovered that bri1–9, which logical functions. Here we report ebs2 (EMS-mutagenized bri1 carries a S662F mutation in its ligand-binding motif, is retained suppressor 2) as an allele-specific suppressor of bri1–9, a dwarf in the ER by an over-vigilant ER quality control system in Arabidopsis mutant caused by retention of a defective brassino- Arabidopsis (17).
    [Show full text]
  • ER Stress and the Unfolded Protein Response
    Mutation Research 569 (2005) 29–63 Review ER stress and the unfolded protein response Martin Schroder¨ a, Randal J. Kaufmanb,∗ a School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, UK b Department of Biological Chemistry and Howard Hughes Medical Institute, University of Michigan Medical Center, 4570 MSRB II, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0650, USA Received 12 May 2004; accepted 10 June 2004 Abstract Conformational diseases are caused by mutations altering the folding pathway or final conformation of a protein. Many conformational diseases are caused by mutations in secretory proteins and reach from metabolic diseases, e.g. diabetes, to developmental and neurological diseases, e.g. Alzheimer’s disease. Expression of mutant proteins disrupts protein folding in the endoplasmic reticulum (ER), causes ER stress, and activates a signaling network called the unfolded protein response (UPR). The UPR increases the biosynthetic capacity of the secretory pathway through upregulation of ER chaperone and foldase expression. In addition, the UPR decreases the biosynthetic burden of the secretory pathway by downregulating expression of genes encoding secreted proteins. Here we review our current understanding of how an unfolded protein signal is generated, sensed, transmitted across the ER membrane, and how downstream events in this stress response are regulated. We propose a model in which the activity of UPR signaling pathways reflects the biosynthetic activity of the ER. We summarize data that shows that this information is integrated into control of cellular events, which were previously not considered to be under control of ER signaling pathways, e.g. execution of differentiation and starvation programs.
    [Show full text]