Cyber Security Report 2020 (Pdf)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Evolution of Ransomware
The evolution of ransomware SECURITY RESPONSE The evolution of ransomware Kevin Savage, Peter Coogan, Hon Lau Version 1.0 – August 6, 2015 Never before in the history of human kind have people across the world been subjected to extortion on a massive scale as they are today. CONTENTS OVERVIEW ..............................................................................3 Key information ......................................................................5 Types of ransomware .............................................................5 How ransomware has evolved ...............................................7 Targets for ransomware .......................................................13 Systems impacted by ransomware ......................................14 Ransomware: How it works ..................................................18 Ransom techniques ..............................................................27 How widespread is the problem of ransomware .................33 What does the future hold for ransomware? .......................37 Conclusion ............................................................................45 Appendix ..............................................................................47 Mitigation strategies ............................................................51 Symantec detections for common ransomware families 54 Resources .............................................................................56 OVERVIEW Never before in the history of human kind have people across the world been -
Malvertising - a Rising Threat to the Online Ecosystem
2016 Proceedings of the Conference on Information Systems Applied Research ISSN: 2167-1508 Las Vegas, Nevada USA v9 n4266 __________________________________________________________________________________________________________________________ Malvertising - A Rising Threat To The Online Ecosystem Catherine Dwyer [email protected] Ameet Kanguri [email protected] Seidenberg School of Computer Science & Information Systems Pace University New York, New York, USA Abstract Online advertising is a multi-billion dollar industry that supports web content providers around the globe. A sophisticated technology known as real time bidding (RTB) dominates the advertising landscape, connecting advertisers with specific online customers of interest. With RTB, when web visitors connect to a site, advertising networks are notified of space available on that site along with what can be gleaned about the visitor. These combinations of space and visitor are auctioned, and the winning bid’s ad content is served to the web visitor. The entire process, from a visitor landing on a publisher’s page to ads being auctioned, selected and served, takes 200 milliseconds, the time needed to snap your fingers. This tightly choreographed interaction is a technical marvel, but one with built in risks. The just-in-time collaboration between ever changing technology providers gives an opening to malicious actors, who through devious means, use ad networks to deliver malware rather than ads. Delivering malware as an ad is called malvertising, and its presence on otherwise credible sites is dangerous, undermining the business models of trustworthy publishers and legitimate online advertisers. The purpose of this paper is to introduce malvertising, describe its relationship with online advertising, and identify the risks RTB and malvertising bring to the online ecosystem. -
Check Point Firewall V1.0
Check Point Firewall Benchmark v1.0 Editor: John Traenkenschuh December 2007 Copyright 2001-2007, The Center for Internet Security (CIS) http://cisecurity.org [email protected] TERMS OF USE AGREEMENT Background. The Center for Internet Security ("CIS") provides benchmarks, scoring tools, software, data, information, suggestions, ideas, and other services and materials from the CIS website or elsewhere (―Products‖) as a public service to Internet users worldwide. Recommendations contained in the Products (―Recommendations‖) result from a consensus-building process that involves many security experts and are generally generic in nature. The Recommendations are intended to provide helpful information to organizations attempting to evaluate or improve the security of their networks, systems, and devices. Proper use of the Recommendations requires careful analysis and adaptation to specific user requirements. The Recommendations are not in any way intended to be a ―quick fix‖ for anyone‘s information security needs. No Representations, Warranties, or Covenants. CIS makes no representations, warranties, or covenants whatsoever as to (i) the positive or negative effect of the Products or the Recommendations on the operation or the security of any particular network, computer system, network device, software, hardware, or any component of any of the foregoing or (ii) the accuracy, reliability, timeliness, or completeness of the Products or the Recommendations. CIS is providing the Products and the Recommendations ―as is‖ and ―as available‖ without representations, warranties, or covenants of any kind. User Agreements. By using the Products and/or the Recommendations, I and/or my organization (―We‖) agree and acknowledge that: 1. No network, system, device, hardware, software, or component can be made fully secure; 2. -
Automatic Classifying of Mac OS X Samples
Automatic Classifying of Mac OS X Samples Spencer Hsieh, Pin Wu and Haoping Liu Trend Micro Inc., Taiwan TREND MICRO LEGAL DISCLAIMER The information provided herein is for general information Contents and educational purposes only. It is not intended and should not be construed to constitute legal advice. The information contained herein may not be applicable to all situations and may not reflect the most current situation. Nothing contained herein should be relied on or acted 4 upon without the benefit of legal advice based on the particular facts and circumstances presented and nothing Introduction herein should be construed otherwise. Trend Micro reserves the right to modify the contents of this document at any time without prior notice. Translations of any material into other languages are intended solely as a convenience. Translation accuracy 6 is not guaranteed nor implied. If any questions arise related to the accuracy of a translation, please refer to Mac OS X Samples Dataset the original language official version of the document. Any discrepancies or differences created in the translation are not binding and have no legal effect for compliance or enforcement purposes. 10 Although Trend Micro uses reasonable efforts to include accurate and up-to-date information herein, Trend Micro makes no warranties or representations of any kind as Classification of Mach-O Files to its accuracy, currency, or completeness. You agree that access to and use of and reliance on this document and the content thereof is at your own risk. Trend Micro disclaims all warranties of any kind, express or implied. 11 Neither Trend Micro nor any party involved in creating, producing, or delivering this document shall be liable for any consequence, loss, or damage, including direct, Malware Families indirect, special, consequential, loss of business profits, or special damages, whatsoever arising out of access to, use of, or inability to use, or in connection with the use of this document, or any errors or omissions in the content 15 thereof. -
2015 Threat Report Provides a Comprehensive Overview of the Cyber Threat Landscape Facing Both Companies and Individuals
THREAT REPORT 2015 AT A GLANCE 2015 HIGHLIGHTS A few of the major events in 2015 concerning security issues. 08 07/15: Hacking Team 07/15: Bugs prompt 02/15: Europol joint breached, data Ford, Range Rover, 08/15: Google patches op takes down Ramnit released online Prius, Chrysler recalls Android Stagefright botnet flaw 09/15: XcodeGhost 07/15: Android 07/15: FBI Darkode tainted apps prompts Stagefright flaw 08/15: Amazon, ENFORCEMENT bazaar shutdown ATTACKS AppStore cleanup VULNERABILITY reported SECURITYPRODUCT Chrome drop Flash ads TOP MALWARE BREACHING THE MEET THE DUKES FAMILIES WALLED GARDEN The Dukes are a well- 12 18 resourced, highly 20 Njw0rm was the most In late 2015, the Apple App prominent new malware family in 2015. Store saw a string of incidents where dedicated and organized developers had used compromised tools cyberespionage group believed to be to unwittingly create apps with malicious working for the Russian Federation since behavior. The apps were able to bypass at least 2008 to collect intelligence in Njw0rm Apple’s review procedures to gain entry support of foreign and security policy decision-making. Angler into the store, and from there into an ordinary user’s iOS device. Gamarue THE CHAIN OF THE CHAIN OF Dorkbot COMPROMISE COMPROMISE: 23 The Stages 28 The Chain of Compromise Nuclear is a user-centric model that illustrates Kilim how cyber attacks combine different Ippedo techniques and resources to compromise Dridex devices and networks. It is defined by 4 main phases: Inception, Intrusion, WormLink Infection, and Invasion. INCEPTION Redirectors wreak havoc on US, Europe (p.28) INTRUSION AnglerEK dominates Flash (p.29) INFECTION The rise of rypto-ransomware (p.31) THREATS BY REGION Europe was particularly affected by the Angler exploit kit. -
Annotated Bibliography Digital Transnational Repression
Annotated Bibliography Digital Transnational Repression By Noura Al-Jizawi, Siena Anstis, Sophie Barnett, Sharly Chan, Adam Sen, and Ronald J. Deibert Last Updated: May 2021 Copyright Copyright © 2021 Citizen Lab, “Digital transnational Repression,” by Noura Al-Jizawi, Siena Anstis, Sharly Chan, Adam Sen, and Ronald J. Deibert. Licensed under the Creative Commons BY-SA 4.0 (Attribution-ShareAlike Licence) Electronic version first published in 2020 by the Citizen Lab. Citizen Lab engages in research that investigates the intersection of digital technologies, law, and human rights. Document Version: 2.0 New changes in this annual update include: ● Change of terminology from “transnational digital repression” to “digital transnational repression” to align with the discourse ● New summaries collected between October 2020 - May 2021 and added to the document The Creative Commons Attribution-ShareAlike 4.0 license under which this report is licensed lets you freely copy, distribute, remix, transform, and build on it, as long as you: ● give appropriate credit; ● indicate whether you made changes; and ● use and link to the same CC BY-SA 4.0 licence. However, any rights in excerpts reproduced in this report remain with their respective authors; and any rights in brand and product names and associated logos remain with their respective owners. Uses of these that are protected by copyright or trademark rights require the rightsholder’s prior written agreement. 2 Acknowledgements The design of this document is by Mari Zhou. About the Citizen Lab, Munk School of Global Aairs & Public Policy, University of Toronto The Citizen Lab is an interdisciplinary laboratory based at the Munk School of Global Affairs & Public Policy, University of Toronto, focusing on research, development, and high-level strategic policy and legal engagement at the intersection of information and communication technologies, human rights, and global security. -
Analyzing Android Adware
San Jose State University SJSU ScholarWorks Master's Projects Master's Theses and Graduate Research Spring 2018 Analyzing Android Adware Supraja Suresh San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects Part of the Computer Sciences Commons Recommended Citation Suresh, Supraja, "Analyzing Android Adware" (2018). Master's Projects. 621. DOI: https://doi.org/10.31979/etd.7xqe-kdft https://scholarworks.sjsu.edu/etd_projects/621 This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. Analyzing Android Adware A Project Presented to The Faculty of the Department of Computer Science San Jose State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Supraja Suresh May 2018 ○c 2018 Supraja Suresh ALL RIGHTS RESERVED The Designated Project Committee Approves the Project Titled Analyzing Android Adware by Supraja Suresh APPROVED FOR THE DEPARTMENTS OF COMPUTER SCIENCE SAN JOSE STATE UNIVERSITY May 2018 Dr. Mark Stamp Department of Computer Science Dr. Katerina Potika Department of Computer Science Fabio Di Troia Department of Mathematics ABSTRACT Analyzing Android Adware by Supraja Suresh Most Android smartphone apps are free; in order to generate revenue, the app developers embed ad libraries so that advertisements are displayed when the app is being used. Billions of dollars are lost annually due to ad fraud. In this research, we propose a machine learning based scheme to detect Android adware based on static and dynamic features. -
Government Hacking What Is It and When Should It Be Used?
Government Hacking What is it and when should it be used? Encryption is a critical component of our day-to-day lives. For much of the world, basic aspects of life rely on encryption to function. Power systems, transport, financial markets, and baby monitors1 are more trustworthy because of encryption. Encryption protects our most vulnerable data from criminals and terrorists, but it can also hide criminal content from governments. Government hacking is one of the approaches national security and law enforcement agencies use to obtain access to otherwise encrypted information (e.g. the FBI hired a hacking company to unlock the iPhone at the center of the San Bernardino case2). It complements their other efforts to obtain exceptional access3 by asking or requiring tech companies to have the technical ability to decrypt users’ content when it is needed for law enforcement purposes. The Internet Society believes strong encryption is vital to the health of the Internet and is deeply concerned about any policy or action that might put that in jeopardy — regardless of its motivation. Government hacking poses a risk of collateral damage to both the Internet and its users, and as such should only ever be considered as a tool of last resort. Government hacking defined We define ‘government hacking’ as government entities (e.g. national security or law enforcement agencies or private actors on their behalf) exploiting vulnerabilities in systems, software, or hardware to gain access to information that is otherwise encrypted, or inaccessible. Dangers of government hacking Exploiting vulnerabilities of any kind, whether for law enforcement purposes, security testing, or any other purpose, should not be taken lightly. -
Quantum Rugged 1570R Security Gateways
QUANTUM RUGGED 1570R SECURITY GATEWAYS Secure. Rugged. Simple. Check Point Quantum Rugged appliances ensure industrial sites, manufacturing floors and mobile fleets are connected and secure. The solid-state design of the 1570R operates in temperatures ranging from minus 40° C to 75° C, making it ideal for securing any industrial application — power and manufacturing plants, oil and gas facilities, maritime fleets, building management systems, and more. Connect your field devices to the 1570R via an 8 port LAN switch or Wi-Fi and in turn connect your 1570R to OT management networks via 1 GbE copper or fiber WAN port or a highly available dual SIM LTE modem. The Check Point NGFW in the 1570R ensures the connection is secure. Transportation Oil & Gas Manufacturing Energy Utilities SECURE SCADA AND ICS ENVIRONMENTS RUGGED FORM FACTOR The Check Point Quantum Rugged 1570R Next Generation The rugged solid-state form factor enables the 1570R to Firewall (NGFW) secures Critical Infrastructure and operate in a temperature range of -40C to +75C, making it Industrial Control Systems (ICS) without impacting ideal for deployment in harsh environments. The 1570R is operations. Our NGFWs identify and secure over 70 certified for the industrial specifications IEEE 1613 and IEC standard and proprietary SCADA (Supervisory Control and 61850-3 for heat, vibration, and immunity to Data Acquisition) and ICS protocols. This includes the most electromagnetic interference (EMI). In addition, the 1570R is popular protocols used in Utilities and Energy sectors, certified for maritime operation per IEC-60945 and IACS E10 Manufacturing sectors, Building Management Systems and and complies with DNV-GL-CG-0339. -
Trend Analysis the Israeli Unit 8200 an OSINT-Based Study CSS
CSS CYBER DEFENSE PROJECT Trend Analysis The Israeli Unit 8200 An OSINT-based study Zürich, December 2019 Risk and Resilience Team Center for Security Studies (CSS), ETH Zürich Trend analysis: The Israeli Unit 8200 – An OSINT-based study Author: Sean Cordey © 2019 Center for Security Studies (CSS), ETH Zurich Contact: Center for Security Studies Haldeneggsteig 4 ETH Zurich CH-8092 Zurich Switzerland Tel.: +41-44-632 40 25 [email protected] www.css.ethz.ch Analysis prepared by: Center for Security Studies (CSS), ETH Zurich ETH-CSS project management: Tim Prior, Head of the Risk and Resilience Research Group, Myriam Dunn Cavelty, Deputy Head for Research and Teaching; Andreas Wenger, Director of the CSS Disclaimer: The opinions presented in this study exclusively reflect the authors’ views. Please cite as: Cordey, S. (2019). Trend Analysis: The Israeli Unit 8200 – An OSINT-based study. Center for Security Studies (CSS), ETH Zürich. 1 Trend analysis: The Israeli Unit 8200 – An OSINT-based study . Table of Contents 1 Introduction 4 2 Historical Background 5 2.1 Pre-independence intelligence units 5 2.2 Post-independence unit: former capabilities, missions, mandate and techniques 5 2.3 The Yom Kippur War and its consequences 6 3 Operational Background 8 3.1 Unit mandate, activities and capabilities 8 3.2 Attributed and alleged operations 8 3.3 International efforts and cooperation 9 4 Organizational and Cultural Background 10 4.1 Organizational structure 10 Structure and sub-units 10 Infrastructure 11 4.2 Selection and training process 12 Attractiveness and motivation 12 Screening process 12 Selection process 13 Training process 13 Service, reserve and alumni 14 4.3 Internal culture 14 5 Discussion and Analysis 16 5.1 Strengths 16 5.2 Weaknesses 17 6 Conclusion and Recommendations 18 7 Glossary 20 8 Abbreviations 20 9 Bibliography 21 2 Trend analysis: The Israeli Unit 8200 – An OSINT-based study selection tests comprise a psychometric test, rigorous Executive Summary interviews, and an education/skills test. -
Mcafee Potentially Unwanted Programs (PUP) Policy March, 2018
POLICY McAfee Potentially Unwanted Programs (PUP) Policy March, 2018 McAfee recognizes that legitimate technologies such as commercial, shareware, freeware, or open source products may provide a value or benefit to a user. However, if these technologies also pose a risk to the user or their system, then users should consent to the behaviors exhibited by the software, understand the risks, and have adequate control over the technology. McAfee refers to technologies with these characteristics as “potentially unwanted program(s),” or “PUP(s).” The McAfee® PUP detection policy is based on the process includes assessing the risks to privacy, security, premise that users should understand what is being performance, and stability associated with the following: installed on their systems and be notified when a ■ Distribution: how users obtain the software including technology poses a risk to their system or privacy. advertisements, interstitials, landing-pages, linking, PUP detection and removal is intended to provide and bundling notification to our users when a software program or technology lacks sufficient notification or control over ■ Installation: whether the user can make an informed the software or fails to adequately gain user consent to decision about the software installation or add- the risks posed by the technology. McAfee Labs is the ons and can adequately back out of any undesired McAfee team responsible for researching and analyzing installations technologies for PUP characteristics. ■ Run-Time Behaviors: the behaviors exhibited by the technology including advertisements, deception, and McAfee Labs evaluates technologies to assess any impacts to privacy and security risks exhibited by the technology against the degree of user notification and control over the technology. -
Ransoming Government What State and Local Governments Can Do to Break Free from Ransomware Attacks About the Authors
A report from the Deloitte Center for Government Insights Ransoming government What state and local governments can do to break free from ransomware attacks About the authors Srini Subramanian | [email protected] Srini Subramanian is a principal in Deloitte & Touche LLP’s Cyber Risk Services practice and leads the Risk & Financial Advisory practice for the State, Local Government and Higher Education (SLHE) sector. He has more than 30 years of technology experience, and more than 20 years of cyber risk services experience in the areas of information security strategy, innovation, governance, identity, access management, and shared services. Subramanian is a member of the National Association of State CIOs (NASCIO) Security and Privacy subcommittee. He is an active participant in the National Governors Association (NGA) Policy Council for State Cybersecurity formed in February 2013. Subramanian is the coauthor of the biennial Deloitte—NASCIO Cybersecurity Study publication with NASCIO since 2010. The recent two publications include the 2016 Deloitte-NASCIO Cybersecurity Study—State governments at risk: Turning strategy and awareness into progress and the 2018 Deloitte-NASCIO Cybersecurity Study—State governments at risk: Bold plays for change. Pete Renneker | [email protected] Pete Renneker is a managing director in Deloitte & Touche LLP’s Cyber practice and serves as the Technical Resilience Offering leader. In this capacity, his focus is on the development and delivery of cross-industry services which help clients develop the ability to withstand disruptions to critical business technology. This work includes helping clients respond to cyberattacks, accelerate business recovery from these events, and transform cyber and resiliency programs in anticipation of emerging threats.