From Supermassive Black Holes to Supernovae

Total Page:16

File Type:pdf, Size:1020Kb

From Supermassive Black Holes to Supernovae Extreme Environments: From supermassive black holes to supernovae Felicia Krauß 1 Extreme Environments: From supermassive black holes to supernovae Extreme Bedingungen im Universum: Von supermassiven schwarzen Löchern und Supernovae Der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg zur Erlangung des Doktorgrades Dr. rer. nat. vorgelegt von Felicia Krauß aus Nürnberg Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg Tag der mündlichen Prüfung: 15.06.2016 Vorsitzender der Promotionsorgans: Prof. Dr. Jörn Wilms Gutacher: Prof. Dr. Jörn Wilms & Prof. Dr. Matthias Kadler Prof. Dr. Eduardo Ros The cover picture shows a composite image of Centaurus A including optical data collected by an amateur astronomer (red, green, and blue), X-ray data from NASA’s Chandra X-ray Observatory (pink) and infrared data from the Spitzer Space Telescope (red). Centaurus A is the closest active galactic nuclei which likely harbors a supermassive black hole. Perpendicular to the galaxy, it produces a relativistic outflow of matter, called jets. These jets form lobes when they interact with the surrounding medium, which is seen in the south-eastern lobe of Cen A. The shell surrounding the galaxy is likely due to an earlier merger with a smaller galaxy. ©X-ray: NASA/CXC/SAO; Optical: Rolf Olsen; Infrared: NASA/JPL-Caltech Zusammenfassung In dieser Arbeit verwende ich Beobachtungen im Röntgenbereich um zwischen zwei Modellen für Supernovae des Typs Ia zu unterscheiden. Außerdem untersuche ich relativistische Jets, dies sind kollimierte Materieausstöße von aktiven Galaxienkernen (AGN). Supernovae des Typs Ia sind thermonukleare “runaways”, Explosionen, deren Ursprung entwe- der im Verschmelzen zweier weißer Zwerge liegt oder in einem akkretierenden weißen Zwerg. Im Falle des akkretierenden weißen Zwergs befindet sich dieser in einem Doppelsternsystem, wobei das zweite Objekt ein massiver Stern ist, welcher Materie auf den weißen Zwerg überträgt. Der weiße Zwerg explodiert in einer Supernova, wenn er durch Akkretion die Chandrasek- har Masse erreicht. Beim Verschmelzen zweier weißer Zwerge im zweiten Modell jedoch wäre die addierte Masse der beiden Sterne von Supernova zu Supernova verschieden, was zu unter- schiedlichen Leuchtkräften führen würde. Damit würden Supernovae des Typs Ia nicht mehr als Standardkerzen fungieren, da die unterschiedlichen Leuchtkräfte zu einer Verzerrung der Entfernungsmessung führen. Es ist deshalb wichtig für Supernovae des Typs Ia den Entstehungs- mechanismus bestimmen zu können. Das Akkretionsmodell sagt eine höhere Menge 55Co voraus, welche 3.5-fach mehr radioaktives 55Fe produziert. Das resultierende Liniendublett entsteht bei 5.888 keV und bei 5.899 keV. Ich verwende derzeitige und zukünftige Röntgenmissionen um herauszufinden ob man diese Linienemission verwenden kann um zwischen beiden Modellen zu unterscheiden. Meine Simulationen zeigen, dass man mit dem Chandra Satellit beide Modelle bis zu einer Entfernung von 2 Mpc unterscheiden kann, also Supernovae innerhalb der lokalen Gruppe. Der geplante Athena Satellit ist vielversprechend für die Detektion der Linienemission, welche im Akkretionsmodell bis zu einer Entfernung von 5 Mpc nachgewiesen werden kann. Die Supernova SN2014J im Januar 2014 war die nächste Supernova der letzten vier Jahrzehnte mit einer Entfernung von 3.5 Mpc. Zum Zeitpunkt des höchsten erwarteten Linienflusses konnte die Supernova weder mit XMM-Newton noch mit Chandra beobachtet werden. In der verbleibenden Arbeit untersuche ich Jets von Aktiven Galaxienkernen (AGN) mit Multi- wellenlängendaten vom Radiobereich bis hin zum Hochenergiebereich. Jets sind energiereiche, beständige und leuchtkräftige Phänomene, die noch nicht komplett verstanden sind, besonders wie ein Jet gestartet wird und wie er kollimiert bleibt. Weiterhin ist die Teilchenbeschleunigung nicht verstanden. Blazare sind eine Unterklasse der AGN, bei denen der Jet unter einem kleinen Winkel sichtbar ist, wodurch es möglich ist die Emissionsmechanismen direkt zu untersuchen. Dies sind sehr variable Quellen, was eine kontinuierliche Überwachung und zeitnahe Daten in vielen Wellenlängebereichen erfordert. Das TANAMI Programm ist ein Multiwellenlängen Projekt, welches Jets der südliche Hemisphä- re studiert und eine Auswahl von 100 Quellen regelmäßig mit VLBI Methoden beobachtet. Ich ∼ verwende weiterhin Daten des Fermi Satelliten, dessen Instrumente kontinuierlich den Himmel beobachten. Mit einem Bayesschen Block Algorithmus können die Zeitbereich eingegrenzt werden in denen der Fermi/LAT Quellfluss statistisch konstant ist. Aus diesen Zeitbereichen wähle ich diejenigen aus in welchen genügend Multiwellenlängendaten vorhanden sind um ein Breitband- spektrum (engl. Broadband spectral energy distribution; SED) zu erstellen. Ich verwende die VLBI Daten des TANAMI Programm in Kombination mit quasi-simultanen Daten im Optischen/UV, Röntgen und γ-Bereich von den folgenden Instrumenten: Swift/UVOT, SMARTS, Swift/XRT und Fermi/LAT. Ich erhalte damit 81 SEDs der 22 TANAMI Quellen 22, die in Fermi/LAT am hellsten VII sind. Blazar SEDs zeigen typischerweise zwei nicht-thermische “Höcker” in ihrer SED und FSRQs haben oft ein zusätzlichen thermischen Exzess im Optischen/UV. Ich modelliere diese Daten mit einem empirischen Modell, welches aus zwei logarithmischen Parabeln besteht. Die Blazar- Sequenz sagt aus, dass die beiden Maxima (“Peaks”) der Parabeln mit steigender Leuchtkraft bei niedrigeren Frequenzen liegen. Obwohl die Blazar-Sequenz umstritten ist und auch modifiziert wurde, stimmen meine Ergebnisse mit ihr überein. Ich kann die 81 SEDs durch die kontinu- ierlichen Fermi/LAT Beobachtungen unterteilen in niedrige, mittlere und hohe Flusszustände, basierend auf ihrem gemittelten LAT Fluss. Im niedrigen und mittleren Zustand stimmen die Ergebnisse gut mit der Blazar-Sequenz überein. Im hohen Zustand gibt es eine große Streuung der Datenpunkte. Es deutet darauf hin das im hohen, aber nicht im niedrigen oder mittleren Flusszustand, eine Änderung im Jet stattfindet. Es werden keine Quellen im hohen Flusszustand gefunden, deren Peak bei einer hohen Frequenz liegt. Dies könnte dadurch zustande kommen, dass keine kontinuierlichen Beobachtung im Optischen, Röntgen oder VHE-Bereich vorhanden sind, aber es ist interessant, dass diese Quellen keine großen Ausbrüche im Fermi/LAT Bereich zeigen. Das beobachtete Muster der Blazar-Sequenz ist konsistent mit dem “härter-wenn-heller” Trend, der aus den Röntgenspektren von Blazaren bekannt ist. Des weiteren stimmt die Compton- Dominanz (die eine Rotverschiebungs-unabhängige Untersuchung der Sequenz erlaubt), mit der Blazar-Sequenz in meinen Daten überein. Die Fermi Blazar Teilung (engl. Fermi’s blazar divide) zeigt einen Mangel an Quellen deren Peak zwischen 1014 und 1016 Hz liegt. Ich zeige, dass diese Teilung vermutlich wegen Absorption und Extinktionseffekten in diesem Energieband entsteht und nicht durch einen quell-intrinsischen Effekt. Ich untersuche den thermischen Exzess in optischen/UV Spektren von Blazaren, der meist der Große Blaue Höcker (“Big Blue Bump”; BBB) genannt wird. Die Temperatur des BBB in BL Lac Objekten liegt typischerweise bei 6000 K, was ∼ bedeutet, das dies die Emission der Wirtsgalaxie ist, die nicht von dem nicht-thermischen Konti- nuum überstrahlt wird. In Quasaren liegt die Temperature höher, zwischen 10000 K und 40000 K, deutlich niedriger als die erwarteten 760000 K für eine Akkretionsschreibe um ein supermassives schwarzes Loch mit einer Masse von 109 M . Dieser Unterschied lässt sich dadurch erklären, ∼ dass die BBB Emission von Gaswolken nahe der Broad Line Region zu niedrigeren Temperaturen reprozessiert wird. In meinen Spektren können alle 22 Quellen besser mit einem Schwarzkörper mit einer einzelnen Temperature erklärt werden als mit einer Überlagerung von Schwarzkörpern bei unterschiedlichen Temperaturen. In einer Akkretionsscheibe erwarten wir eine große Breite an Temperaturen, nach außen hin abnehmend. Dieses Spektrum würde durch Gravitation und die Geschwindigkeit der Scheibe weiter verbreitert werden. Eine weitere Möglichkeit den BBB zu erklären wäre frei-frei Emission in einer heißen Korona um das Schwarze Loch, aber eine ausführlichere Studie der BBBs ist notwendig um endgültige Schlüsse ziehen zu können. Ich hab weiterhin die fundamentale Ebene der Schwarzen Löcher draufhin untersucht, ob sie verwendet werden kann um die Schwarzlochmasse in Blazaren vorherzusagen. Die fundamentale Ebene findet eine Ebene in einem 3D Raum aus Schwarzlochmasse, Röntgenleuchtkraft und Radioleucht- kraft. Verschiedene Arbeiten in der Literatur finden unterschiedliche Parameter dieser Ebene, abhängig von der Quellpopulation welche zur Bestimmung verwendet worden ist. Mithilfe der neueren Werke, der Röntgen- und der Radioleuchtkraft habe ich die Schwarzlochmasse mittels der Fundamentalebene abgeschätzt. Die Parameter von Bonchi et al.(2013) liegen nahe an den gemessenen Schwarzlochmassen. Allerdings gibt es zwei Quellen bei denen die Abschätzungen mit allen Ebenen einige Größenordnungen unterhalb der gemessenen Werte liegen. Es ist möglich, dass die Schwarzlochmessungen von Boostingeffekten betroffen sind, allerdings würde dies bedeu- ten das die Schwarzlochmassen für einige Quellen deutlich geringer sind als bisher angenommen, VIII oder sogar in den Bereich der Schwarzen Löcher mit mittlere Masse fallen. Des weiteren habe ich mich mit den IceCube Ergebnissen beschäftigt. Detaillierte physikalische
Recommended publications
  • Arxiv:2010.09481V1 [Gr-Qc] 19 Oct 2020 Ally Neutral Plasma Start to Be Relevant
    Radiative Penrose process: Energy Gain by a Single Radiating Charged Particle in the Ergosphere of Rotating Black Hole Martin Koloˇs, Arman Tursunov, and ZdenˇekStuchl´ık Research Centre for Theoretical Physics and Astrophysics, Institute of Physics, Silesian University in Opava, Bezruˇcovon´am.13,CZ-74601 Opava, Czech Republic∗ We demonstrate an extraordinary effect of energy gain by a single radiating charged particle inside the ergosphere of a Kerr black hole in presence of magnetic field. We solve numerically the covariant form of the Lorentz-Dirac equation reduced from the DeWitt-Brehme equation and analyze energy evolution of the radiating charged particle inside the ergosphere, where the energy of emitted radiation can be negative with respect to a distant observer in dependence on the relative orientation of the magnetic field, black hole spin and the direction of the charged particle motion. Consequently, the charged particle can leave the ergosphere with energy greater than initial in expense of black hole's rotational energy. In contrast to the original Penrose process and its various modification, the new process does not require the interactions (collisions or decay) with other particles and consequent restrictions on the relative velocities between fragments. We show that such a Radiative Penrose effect is potentially observable and discuss its possible relevance in formation of relativistic jets and in similar high-energy astrophysical settings. INTRODUCTION KERR SPACETIME AND EXTERNAL MAGNETIC FIELD The fundamental role of combined strong gravitational The Kerr metric in the Boyer{Lindquist coordinates and magnetic fields for processes around BH has been and geometric units (G = 1 = c) reads proposed in [1, 2].
    [Show full text]
  • Active Galactic Nuclei: a Brief Introduction
    Active Galactic Nuclei: a brief introduction Manel Errando Washington University in St. Louis The discovery of quasars 3C 273: The first AGN z=0.158 2 <latexit sha1_base64="4D0JDPO4VKf1BWj0/SwyHGTHSAM=">AAACOXicbVDLSgMxFM34tr6qLt0Ei+BC64wK6kIoPtCNUMU+oNOWTJq2wWRmSO4IZZjfcuNfuBPcuFDErT9g+hC09UC4h3PvJeceLxRcg20/W2PjE5NT0zOzqbn5hcWl9PJKUQeRoqxAAxGoskc0E9xnBeAgWDlUjEhPsJJ3d9rtl+6Z0jzwb6ETsqokLZ83OSVgpHo6754xAQSf111JoK1kTChN8DG+uJI7N6buYRe4ZBo7di129hJ362ew5NJGAFjjfm3V4m0nSerpjJ21e8CjxBmQDBogX08/uY2ARpL5QAXRuuLYIVRjooBTwZKUG2kWEnpHWqxiqE+MmWrcuzzBG0Zp4GagzPMB99TfGzGRWnekZya7rvVwryv+16tE0DysxtwPI2A+7X/UjASGAHdjxA2uGAXRMYRQxY1XTNtEEQom7JQJwRk+eZQUd7POfvboej+TOxnEMYPW0DraRA46QDl0ifKogCh6QC/oDb1bj9ar9WF99kfHrMHOKvoD6+sbuhSrIw==</latexit> <latexit sha1_base64="H7Rv+ZHksM7/70841dw/vasasCQ=">AAACQHicbVDLSgMxFM34tr6qLt0Ei+BCy0TEx0IoPsBlBWuFTlsyaVqDSWZI7ghlmE9z4ye4c+3GhSJuXZmxFXxdCDk599zk5ISxFBZ8/8EbGR0bn5icmi7MzM7NLxQXly5slBjGayySkbkMqeVSaF4DAZJfxoZTFUpeD6+P8n79hhsrIn0O/Zg3Fe1p0RWMgqPaxXpwzCVQfNIOFIUro1KdMJnhA+yXfX832FCsteVOOzgAobjFxG+lhGTBxpe+HrBOBNjiwd5rpZsky9rFUn5BXvgvIENQQsOqtov3QSdiieIamKTWNogfQzOlBgSTPCsEieUxZde0xxsOaurMNNPPADK85pgO7kbGLQ34k/0+kVJlbV+FTpm7tr97Oflfr5FAd6+ZCh0nwDUbPNRNJIYI52nijjCcgew7QJkRzitmV9RQBi7zgguB/P7yX3CxVSbb5f2z7VLlcBjHFFpBq2gdEbSLKugUVVENMXSLHtEzevHuvCfv1XsbSEe84cwy+lHe+wdR361Q</latexit> The power source of quasars • The luminosity (L) of quasars, i.e. how bright they are, can be as high as Lquasar ~ 1012 Lsun ~ 1040 W. • The energy source of quasars is accretion power: - Nuclear fusion: 2 11 1 ∆E =0.007 mc =6 10 W s g−
    [Show full text]
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Energetics of the Kerr-Newman Black Hole by the Penrose Process
    J. Astrophys. Astr. (1985) 6, 85 –100 Energetics of the Kerr-Newman Black Hole by the Penrose Process Manjiri Bhat, Sanjeev Dhurandhar & Naresh Dadhich Department of Mathematics, University of Poona, Pune 411 007 Received 1984 September 20; accepted 1985 January 10 Abstract. We have studied in detail the energetics of Kerr–Newman black hole by the Penrose process using charged particles. It turns out that the presence of electromagnetic field offers very favourable conditions for energy extraction by allowing for a region with enlarged negative energy states much beyond r = 2M, and higher negative values for energy. However, when uncharged particles are involved, the efficiency of the process (defined as the gain in energy/input energy) gets reduced by the presence of charge on the black hole in comparison with the maximum efficiency limit of 20.7 per cent for the Kerr black hole. This fact is overwhelmingly compensated when charged particles are involved as there exists virtually no upper bound on the efficiency. A specific example of over 100 per cent efficiency is given. Key words: black hole energetics—Kerr-Newman black hole—Penrose process—energy extraction 1. Introduction The problem of powering active galactic nuclei, X-raybinaries and quasars is one of the most important problems today in high energy astrophysics. Several mechanisms have been proposed by various authors (Abramowicz, Calvani & Nobili 1983; Rees et al., 1982; Koztowski, Jaroszynski & Abramowicz 1978; Shakura & Sunyaev 1973; for an excellent review see Pringle 1981). Rees et al. (1982) argue that the electromagnetic extraction of black hole’s rotational energy can be achieved by appropriately putting charged particles in negative energy orbits.
    [Show full text]
  • Undergraduate Thesis on Supermassive Black Holes
    Into the Void: Mass Function of Supermassive Black Holes in the local universe A Thesis Presented to The Division of Mathematics and Natural Sciences Reed College In Partial Fulfillment of the Requirements for the Degree Bachelor of Arts Farhanul Hasan May 2018 Approved for the Division (Physics) Alison Crocker Acknowledgements Writing a thesis is a long and arduous process. There were times when it seemed further from my reach than the galaxies I studied. It’s with great relief and pride that I realize I made it this far and didn’t let it overpower me at the end. I have so many people to thank in very little space, and so much to be grateful for. Alison, you were more than a phenomenal thesis adviser, you inspired me to believe that Astro is cool. Your calm helped me stop freaking out at the end of February, when I had virtually no work to show for, and a back that ached with every step I took. Thank you for pushing me forward. Working with you in two different research projects were very enriching experiences, and I appreciate you not giving up on me, even after all the times I blanked on how to proceed forward. Thank you Johnny, for being so appreciative of my work, despite me bringing in a thesis that I myself barely understood when I brought it to your table. I was overjoyed when I heard you wanted to be on my thesis board! Thanks to Reed, for being the quirky, intellectual community that it prides itself on being.
    [Show full text]
  • Curriculum Vitae Avishay Gal-Yam
    January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award.
    [Show full text]
  • Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Xxneutron-Star Binaries: X-Ray Bursters
    Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 XXNeutron-Star Binaries: X-ray bursters [Look at the slides and the pictures in your book, but I won’t test you on this in detail, and we may skip altogether in class.] 22.4 Gamma-Ray Bursts 22.5 Black Holes 22.6 XXEinstein’s Theories of Relativity Special Relativity 22.7 Space Travel Near Black Holes 22.8 Observational Evidence for Black Holes Tests of General Relativity Gravity Waves: A New Window on the Universe Neutron Stars and Pulsars (sec. 22.1, 2 in textbook) 22.1 Neutron Stars According to models for stellar explosions: After a carbon detonation supernova (white dwarf in binary), little or nothing remains of the original star. After a core collapse supernova, part of the core may survive. It is very dense—as dense as an atomic nucleus—and is called a neutron star. [Recall that during core collapse the iron core (ashes of previous fusion reactions) is disintegrated into protons and neutrons, the protons combine with the surrounding electrons to make more neutrons, so the core becomes pure neutron matter. Because of this, core collapse can be halted if the core’s mass is between 1.4 (the Chandrasekhar limit) and about 3-4 solar masses, by neutron degeneracy.] What do you get if the core mass is less than 1.4 solar masses? Greater than 3-4 solar masses? 22.1 Neutron Stars Neutron stars, although they have 1–3 solar masses, are so dense that they are very small.
    [Show full text]
  • New APS CEO: Jonathan Bagger APS Sends Letter to Biden Transition
    Penrose’s Connecting students A year of Back Page: 02│ black hole proof 03│ and industry 04│ successful advocacy 08│ Bias in letters of recommendation January 2021 • Vol. 30, No. 1 aps.org/apsnews A PUBLICATION OF THE AMERICAN PHYSICAL SOCIETY GOVERNMENT AFFAIRS GOVERNANCE APS Sends Letter to Biden Transition Team Outlining New APS CEO: Jonathan Bagger Science Policy Priorities BY JONATHAN BAGGER BY TAWANDA W. JOHNSON Editor's note: In December, incoming APS CEO Jonathan Bagger met with PS has sent a letter to APS staff to introduce himself and President-elect Joe Biden’s answer questions. We asked him transition team, requesting A to prepare an edited version of his that he consider policy recom- introductory remarks for the entire mendations across six issue areas membership of APS. while calling for his administra- tion to “set a bold path to return the United States to its position t goes almost without saying of global leadership in science, that I am both excited and technology, and innovation.” I honored to be joining the Authored in December American Physical Society as its next CEO. I look forward to building by then-APS President Phil Jonathan Bagger Bucksbaum, the letter urges Biden matically improve the current state • Stimulus Support for Scientific on the many accomplishments of to consider recommendations in the of America’s scientific enterprise Community: Provide supple- my predecessor, Kate Kirby. But following areas: COVID-19 stimulus and put us on a trajectory to emerge mental funding of at least $26 before I speak about APS, I should back on track.
    [Show full text]
  • Thunderkat: the Meerkat Large Survey Project for Image-Plane Radio Transients
    ThunderKAT: The MeerKAT Large Survey Project for Image-Plane Radio Transients Rob Fender1;2∗, Patrick Woudt2∗ E-mail: [email protected], [email protected] Richard Armstrong1;2, Paul Groot3, Vanessa McBride2;4, James Miller-Jones5, Kunal Mooley1, Ben Stappers6, Ralph Wijers7 Michael Bietenholz8;9, Sarah Blyth2, Markus Bottcher10, David Buckley4;11, Phil Charles1;12, Laura Chomiuk13, Deanne Coppejans14, Stéphane Corbel15;16, Mickael Coriat17, Frederic Daigne18, Erwin de Blok2, Heino Falcke3, Julien Girard15, Ian Heywood19, Assaf Horesh20, Jasper Horrell21, Peter Jonker3;22, Tana Joseph4, Atish Kamble23, Christian Knigge12, Elmar Körding3, Marissa Kotze4, Chryssa Kouveliotou24, Christine Lynch25, Tom Maccarone26, Pieter Meintjes27, Simone Migliari28, Tara Murphy25, Takahiro Nagayama29, Gijs Nelemans3, George Nicholson8, Tim O’Brien6, Alida Oodendaal27, Nadeem Oozeer21, Julian Osborne30, Miguel Perez-Torres31, Simon Ratcliffe21, Valerio Ribeiro32, Evert Rol6, Anthony Rushton1, Anna Scaife6, Matthew Schurch2, Greg Sivakoff33, Tim Staley1, Danny Steeghs34, Ian Stewart35, John Swinbank36, Kurt van der Heyden2, Alexander van der Horst24, Brian van Soelen27, Susanna Vergani37, Brian Warner2, Klaas Wiersema30 1 Astrophysics, Department of Physics, University of Oxford, UK 2 Department of Astronomy, University of Cape Town, South Africa 3 Department of Astrophysics, Radboud University, Nijmegen, the Netherlands 4 South African Astronomical Observatory, Cape Town, South Africa 5 ICRAR, Curtin University, Perth, Australia 6 University
    [Show full text]
  • Formation of Dust and Molecules in Supernovae
    2019/02/06 Formation of dust and molecules in supernovae Takaya Nozawa (National Astronomical Observatory of Japan) SN 1987A Cassiopeia A SNR 0509-67.5 1-1. Introduction Question : Can supernovae (SNe) produce molecules and dust grains? Nozawa 2014, Astronomical Herald 2-1. Thermal emission from dust in SN 1987A light curve 60day 200day (optical luminosity) 415day 615day Whitelock+89 - dust starts to form in the 755day ejecta at ~400 days - dust mass ay 775 day: > ~10-4 Msun (optically thin assumed) Wooden+93 2-2. CO and SiO detection in SN 1987A CO first overtone: 2.29-2.5 μm 97 day CO fundamental: 4.65-6.0 μm SiO fundamental: 7.6-9.5 μm 200day SN Ic 2000ew, Gerardy+2002 415day 615day 58 day 755day SN II-pec 1987A, Wooden+1993 SN II-P 2016adj, Banerjee+2018 2-3. CO and SiO masses in SN 1987A CO Gerardy+2002, see also Banerjee+2018 Liu+95 ‐CO emission is seen in various SiO types of CCSNe from ~50 day ‐CO/SiO masses in SN 1987A Mco > ~4x10-3 Msun MSiO > ~7x10-4 Msun Liu & Dalgarno 1996 2-4. Dust mass in Cassiopeia A (Cas A) SNR ○ Estimated mass of dust in Cas A ・ warm/hot dust (80-300K) (3-7)x10-3 Msun (IRAS, Dwek et al. 1987) ~7.7x10-5 Msun (ISO, Arendt et al. 1999) 0.02-0.054 Msun (Spitzer, Rho+2008) ➜ Mdust = 10-4-10-2 Msun consistent with >10-4 Msun in SN 1987A Dwek+1987, IRAS Rho+2008 Spitzer Arendt+1999, ISO 3-1.
    [Show full text]
  • Schwarzschild Black Hole Can Also Produce Super-Radiation Phenomena
    Schwarzschild black hole can also produce super-radiation phenomena Wen-Xiang Chen∗ Department of Astronomy, School of Physics and Materials Science, GuangZhou University According to traditional theory, the Schwarzschild black hole does not produce super radiation. If the boundary conditions are set in advance, the possibility is combined with the wave function of the coupling of the boson in the Schwarzschild black hole, and the mass of the incident boson acts as a mirror, so even if the Schwarzschild black hole can also produce super-radiation phenomena. Keywords: Schwarzschild black hole, superradiance, Wronskian determinant I. INTRODUCTION In a closely related study in 1962, Roger Penrose proposed a theory that by using point particles, it is possible to extract rotational energy from black holes. The Penrose process describes the fact that the Kerr black hole energy layer region may have negative energy relative to the observer outside the horizon. When a particle falls into the energy layer region, such a process may occur: the particle from the black hole To escape, its energy is greater than the initial state. It can also show that in Reissner-Nordstrom (charged, static) and rotating black holes, a generalized ergoregion and similar energy extraction process is possible. The Penrose process is a process inferred by Roger Penrose that can extract energy from a rotating black hole. Because the rotating energy is at the position of the black hole, not in the event horizon, but in the area called the energy layer in Kerr space-time, where the particles must be like a propelling locomotive, rotating with space-time, so it is possible to extract energy .
    [Show full text]
  • Black Holes, out of the Shadows 12.3.20 Amelia Chapman
    NASA’s Universe Of Learning: Black Holes, Out of the Shadows 12.3.20 Amelia Chapman: Welcome, everybody. This is Amelia and thanks for joining us today for Museum Alliance and Solar System Ambassador professional development conversation on NASA's Universe of Learning, on Black Holes: Out of the Shadows. I'm going to turn it over to Chris Britt to introduce himself and our speakers, and we'll get into it. Chris? Chris Britt: Thanks. Hello, this is Chris Britt from the Space Telescope Science Institute, with NASA's Universe of Learning. Welcome to today's science briefing. Thank you to everyone for joining us and for anyone listening to the recordings of this in the future. For this December science briefing, we're talking about something that always generates lots of questions from the public: Black holes. Probably one of the number one subjects that astronomers get asked about interacting with the public, and I do, too, when talking about astronomy. Questions like how do we know they're real? And what impact do they have on us? Or the universe is large? Slides for today's presentation can be found at the Museum Alliance and NASA Nationwide sites as well as NASA's Universe of Learning site. All of the recordings from previous talks should be up on those websites as well, which you are more than welcome to peruse at your leisure. As always, if you have any issues or questions, now or in the future, you can email Amelia Chapman at [email protected] or Museum Alliance members can contact her through the team chat app.
    [Show full text]