The Impact of the Invasive Alien Grass Cortaderia Jubata (Lemoine) Stapf

Total Page:16

File Type:pdf, Size:1020Kb

The Impact of the Invasive Alien Grass Cortaderia Jubata (Lemoine) Stapf DDI086.fm Page 217 Monday, January 29, 2001 11:08 AM Diversity and Distributions (2000) 6, 217–231 BIODIVERSITY RESEARCH TheBlackwell Science, Ltd impact of the invasive alien grass Cortaderia jubata (Lemoine) Stapf on an endangered mediterranean-type shrubland in California JOHN G. LAMBRINOS Department of Environmental Science and Policy, University of California, Davis, One Shields Avenue, Davis, CA 95616, U.S.A. Abstract. Since its introduction in the late 1800s, tween vegetation types. Arthropod abundance and the perennial tussock grass Cortaderia jubata order diversity were lower in plots dominated (Lemoine) Stapf has become an increasingly fre- by C. jubata than in adjacent chaparral. Insect quent member of coastal plant communities in traps in C. jubata plots contained a significantly California and Oregon. In this study, the com- smaller proportion of Hymenoptera and Homoptera munity changes associated with C. jubata inva- and a significantly greater proportion of Aràneae sion into the mediterranean-type vegetation of than traps in maritime chaparral. Rodent activ- Vandenberg Air Force Base, California were exam- ity was significantly lower while rabbit activity ined. Pristine plots of maritime chaparral were was significantly greater in jubata grassland com- compared with spatially and topographically pared to maritime chaparral. This study indicates matched plots dominated by C. jubata. Aerial photo- that the presence of C. jubata can dramatically graphs indicated that the invaded plots had previ- alter the mediterranean-type landscape of central ously been shrubland. C. jubata invasion created a California. While it is likely that the initial establish- structurally less complex perennial grassland that ment of C. jubata is associated with disturbances was markedly depauperate in native shrub species. that are common in this ecosystem, the ability of The absence of native shrubs depressed native C. jubata to expand from founding populations richness in jubata grassland, but the greater rich- and to persist for long periods of time pose a seri- ness of both native and alien herbaceous spe- ous threat to the native diversity of these unique cies made overall richness in jubata grassland systems. indistinguishable from maritime chaparral. Vegeta- tional differences were associated with differences Key words. Biological invasions, chaparral, in arthropod and small mammal populations be- mediterranean-type ecosystems, shrubland conversion. Introduced species have the potential to signific- INTRODUCTION antly alter population dynamics, community struc- Mediterranean-type ecosystems cover less than ture and ecosystem level processes (Elton, 1958; 5% of the Earth’s surface yet contain nearly 20% Drake, 1988; Macdonald et al., 1989; D’Antonio of the planet’s known plant species (Cowling et al., & Vitousek, 1992). While understanding the precise 1996). A number of anthropogenically induced nature of these changes is critically important for changes threaten this remarkable plant diversity the effective management and conservation of (Rundel, 1998). In particular, the threat posed by mediterranean-type systems, it is often difficult introduced non-native species has generated increas- to quantify the direct community-level effects of ing concern (Groves, 1986; Kruger et al., 1989; di introduced species independent of other landscape Castri et al., 1990; Groves & di Castri, 1991). level disturbances such as habitat fragmentation. © 2000 Blackwell Science Ltd. http://www.blackwell-science.com/ddi 217 DDI086.fm Page 218 Monday, January 29, 2001 11:08 AM 218 J. G. Lambrinos Introduced plants have unquestionably altered In this study, the community level changes the mediterranean-type vegetation of California. caused by the expansion of C. jubata in a geographic- Over the last 230 years, more than 1025 plant ally restricted formation of maritime chaparral species have been added to the flora of the state along the central coast of California are described. (Rejmánek & Randall, 1994). Entire systems such Specifically are examined: (1) how C. jubata alters as the native perennial grassland have been largely the vegetation structure, plant species composition replaced by alien plants (Heady, 1977). Additionally, and plant species diversity of invaded chaparral; the anthropogenic influences of habitat frag- (2) how C. jubata invasion affects the composi- mentation, altered disturbance regimes and the tion and abundance of insect and small mammal high frequency of new introductions leave the state’s populations. remaining mediterranean-type ecosystems highly susceptible to degradation by invasive plants (Mooney & Dunn, 1972; Mooney et al., 1986; Soulé et al., METHODS 1992; Alberts et al., 1993). Surprisingly few studies, Study area and plot selection however, have quantified the changes wrought by these introductions. Moreover, while many intro- This study was conducted on Vandenberg Airforce duced species have been identified as serious invas- Base, Santa Barbara County, CA, U.S.A. (34°41′N, ive wildland pests (see Robbins, 1940; McClintock, 120°36′W). The base contains most of the remain- 1985; Halvorson, 1992), few studies have attempted ing stands of Burton Mesa chaparral, a regionally to quantify how the continued expansion of these endemic variant of maritime chaparral. This unique invasive species will impact native communities. shrub community contains four endemic shrub spe- One invasive plant with the potential to signi- cies as well as other narrowly restricted plant ficantly alter mediterranean-type ecosystems in species. Less than 40% of the original Burton Mesa California is Cortaderia jubata (Lemoine) Stapf chaparral cover still exists, and the remaining acreage (jubata grass). C. jubata is a large perennial tus- continues to be threatened by development and sock grass native to the Andean regions of Ecuador, the invasion of non-native species such as C. jubata Peru and Bolivia. In the later half of the 19th (Davis et al., 1988). century it was introduced into California, along Stands of Burton Mesa chaparral are restricted with the congener C. selloana (Schultes) Asch. & to the Burton Mesa, a low elevation (30 m) coastal Graebner (pampas grass), for use as a landscap- terrace composed of thin sandy soils derived from ing ornamental. Both species have subsequently Orcutt sandstone underlain by a shale or clay hardpan escaped from cultivation and expanded in coastal (Shipman, 1972). The climate is mediterranean- habitats along the Pacific coast (Costas-Lippmann, type and strongly maritime. The average rainfall 1976; Lambrinos, 2000). Both species have also is less than 40 cm per year, almost all of this become naturalized in New Zealand (Connor, 1965; precipitation falling between October and April. Edgar et al., 1991), South Africa (Robinson, 1984) C. jubata was first recorded on the Burton Mesa and the Hawaiian islands (Chimera, 1997). in the mid-1970s (Davis et al., 1988), but aerial Cortaderia jubata has the more restricted dis- photographs taken during the 1970s and 1980s tribution of the two species in California, occurring indicated that large populations of C. jubata did primarily in a narrow band of coastal habitat from not develop until the mid-1980s. The initial establish- central California to southern Oregon (Lambrinos, ment of these large infestations seems to have been 2001). This restricted range, however, coincides with associated with large disturbances that occurred some of the region’s most diverse and restricted plant during the extension of an aircraft runway and the communities, and the prevalence of C. jubata in construction of several buildings (Chris Gillespie, these habitats has caused increasing management personal communication). concern (Cooper, 1967; DiTomaso et al., 1999). From these initial ruderal populations, however, Although considerable effort has been expended on C. jubata has since expanded into the surrounding the monitoring and control of C. jubata popula- relatively undisturbed chaparral. Using the aerial tions, no published data exist that describe how photographs, five locations were identified that these populations threaten the structure of native were currently invaded by C. jubata but that had communities. been uninvaded shrubland (Fig. 1). In these five © 2000 Blackwell Science Ltd, Diversity and Distributions, 6, 217–231 DDI086.fm Page 219 Monday, January 29, 2001 11:08 AM Impact of Cortaderia invasion 219 Fig. 1 Location of study plots on the Burton Mesa, Vandenberg Air Force Base, CA (34°41′N, 120°36′W). locations paired 50 m × 50 m plots were estab- cover at the time of invasion. The C. jubata indi- lished in stands dominated by C. jubata and in viduals composing invaded stands had a distribu- immediately adjacent stands of pristine maritime tion of sizes skewed slightly toward the smallest = = chaparral. size classes (g1 0.85, SEg1 0.34), although both The C. jubata-invaded portions of many of the small and large tussocks (0.002 m3–4.08 m3) were sites were associated with relatively small scale present within stands. A similarly skewed distri- disturbances: one site was bordered by an eroding bution of sizes was observed for C. jubata indi- stream channel, three sites were bordered by dirt viduals currently invading relatively pristine stands = = roads, while one site was located approximately of maritime chaparral (g1 0.86, SEg1 0.40; range: 100 m from a paved road. The only visible signs 0.002 m3–3.85 m3). This similarity, as well as the of disturbance within stands were narrow
Recommended publications
  • Pampas Grass and Jubata Grass
    PAMPAS GRASS AND JUBATA GRASS Cortaderia selloana Grass Family (Poaceae) Cortaderia jubata DESCRIPTION Pampas grass is a common name used masses. New seedlings often grow for both Cortaderia species. For clarity on the dead mass of the parent in this discussion, Cortaderia jubata plant, so what appears to be one will be called jubata grass,while pam- plant is often several generations, pas grass will refer only to C. selloana. growing one on top of the other.In Both species are rapid-growing contrast to jubata grass, pampas perennials that form large clumps. grass produces seeds only sexu- Jubata grass is found only in coastal ally, not apomictically, so both areas, but pampas grass also infests sexes of plants are necessary for more inland locales. Both are found in pollination and seed pro- disturbed areas, slopes and cliffs, duction. Both grasses PERENNIAL GRASSES coastal scrub, and forest clearings. can spread vegeta- Jubata grass leaves reach a height of tively from tillers or 5–7 feet at maturity. The dark green fragments of a leaves have sharply serrated margins.The mature plant that flowering stalks can tower up to 20 feet root in moist soil. above the mass of spreading leaves at the base. The inflorescence—a showy plume IMPACT ranging from pink to violet, turning Pampas grass is the more widespread creamy white or golden in maturity— species statewide, but jubata grass is con- typically appears from July to September. sidered more invasive in coastal areas. In Pampas grass leaves are gray-green forest gaps, both species can prevent the and narrower than those of jubata grass.
    [Show full text]
  • Especies Vegetales Nativas Con Potencial Para La Fitorremediación De Suelos Alto Andinos Contaminados Por Residuos De Actividad Minera
    Bioagro 33(3): 161-170. 2021 doi: http://www.doi.org/10.51372/bioagro333.2 ESPECIES VEGETALES NATIVAS CON POTENCIAL PARA LA FITORREMEDIACIÓN DE SUELOS ALTO ANDINOS CONTAMINADOS POR RESIDUOS DE ACTIVIDAD MINERA Luis Martínez-Manchego1, Guido Sarmiento-Sarmiento1 y Edwin Bocardo-Delgado1 RESUMEN La implementación de fitotecnologías para minimizar el impacto ambiental negativo de relaves mineros requiere caracterizar especies vegetales nativas adaptadas y tolerantes a suelos contaminados con metales tóxicos. El objetivo fue identificar y caracterizar especies vegetales nativas con potencial para la fitorremediación de suelos alto andinos contaminados por residuos de la actividad minera. La investigación se desarrolló en la zona de depósito de relaves de la empresa minera “El Madrigal” en el distrito de Madrigal, provincia Caylloma, Arequipa, Perú; ubicado a 15º35’ S, 71º50’ W y 3400 m de altitud. Se establecieron cinco zonas de muestreo (Primera, A, B, C y D). La concentración de contaminantes en las muestras de suelo con relaves se detectó mediante espectrometría de emisión atómica de plasma acoplado inductivamente; la recolección e identificación de especies vegetales se desarrolló mediante un muestreo sistemático estratificado y las muestras botánicas se enviaron al Instituto Científico Michael Owen Dillon para su identificación taxonómica según la propuesta del Grupo de Filogenia de Angiospermas. Para la caracterización de las especies vegetales se emplearon índices de similitud, diversidad y equitabilidad. Las especies vegetales más abundantes, y como tal, con mayor potencial de fitorremediación, fueron Cortaderia jubata, Baccharis sp., Stipa ichu y Juncus sp. También mostró alto potencial la especie Eragrostis nigricans, la cual fue identificada únicamente en la zona Primera, es decir, la zona con notable descarga de relaves mineros.
    [Show full text]
  • Cortaderia Selloana (Schultes & Schultes Fil.) Ascherson & Graebner
    Cortaderia selloana (Schultes & Schultes fil.) Ascherson & Graebner. L'Herbe de la pampa Plantae, Spermatophytes, Angiospermes, Monocotylédones, Poales, Poaceae Synonymes : Arundo dioica Speg. Arundo selloana Schultes & Schultes f. Cortaderia argentea (Nees) Stapf Cortaderia dioica Speg. Cortaderia rudiuscula Stapf Gynerium argenteum Nees Gynerium purpureum Carrière Mooreea argentea (Nees) Lem. Fiche réalisée par la Fédération des Conservatoires botaniques nationaux © Arnoux JC CBN Méditerranéen de Porquerolles Description générale Plante herbacée vivace formant des touffes hautes de 4m et larges de 2m. Elle possède de très nombreuses feuilles linéaires de couleur glauque à base jaune pâle, retombantes, arquées, à bords coupants, d'environ 2 m. Ligule remplacée par des poils courts. Les fleurs sont regroupées en inflorescences formant de grands panicules blanchâtres d'aspect duveteux, pouvant atteindre 1 m. Ces panicules sont plus larges et plus denses sur les pieds femelles. La fructification donne des petits fruits appelés caryopses. Biologie/Ecologie Reproduction Plante gynodioïque (pied hermaphrodite et pied femelle) à floraison estivale (août-septembre) et pollinisation anémophile Reproduction sexuée : Vers la fin du mois d'aout, les fleurs de l'Herbe de la pampa sont pollinisées par le vent. Au début de l'automne, la plante produit une très grande quantité de graines (environ 10 millions par pieds) dont les ovules peuvent évoluer presque toutes en graines viables. Les semis se développent au printemps et ont besoin d'humidité, de lumière et d'un substrat sableux. En France, il a été montré que l'Herbe de la pampa est vendue en France sous la forme de "la plante type" (syn. "espèce") et d'une douzaine de « cultivars » (syn.
    [Show full text]
  • Austroderia Richardii
    Austroderia richardii COMMON NAME Toetoe SYNONYMS Arundo richardii Endl.; Arundo kakao Steud.; Arundo australis A.Rich.; Gynerium zeelandicum Steud.; Cortaderia richardii (Endl.) Zotov FAMILY Poaceae AUTHORITY Austroderia richardii (Endl.) N.P.Barker et H.P.Linder FLORA CATEGORY Vascular – Native ENDEMIC TAXON Yes ENDEMIC GENUS Kakanui Mountains, Otago. Photographer: John Yes Barkla ENDEMIC FAMILY No STRUCTURAL CLASS Grasses NVS CODE AUSRIC CHROMOSOME NUMBER 2n = 90 CURRENT CONSERVATION STATUS Cortaderia richardii. Photographer: John Smith- Dodsworth 2012 | Not Threatened PREVIOUS CONSERVATION STATUSES 2009 | Not Threatened 2004 | Not Threatened DISTRIBUTION Endemic. Confined to the South Island. Possibly in the North Island, east of Cape Palliser. Naturalised in Tasmania. HABITAT Abundant, from the coast to subalpine areas. Common along stream banks, river beds, around lake margins, and in other wet places. Also found in sand dunes, especially along the Foveaux Strait. FEATURES Tall, gracile, slender tussock-forming grass up to 3 m tall when flowering. Leaf sheath glabrous, green, covered in white wax. Ligule 3.5 mm. Collar brown, basally glabrous, upper surface with short, stiff hairs surmounting ribs. Leaf blade 2-3 x 0.25 m, green, dark-green, often somewhat glaucous, upper side with thick weft of hairs at base, otherwise sparsely hairy up midrib with abundant, minute prickle teeth throughout. Undersurface with leaf with 5 mm long hairs near leaf margins, otherwise harshly scabrid. Culm up to 3 m, inflorescence portion up to 1 m tall, pennant-shaped, drooping, narrowly plumose. Spikelets numerous, 25 mm with 3 florets per spikelet. Glumes equal, > or equal to florets, 1- or 3-nerved. Lemma 10 mm, scabrid.
    [Show full text]
  • Invasive Species Removal Management Plan for the Invasive Species Ammophila Arenaria and Carpobrotus Edulis Within the Samoa Dunes and Wetlands Conservation Area
    Humboldt State University Digital Commons @ Humboldt State University Environmental Science & Management Senior Capstones Senior Projects Spring 2021 Invasive Species Removal Management Plan for the invasive species Ammophila arenaria and Carpobrotus edulis within the Samoa Dunes and Wetlands Conservation Area Rachel J. Denoncourt Humboldt State University, [email protected] Christopher A. Jamison Humboldt State University, [email protected] Kyra D. Skylark Humboldt State University, [email protected] Follow this and additional works at: https://digitalcommons.humboldt.edu/senior_esm Part of the Environmental Sciences Commons Recommended Citation Denoncourt, Rachel J.; Jamison, Christopher A.; and Skylark, Kyra D., "Invasive Species Removal Management Plan for the invasive species Ammophila arenaria and Carpobrotus edulis within the Samoa Dunes and Wetlands Conservation Area" (2021). Environmental Science & Management Senior Capstones. 15. https://digitalcommons.humboldt.edu/senior_esm/15 This Dissertation/Thesis is brought to you for free and open access by the Senior Projects at Digital Commons @ Humboldt State University. It has been accepted for inclusion in Environmental Science & Management Senior Capstones by an authorized administrator of Digital Commons @ Humboldt State University. For more information, please contact [email protected]. Invasive Species Removal Management Plan for the invasive species Ammophila arenaria and Carpobrotus edulis within the Samoa Dunes and Wetlands Conservation Area Prepared by Rachel
    [Show full text]
  • Vegetation Descriptions NORTH COAST and MONTANE ECOLOGICAL PROVINCE
    Vegetation Descriptions NORTH COAST AND MONTANE ECOLOGICAL PROVINCE CALVEG ZONE 1 December 11, 2008 Note: There are three Sections in this zone: Northern California Coast (“Coast”), Northern California Coast Ranges (“Ranges”) and Klamath Mountains (“Mountains”), each with several to many subsections CONIFER FOREST / WOODLAND DF PACIFIC DOUGLAS-FIR ALLIANCE Douglas-fir (Pseudotsuga menziesii) is the dominant overstory conifer over a large area in the Mountains, Coast, and Ranges Sections. This alliance has been mapped at various densities in most subsections of this zone at elevations usually below 5600 feet (1708 m). Sugar Pine (Pinus lambertiana) is a common conifer associate in some areas. Tanoak (Lithocarpus densiflorus var. densiflorus) is the most common hardwood associate on mesic sites towards the west. Along western edges of the Mountains Section, a scattered overstory of Douglas-fir often exists over a continuous Tanoak understory with occasional Madrones (Arbutus menziesii). When Douglas-fir develops a closed-crown overstory, Tanoak may occur in its shrub form (Lithocarpus densiflorus var. echinoides). Canyon Live Oak (Quercus chrysolepis) becomes an important hardwood associate on steeper or drier slopes and those underlain by shallow soils. Black Oak (Q. kelloggii) may often associate with this conifer but usually is not abundant. In addition, any of the following tree species may be sparsely present in Douglas-fir stands: Redwood (Sequoia sempervirens), Ponderosa Pine (Ps ponderosa), Incense Cedar (Calocedrus decurrens), White Fir (Abies concolor), Oregon White Oak (Q garryana), Bigleaf Maple (Acer macrophyllum), California Bay (Umbellifera californica), and Tree Chinquapin (Chrysolepis chrysophylla). The shrub understory may also be quite diverse, including Huckleberry Oak (Q.
    [Show full text]
  • Cortaderia Jubata in (Source: Mandy Tu, the Nature Conservancy, Bugwood.Org)
    Weed Risk Assessment for Cortaderia United States jubata (Lemoine ex Carrière) Stapf Department of Agriculture (Poaceae) – Jubata grass Animal and Plant Health Inspection Service February 18, 2014 Version 1 Left: Invasion of a coastal habitat in California by Cortaderia jubata in (source: Mandy Tu, The Nature Conservancy, Bugwood.org). Right: Habit of C. jubata (source: John M. Randall, The Nature Conservancy, Bugwood.org). Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Weed Risk Assessment for Cortaderia jubata Introduction Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as “any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment” (7 U.S.C. § 7701-7786, 2000). We use weed risk assessment (WRA)—specifically, the PPQ WRA model (Koop et al., 2012)—to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world. Because the PPQ WRA model is geographically and climatically neutral, it can be used to evaluate the baseline invasive/weed potential of any plant species for the entire United States or for any area within it.
    [Show full text]
  • Pampasgrass and Jubatagrass Threaten California Coastal Habitats WRIC Leaflet 99-1 01/1999 (Edited 01/2010)
    University of California WEED Research & Information Center Pampasgrass and Jubatagrass Threaten California Coastal Habitats WRIC Leaflet 99-1 01/1999 (edited 01/2010) Joseph M. DiTomaso1, Evelyn Healy1 Carl E. Bell2, Jennifer Drewitz1, and Alison Stanton1 1 UC Davis; 2 UCCE Imperial County Where do they come from? Pampasgrass (Cortaderia selloana) is native to Argentina, Brazil and Uruguay, where it grows in relatively damp soils along river margins. It was first introduced to Europe in the early 1800s by a Scottish horticulturist. In 1848, nurserymen introduced pampasgrass to Santa Barbara, California. Commercial production began in California in 1874, and by 1895 nurserymen near Santa Barbara were the primary producers of pampasgrass as ornamental plants. In 1946, the Soil Conservation Service throughout Ventura and Los Angeles counties planted pampasgrass to provide supplementary dryland forage and Jubatagrass infestation prevent erosion. along the coast Jubatagrass (Cortaderia jubata) is native to northern Argentina, and along the Andes of Bolivia, Peru, and Ecuador. It was first cultivated in France and Ireland from seed collected in Ecuador. It is not clear how or when it was introduced into California, but it may have come through France, via the horticultural trade. Both species are true grasses (members of the Poaceae). Jubatagrass plant in redwood forest What problems do they cause? Jubatagrass is the more widespread and aggressive species. It is often called pampasgrass because of the difficulty in distinguishing the two species. Once established, mature plants of both species are very competitive. Large infestations of pampasgrass and jubatagrass threaten California's coastal ecosystems by crowding out native species, particularly in sensitive coastal dune areas.
    [Show full text]
  • 5-Year Review of Menzies' Wallflower
    Menzies’ Wallflower (Erysimum menziesii) 5-Year Review: Summary and Evaluation U.S. Fish and Wildlife Service Arcata Field Office Arcata, California June 2008 5-YEAR REVIEW Species reviewed: Menzies’ wallflower (Erysimum menziesii) TABLE OF CONTENTS I. General Information A. Methodology B. Reviewers C. Background II. Review Analysis A. Application of the 1996 Distinct Population Segment (DPS) Policy B. Recovery Criteria C. Updated Information and Current Species Status 1. Biology and Habitat 2. Five-Factor Analysis D. Synthesis III. Results IV. Recommendations for Future Actions V. References 1 5-YEAR REVIEW Menzies’ wallflower (Erysimum menziesii) I. GENERAL INFORMATION A. Methodology used to complete the review: This review was conducted by David Imper, Ecologist, with the Arcata Fish and Wildlife Office of the U.S. Fish and Wildlife Service (Service or USFWS), based on all information contained in files at that office and provided by other agencies. No comments were received from the public or other agencies in response to the Federal Notice. B. Reviewers Lead Region – Region 8, California and Nevada; Diane Elam, Deputy Division Chief for Listing, Recovery, and Habitat Conservation Planning, and Jenness McBride, Fish and Wildlife Biologist; (916)414-6464 Lead Field Office – Arcata Fish and Wildlife Office; Mike Long (707)822-7201 Cooperating Field Office(s) – Ventura, California C. Background 1. FR Notice citation announcing initiation of this review: Federal Register 71(55):14538-14542, March 22, 2006 2. Listing history Original Listing FR notice: 50 Federal Register 27848-27859 Date listed: June 22, 1992 Entity listed: Erysimum menziesii (species) Classification: Endangered Revised Listing, if applicable: NA 3.
    [Show full text]
  • Purple Pampas Cortaderia Jubata
    Purple pampas Cortaderia jubata Family Poaceae (grass) Also known as Cutty grass, Prince-of-Wales’ feathers Where is it originally from? South America What does it look like? Large, clump-forming grass (<3 m+). Very hairy leaf base with no white waxy surface. Leaves have a wide conspicuous midrib which does not continue into leaf base, and there are no secondary veins between midrib and leaf edge. Both leaf surfaces are dark green, leaves snap readily when tugged, and dead leaf bases spiral like wood shavings. Dense, erect, fluffy, bright purple flowerheads (Jan-Mar) fade to a dirty brown at the end of the flowering season. Photo: Carolyn Lewis Are there any similar species? Cortaderia selloana and native Austroderia species (toetoe). Toetoe leaves don't snap readily, have distinct secondary parallel veins between midrib and edge, midrib continues into leaf base, and leaves have white waxy sheaths. Dead leaves don't spiral. Drooping light golden-yellow flowers are produced from September to January. Why is it weedy? Tolerates heat and frost, salt, wind, wet and drought, moderate shade, most soils, and low fertility. Recovers quickly after fire. Prolific seeder and seeds are widely dispersed. How does it spread? Seeds are spread long distances by wind and occasionally water. Also Photo: Carolyn Lewis spreads by soil movement, dumped vegetation, contaminated forestry machinery, clothing, animal pelts. Common seed sources are plantation forests, roadsides, farm hedges, quarries and wasteland. What damage does it do? Colonises sprayed, burnt, slipped or otherwise disturbed sites, quickly becomes very dense. Replaces groundcovers, shrubs, and ferns, creates fire hazard, provides a habitat for possums and rats, and impedes access.
    [Show full text]
  • A Sensitive Plant and Wildlife Resource Inventory of Diablo Canyon Lands, Volume Ii
    A SENSITIVE PLANT AND.WILDLIFE RESOURCE INVENTORY OF DIABLO CANYON LANDS, VOLUME I: SURVEY PROCEDURES AND A SUMMARY OF SURVEY RESULTS Prepared by: BioSystems Analysis, Inc. 303 Potrero Street, Suite 29-101 Santa Cruz, California 95060 and Pacific Gas and Electric Company Technical and Ecological Services 3400 Crow Canyon Road San Ramon, California 94583 Prepared for: Pacific Gas and Electric Company Diablo Canyon Land Stewardship Committee Diablo Canyon Power Plant Avila Beach, California © 1995 by PG&E (Revised 1996) Legal Notice Pacific Gas and Electric Company (PG&E) makes no warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe upon privately owned rights. Nor does PG&E assume any liability with respect to use of, or damages resulting from the use of, any information, apparatus, method, or process disclosed in this report. © 1995 by PG&E All rights reserved EXECUTIVE SUMMARY PG&E owns or controls through long-term lease agreements approximately 10,000 acres of ecologically diverse coastal lands surrounding Diablo Canyon Power Plant in San Luis Obispo County, California. Beginning in 1992, a comprehensive survey of these lands was undertaken to identify and describe all sensitive plant and wildlife resources not previously known that might occur there. Though not required by state or federal regulatory agencies, this voluntary effort is consistent with PG&E's Corporate Policy on Management of Company Real Property (Section 7, paragraphs a and d), as well as specific Best Management Practices identified by the Diablo Canyon Land Stewardship Program (PG&E 1993a).
    [Show full text]
  • GRASSES AS INVASIVE SPECIES Clay Antieau, MS, Phc Botanist, Horticulturist, Environmental Educator
    GRASSES AS INVASIVE SPECIES Clay Antieau, MS, PhC Botanist, Horticulturist, Environmental Educator WFCA Eighth Western Native Plant Conference November 2019 THE GRASS FAMILY (Poaceae) • Genera : 700 – 800 • Species: 7,500 – 11,000 (4th largest) • Comparable in size to Aves (Birds); ~ twice as large as Mammalia; half the size of Orchid or Aster families • First appeared in pollen record 55 – 70 mya (Paleocene) • Only angiosperm family found natively on all seven continents (Deschampsia Antarctica) • Includes cereal crops (forage, food, sugar, beer...); many ecological dominants • All major civilizations developed around cultivated grasses (Asia to Middle East to New World) Among the World’s Worst Invasives: Grasses • Imperata cylindrica (cogon grass) • Phragmites australis (common reed) • Phalaris arundinacea (reed canarygrass) • Sorghum halepense (Johnson grass) • Spartina species and hybrids (cordgrasses) • Cortaderia species and hybrids (pampas grass) • Arundo donax (giant reed) • Microstegium vimineum (Japanese stilt grass) • Bromus tectorum (cheat) • Taeniatherum caput-medusae (medusahead) • Cynodon dactylon (Bermuda grass) • Neyraudia reynaudiana (silk reed) Important North American Invasive Grasses (adapted from www.fs.fed.us/database/feis) Aegilops cylindricus (goat grass) Eragrostis curvula (weeping lovegrass) Aegilops triuncialis (barbed goat grass) Eragrostis lehmanniana (Lehmann love Agropyron desertorum (desert wheat grass) grass) Elytrigia repens (quack grass) Agropyron cristatum (crested wheat Festuca arundinacea (tall fescue)
    [Show full text]