Mouse Rcbtb1 Conditional Knockout Project (CRISPR/Cas9)

Total Page:16

File Type:pdf, Size:1020Kb

Mouse Rcbtb1 Conditional Knockout Project (CRISPR/Cas9) https://www.alphaknockout.com Mouse Rcbtb1 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Rcbtb1 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Rcbtb1 gene (NCBI Reference Sequence: NM_027764 ; Ensembl: ENSMUSG00000035469 ) is located on Mouse chromosome 14. 12 exons are identified, with the ATG start codon in exon 2 and the TGA stop codon in exon 12 (Transcript: ENSMUST00000043227). Exon 4 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Rcbtb1 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-193F7 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 4 starts from about 17.45% of the coding region. The knockout of Exon 4 will result in frameshift of the gene. The size of intron 3 for 5'-loxP site insertion: 7010 bp, and the size of intron 4 for 3'-loxP site insertion: 3654 bp. The size of effective cKO region: ~667 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele gRNA region 5' gRNA region 3' 1 4 12 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Rcbtb1 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats. Tandem repeats are found in the dot plot matrix. It may be difficult to construct this targeting vector. Overview of the GC Content Distribution Window size: 300 bp Sequence 12 Summary: Full Length(7167bp) | A(25.0% 1792) | C(20.73% 1486) | T(32.73% 2346) | G(21.53% 1543) Note: The sequence of homologous arms and cKO region is analyzed to determine the GC content. No significant high GC-content region is found. So this region is suitable for PCR screening or sequencing analysis. Page 3 of 8 https://www.alphaknockout.com BLAT Search Results (up) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr14 + 59214347 59217346 3000 browser details YourSeq 160 971 2095 3000 94.0% chr14 - 59215317 59216441 1125 browser details YourSeq 127 2091 2258 3000 92.7% chr4 - 94611641 94611817 177 browser details YourSeq 127 2109 2258 3000 94.5% chr10 - 119181798 119181967 170 browser details YourSeq 126 2109 2270 3000 91.0% chr1 - 193392810 193392995 186 browser details YourSeq 121 2109 2258 3000 92.5% chr19 + 23308754 23308926 173 browser details YourSeq 119 2088 2219 3000 96.3% chr15 - 79470111 79470252 142 browser details YourSeq 118 2110 2261 3000 90.5% chr12 - 101943314 101943479 166 browser details YourSeq 118 2093 2240 3000 90.8% chr13 + 3609107 3609253 147 browser details YourSeq 118 2109 2466 3000 92.2% chr10 + 125797918 125798504 587 browser details YourSeq 118 2109 2248 3000 92.9% chr1 + 192199977 192200126 150 browser details YourSeq 115 2109 2244 3000 94.7% chr1 - 185399590 185399737 148 browser details YourSeq 115 2109 2238 3000 94.7% chr7 + 141255163 141255293 131 browser details YourSeq 115 2109 2238 3000 94.7% chr3 + 116697200 116697330 131 browser details YourSeq 115 2109 2238 3000 94.7% chr3 + 84330677 84330807 131 browser details YourSeq 115 2109 2238 3000 94.7% chr19 + 29746629 29746759 131 browser details YourSeq 114 2109 2240 3000 94.0% chr12 + 57562824 57562965 142 browser details YourSeq 113 2109 2238 3000 93.9% chr18 - 35760096 35760226 131 browser details YourSeq 112 1645 2219 3000 81.6% chr11 - 100418788 100419299 512 browser details YourSeq 111 2109 2238 3000 93.1% chr2 + 30204475 30204605 131 Note: The 3000 bp section upstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. BLAT Search Results (down) QUERY SCORE START END QSIZE IDENTITY CHROM STRAND START END SPAN ----------------------------------------------------------------------------------------------- browser details YourSeq 3000 1 3000 3000 100.0% chr14 + 59218014 59221013 3000 browser details YourSeq 126 1927 2989 3000 95.0% chr14 - 59219940 59221002 1063 browser details YourSeq 65 2395 2573 3000 97.2% chr7 + 4508126 4508610 485 browser details YourSeq 62 2237 2445 3000 95.6% chr10 + 114832745 114832957 213 browser details YourSeq 61 2374 2445 3000 97.0% chr11 + 81903150 81903228 79 browser details YourSeq 61 2392 2485 3000 98.5% chr10 + 60380683 60380779 97 browser details YourSeq 58 2395 2454 3000 98.4% chr3 - 31766047 31766106 60 browser details YourSeq 56 2395 2453 3000 100.0% chr3 - 153068200 153068283 84 browser details YourSeq 56 2392 2447 3000 100.0% chr16 - 6123104 6123159 56 browser details YourSeq 54 2392 2445 3000 100.0% chr14 - 78285903 78285956 54 browser details YourSeq 54 2392 2445 3000 100.0% chr14 - 23919376 23919429 54 browser details YourSeq 54 2392 2445 3000 100.0% chr10 + 23466131 23466184 54 browser details YourSeq 54 2396 2452 3000 98.3% chr1 + 72522108 72522166 59 browser details YourSeq 53 2392 2445 3000 100.0% chr18 - 43316827 43316902 76 browser details YourSeq 52 2394 2445 3000 100.0% chr13 - 13575595 13575646 52 browser details YourSeq 52 2392 2445 3000 98.2% chr19 + 58196830 58196883 54 browser details YourSeq 52 2392 2445 3000 98.2% chr10 + 18414525 18414578 54 browser details YourSeq 51 2395 2445 3000 100.0% chr8 - 82683911 82683961 51 browser details YourSeq 51 2395 2445 3000 100.0% chr6 - 79539201 79539251 51 browser details YourSeq 51 2395 2445 3000 100.0% chr2 - 162485763 162485813 51 Note: The 3000 bp section downstream of Exon 4 is BLAT searched against the genome. No significant similarity is found. Page 4 of 8 https://www.alphaknockout.com Gene and protein information: Rcbtb1 regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein 1 [ Mus musculus (house mouse) ] Gene ID: 71330, updated on 24-Oct-2019 Gene summary Official Symbol Rcbtb1 provided by MGI Official Full Name regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein 1 provided by MGI Primary source MGI:MGI:1918580 See related Ensembl:ENSMUSG00000035469 Gene type protein coding RefSeq status VALIDATED Organism Mus musculus Lineage Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Glires; Rodentia; Myomorpha; Muroidea; Muridae; Murinae; Mus; Mus Also known as CLLD7; CLLL7; AW111883; 5430409I18Rik Expression Ubiquitous expression in CNS E11.5 (RPKM 17.7), CNS E14 (RPKM 14.3) and 28 other tissues See more Orthologs human all Genomic context Location: 14; 14 C3 See Rcbtb1 in Genome Data Viewer Exon count: 16 Annotation release Status Assembly Chr Location 108 current GRCm38.p6 (GCF_000001635.26) 14 NC_000080.6 (59201018..59237267) Build 37.2 previous assembly MGSCv37 (GCF_000001635.18) 14 NC_000080.5 (59820065..59856102) Chromosome 14 - NC_000080.6 Page 5 of 8 https://www.alphaknockout.com Transcript information: This gene has 11 transcripts Gene: Rcbtb1 ENSMUSG00000035469 Description regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein 1 [Source:MGI Symbol;Acc:MGI:1918580] Gene Synonyms 5430409I18Rik Location Chromosome 14: 59,201,209-59,237,265 forward strand. GRCm38:CM001007.2 About this gene This gene has 11 transcripts (splice variants), 254 orthologues, 9 paralogues and is a member of 1 Ensembl protein family. Transcripts Name Transcript ID bp Protein Translation ID Biotype CCDS UniProt Flags Rcbtb1- ENSMUST00000022551.13 3957 531aa ENSMUSP00000022551.7 Protein coding CCDS27168 A0A0R4J025 TSL:1 201 GENCODE basic APPRIS P1 Rcbtb1- ENSMUST00000043227.12 3903 531aa ENSMUSP00000037030.6 Protein coding CCDS27168 A0A0R4J025 TSL:1 202 GENCODE basic APPRIS P1 Rcbtb1- ENSMUST00000174830.1 852 94aa ENSMUSP00000133421.1 Protein coding - G3UWU1 CDS 5' 211 incomplete TSL:5 Rcbtb1- ENSMUST00000173547.7 765 208aa ENSMUSP00000134360.1 Protein coding - G3UZ62 CDS 3' 209 incomplete TSL:5 Rcbtb1- ENSMUST00000142326.1 447 33aa ENSMUSP00000134542.1 Protein coding - G3UZL2 CDS 3' 205 incomplete TSL:2 Rcbtb1- ENSMUST00000140136.8 421 1aa ENSMUSP00000134515.1 Protein coding - - CDS 3' 204 incomplete TSL:3 Rcbtb1- ENSMUST00000174009.7 2163 40aa ENSMUSP00000133369.1 Nonsense mediated - G3UYZ5 TSL:1 210 decay Rcbtb1- ENSMUST00000172810.1 899 40aa ENSMUSP00000134284.1 Nonsense mediated - G3UYZ5 TSL:5 208 decay Rcbtb1- ENSMUST00000147280.1 765 No - Retained intron - - TSL:3 206 protein Rcbtb1- ENSMUST00000095778.7 1499 No - lncRNA - - TSL:1 203 protein Rcbtb1- ENSMUST00000153225.1 754 No - lncRNA - - TSL:3 207 protein Page 6 of 8 https://www.alphaknockout.com 56.06 kb Forward strand 59.20Mb 59.21Mb 59.22Mb 59.23Mb 59.24Mb Genes (Comprehensive set... Rcbtb1-209 >protein coding Rcbtb1-202 >protein coding Rcbtb1-210 >nonsense mediated decay Rcbtb1-201 >protein coding Rcbtb1-204 >protein coding Rcbtb1-207 >lncRNA Rcbtb1-203 >lncRNA Rcbtb1-206 >retained intron Rcbtb1-205 >protein coding Rcbtb1-211 >protein coding Rcbtb1-208 >nonsense mediated decay Contigs AC166169.2 > Genes < Phf11-ps-201unprocessed pseudogene (Comprehensive set... Regulatory Build 59.20Mb 59.21Mb 59.22Mb 59.23Mb 59.24Mb Reverse strand 56.06 kb Regulation Legend CTCF Enhancer Open Chromatin Promoter Promoter Flank Gene Legend Protein Coding merged Ensembl/Havana Ensembl protein coding Non-Protein Coding processed transcript RNA gene Page 7 of 8 https://www.alphaknockout.com Transcript: ENSMUST00000043227 36.04 kb Forward strand Rcbtb1-202 >protein coding protein_pic We wish to acknowledge the following valuable scientific information resources: Ensembl, MGI, NCBI, UCSC. Page 8 of 8.
Recommended publications
  • The Emerging Landscape of Dynamic DNA Methylation in Early Childhood
    The emerging landscape of dynamic DNA methylation in early childhood Cheng-Jian Xu, Marc Jan Bonder, Cilla Söderhäll, Mariona Bustamante, Nour Baïz, Ulrike Gehring, Soesma Jankipersadsing, Pieter van der Vlies, Cleo van Diemen, Bianca van Rijkom, et al. To cite this version: Cheng-Jian Xu, Marc Jan Bonder, Cilla Söderhäll, Mariona Bustamante, Nour Baïz, et al.. The emerg- ing landscape of dynamic DNA methylation in early childhood. BMC Genomics, BioMed Central, 2017, 18, pp.25. 10.1186/s12864-016-3452-1. hal-01792686 HAL Id: hal-01792686 https://hal.archives-ouvertes.fr/hal-01792686 Submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Xu et al. BMC Genomics (2017) 18:25 DOI 10.1186/s12864-016-3452-1 RESEARCHARTICLE Open Access The emerging landscape of dynamic DNA methylation in early childhood Cheng-Jian Xu1,2*, Marc Jan Bonder2, Cilla Söderhäll3,4, Mariona Bustamante5,6,7,8, Nour Baïz9, Ulrike Gehring10, Soesma A. Jankipersadsing1,2, Pieter van der Vlies2, Cleo C. van Diemen2, Bianca van Rijkom2, Jocelyne Just9,11, Inger Kull12, Juha Kere3,13, Josep Maria Antó5,7,8,14, Jean Bousquet15,16,17,18, Alexandra Zhernakova2, Cisca Wijmenga2, Isabella Annesi-Maesano9, Jordi Sunyer5,7,8,14, Erik Melén19, Yang Li2*, Dirkje S.
    [Show full text]
  • Targeting Mir-21-3P Inhibits Proliferation and Invasion of Ovarian Cancer Cells
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 24 Research Paper Targeting miR-21-3p inhibits proliferation and invasion of ovarian cancer cells Perla M. Báez-Vega1, Ileabett M. Echevarría Vargas1,2, Fatma Valiyeva1, Joel Encarnación-Rosado3, Adriana Roman3, Josean Flores4, María J. Marcos-Martínez5,6, Pablo E. Vivas-Mejía1,2 1Comprehensive Cancer Center, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 2Department of Biochemistry, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico 3Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, Puerto Rico 4Ponce Health Sciences University, Ponce, Puerto Rico 5Department of Pathology and Laboratory Medicine-University of Puerto Rico—School of Medicine, San Juan, Puerto Rico 6Puerto Rico Medical Services Administration, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico Correspondence to: Pablo Vivas-Mejía, email: [email protected] Keywords: ovarian cancer, microRNAs, miR-21-3p, cisplatin, RBPMS Received: September 01, 2015 Accepted: April 18, 2016 Published: May 07, 2016 ABSTRACT MicroRNA-21 is overexpressed in most cancers and has been implicated in tumorigenesis. Accumulating evidence supports a central role for the miR-21 guide strand (miR-21-5p) in ovarian cancer initiation, progression, and chemoresistance. However, there is limited information regarding the biological role of the miR-21 passenger strand (miR-21-3p) in ovarian cancer cells. The aim of this study was to investigate the role of miR-21-3p and its target genes in cisplatin-resistant ovarian cancer cells. Expression profiling of miR-21-5p and miR-21-3p was performed in a panel of cancer cells by qPCR.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Identification Et Implication Des Gènes DMD Et RCBTB1 Dans La Progression Tumorale Des Sarcomes À Génétique Complexe Olivier Mauduit
    Identification et implication des gènes DMD et RCBTB1 dans la progression tumorale des sarcomes à génétique complexe Olivier Mauduit To cite this version: Olivier Mauduit. Identification et implication des gènes DMD et RCBTB1 dans la progression tu- morale des sarcomes à génétique complexe. Cancer. Université de Lyon, 2017. Français. NNT : 2017LYSE1059. tel-01710462 HAL Id: tel-01710462 https://tel.archives-ouvertes.fr/tel-01710462 Submitted on 16 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N°d’ordre NNT : xxx THESE de DOCTORAT DE L’UNIVERSITE DE LYON opérée au sein de l’Université Claude Bernard Lyon 1 Ecole Doctorale N° 340 Biologie Moléculaire Intégrative et Cellulaire Spécialité de doctorat : Biologie Moléculaire Discipline : Cancérologie Soutenue publiquement le 14/04/2017, par : Olivier MAUDUIT Identification et implication des gènes DMD et RCBTB1 dans la progression tumorale des sarcomes à génétique complexe Devant le jury composé de : Françoise Rédini, DR1 à l’université de Nantes Rapporteure Laurent Le Cam, DR2 à l’université de Montepellier Rapporteur Marie Castets, CR1 à l’université de Lyon 1 Examinatrice Sophie Le Guellec, PH à l’université de Toulouse Examinatrice Jean-Yves Blay, PU-PH au Centre Léon Bérard Directeur de thèse Frédéric Chibon, DR2 à l’institut Bergonié Co-directeur de thèse UNIVERSITE CLAUDE BERNARD - LYON 1 Président de l’Université M.
    [Show full text]
  • A Twin Study of Breastfeeding with a Preliminary Genome-Wide Association Scan Lucia Colodro-Conde University of Murcia
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2015 A twin study of breastfeeding with a preliminary genome-wide association scan Lucia Colodro-Conde University of Murcia Gu Zhu Berghofer Medical Research Institute Robert A. Power King's College London - Institute of Psychiatry Anjali Henders Berghofer Medical Research Institute Andrew C. Heath Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Colodro-Conde, Lucia; Zhu, Gu; Power, Robert A.; Henders, Anjali; Heath, Andrew C.; Madden, Pamela A F; Montgomery, Grant W.; Medland, Sarah; Ordoñana, Juan R.; and Martin, Nicholas G., ,"A twin study of breastfeeding with a preliminary genome-wide association scan." Twin Research and Human Genetics.18,1. 61-72. (2015). https://digitalcommons.wustl.edu/open_access_pubs/3737 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Lucia Colodro-Conde, Gu Zhu, Robert A. Power, Anjali Henders, Andrew C. Heath, Pamela A F Madden, Grant W. Montgomery, Sarah Medland, Juan R. Ordoñana, and Nicholas G. Martin This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/3737 Twin Research and Human Genetics page 1 of 12 C The Author(s) 2014 doi:10.1017/thg.2014.74 A Twin Study of Breastfeeding With a Preliminary Genome-Wide Association Scan Lucia Colodro-Conde,1,2 Gu Zhu,1 Robert A.
    [Show full text]
  • Inbred Mouse Strains Expression in Primary Immunocytes Across
    Downloaded from http://www.jimmunol.org/ by guest on September 26, 2021 Daphne is online at: average * The Journal of Immunology published online 29 September 2014 from submission to initial decision 4 weeks from acceptance to publication Sara Mostafavi, Adriana Ortiz-Lopez, Molly A. Bogue, Kimie Hattori, Cristina Pop, Daphne Koller, Diane Mathis, Christophe Benoist, The Immunological Genome Consortium, David A. Blair, Michael L. Dustin, Susan A. Shinton, Richard R. Hardy, Tal Shay, Aviv Regev, Nadia Cohen, Patrick Brennan, Michael Brenner, Francis Kim, Tata Nageswara Rao, Amy Wagers, Tracy Heng, Jeffrey Ericson, Katherine Rothamel, Adriana Ortiz-Lopez, Diane Mathis, Christophe Benoist, Taras Kreslavsky, Anne Fletcher, Kutlu Elpek, Angelique Bellemare-Pelletier, Deepali Malhotra, Shannon Turley, Jennifer Miller, Brian Brown, Miriam Merad, Emmanuel L. Gautier, Claudia Jakubzick, Gwendalyn J. Randolph, Paul Monach, Adam J. Best, Jamie Knell, Ananda Goldrath, Vladimir Jojic, J Immunol http://www.jimmunol.org/content/early/2014/09/28/jimmun ol.1401280 Koller, David Laidlaw, Jim Collins, Roi Gazit, Derrick J. Rossi, Nidhi Malhotra, Katelyn Sylvia, Joonsoo Kang, Natalie A. Bezman, Joseph C. Sun, Gundula Min-Oo, Charlie C. Kim and Lewis L. Lanier Variation and Genetic Control of Gene Expression in Primary Immunocytes across Inbred Mouse Strains Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2014/09/28/jimmunol.140128 0.DCSupplemental Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2014 by The American Association of Immunologists, Inc.
    [Show full text]
  • The Alter Retina: Alternative Splicing of Retinal Genes in Health and Disease
    International Journal of Molecular Sciences Review The Alter Retina: Alternative Splicing of Retinal Genes in Health and Disease Izarbe Aísa-Marín 1,2 , Rocío García-Arroyo 1,3 , Serena Mirra 1,2 and Gemma Marfany 1,2,3,* 1 Departament of Genetics, Microbiology and Statistics, Avda. Diagonal 643, Universitat de Barcelona, 08028 Barcelona, Spain; [email protected] (I.A.-M.); [email protected] (R.G.-A.); [email protected] (S.M.) 2 Centro de Investigación Biomédica en Red Enfermedades Raras (CIBERER), Instituto de Salud Carlos III (ISCIII), Universitat de Barcelona, 08028 Barcelona, Spain 3 Institute of Biomedicine (IBUB, IBUB-IRSJD), Universitat de Barcelona, 08028 Barcelona, Spain * Correspondence: [email protected] Abstract: Alternative splicing of mRNA is an essential mechanism to regulate and increase the diversity of the transcriptome and proteome. Alternative splicing frequently occurs in a tissue- or time-specific manner, contributing to differential gene expression between cell types during development. Neural tissues present extremely complex splicing programs and display the highest number of alternative splicing events. As an extension of the central nervous system, the retina constitutes an excellent system to illustrate the high diversity of neural transcripts. The retina expresses retinal specific splicing factors and produces a large number of alternative transcripts, including exclusive tissue-specific exons, which require an exquisite regulation. In fact, a current challenge in the genetic diagnosis of inherited retinal diseases stems from the lack of information regarding alternative splicing of retinal genes, as a considerable percentage of mutations alter splicing Citation: Aísa-Marín, I.; or the relative production of alternative transcripts. Modulation of alternative splicing in the retina García-Arroyo, R.; Mirra, S.; Marfany, is also instrumental in the design of novel therapeutic approaches for retinal dystrophies, since it G.
    [Show full text]
  • Arreye: a Customized Platform for High-Resolution Copy Number Analysis Of
    Official journal of the American College of Medical Genetics and Genomics ORIGINAL RESEARCH ARTICLE Open arrEYE: a customized platform for high-resolution copy number analysis of coding and noncoding regions of known and candidate retinal dystrophy genes and retinal noncoding RNAs Caroline Van Cauwenbergh, MSc1, Kristof Van Schil, MSc1, Robrecht Cannoodt, MSc1,2,3, Miriam Bauwens, MSc1, Thalia Van Laethem, MSc1, Sarah De Jaegere, BSc1, Wouter Steyaert, BSc1, Tom Sante, PhD1, Björn Menten, PhD1, Bart P. Leroy, MD, PhD1,4,5, Frauke Coppieters, PhD1 and Elfride De Baere, MD, PhD1 Purpose: Our goal was to design a customized microarray, arrEYE, AGAATATG, p.(Glu212Glyfs*2). A known variant was found on the for high-resolution copy number variant (CNV) analysis of known second allele: c.1843G>A, p.(Ala615Thr). Furthermore, we expanded the and candidate genes for inherited retinal dystrophy (iRD) and retina- allelic spectrum of USH2A and RCBTB1 with novel CNVs. expressed noncoding RNAs (ncRNAs). Conclusion: The arrEYE platform revealed subtle single-exon to Methods: arrEYE contains probes for the full genomic region of 106 larger CNVs in iRD genes that could be characterized at the nucleo- known iRD genes, including those implicated in retinitis pigmentosa tide level, facilitated by the high resolution of the platform. We report (RP) (the most frequent iRD), cone–rod dystrophies, macular dys- the first CNV in HGSNAT that, combined with another mutation, trophies, and an additional 60 candidate iRD genes and 196 ncRNAs. leads to RP, further supporting its recently identified role in nonsyn- Eight CNVs in iRD genes identified by other techniques were used as dromic iRD.
    [Show full text]
  • Oxidized Phospholipids Regulate Amino Acid Metabolism Through MTHFD2 to Facilitate Nucleotide Release in Endothelial Cells
    ARTICLE DOI: 10.1038/s41467-018-04602-0 OPEN Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells Juliane Hitzel1,2, Eunjee Lee3,4, Yi Zhang 3,5,Sofia Iris Bibli2,6, Xiaogang Li7, Sven Zukunft 2,6, Beatrice Pflüger1,2, Jiong Hu2,6, Christoph Schürmann1,2, Andrea Estefania Vasconez1,2, James A. Oo1,2, Adelheid Kratzer8,9, Sandeep Kumar 10, Flávia Rezende1,2, Ivana Josipovic1,2, Dominique Thomas11, Hector Giral8,9, Yannick Schreiber12, Gerd Geisslinger11,12, Christian Fork1,2, Xia Yang13, Fragiska Sigala14, Casey E. Romanoski15, Jens Kroll7, Hanjoong Jo 10, Ulf Landmesser8,9,16, Aldons J. Lusis17, 1234567890():,; Dmitry Namgaladze18, Ingrid Fleming2,6, Matthias S. Leisegang1,2, Jun Zhu 3,4 & Ralf P. Brandes1,2 Oxidized phospholipids (oxPAPC) induce endothelial dysfunction and atherosclerosis. Here we show that oxPAPC induce a gene network regulating serine-glycine metabolism with the mitochondrial methylenetetrahydrofolate dehydrogenase/cyclohydrolase (MTHFD2) as a cau- sal regulator using integrative network modeling and Bayesian network analysis in human aortic endothelial cells. The cluster is activated in human plaque material and by atherogenic lipo- proteins isolated from plasma of patients with coronary artery disease (CAD). Single nucleotide polymorphisms (SNPs) within the MTHFD2-controlled cluster associate with CAD. The MTHFD2-controlled cluster redirects metabolism to glycine synthesis to replenish purine nucleotides. Since endothelial cells secrete purines in response to oxPAPC, the MTHFD2- controlled response maintains endothelial ATP. Accordingly, MTHFD2-dependent glycine synthesis is a prerequisite for angiogenesis. Thus, we propose that endothelial cells undergo MTHFD2-mediated reprogramming toward serine-glycine and mitochondrial one-carbon metabolism to compensate for the loss of ATP in response to oxPAPC during atherosclerosis.
    [Show full text]
  • 1 Copy-Number Variation Contributes 9% of Pathogenicity in the Inherited
    bioRxiv preprint doi: https://doi.org/10.1101/742106; this version posted August 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Copy-number variation contributes 9% of pathogenicity in the inherited retinal degenerations Erin Zampaglione1*, Benyam Kinde1*, Emily M. Place1, Daniel Navarro-Gomez1, Matthew Maher1, Farzad Jamshidi1, Sherwin Nassiri2, J. Alex Mazzone1, Caitlin Finn1, Dana Schlegel3, Jason Comander1, Eric A. Pierce1, Kinga M. Bujakowska1 1Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, MA 02114, USA 2Rosalind Franklin University of Medicine & Science, RFUMS / Chicago Medical School, North Chicago, IL 60064, USA 3Department of Ophthalmology and Visual Sciences, W. K. Kellogg Eye Center, University of Michigan, 1000 Wall Street, Ann Arbor, MI 48150, USA *these authors contributed equally to the work. Corresponding author: Dr. Kinga Bujakowska Massachusetts Eye and Ear, 243 Charles Street, Boston, MA 02114 [email protected], Tel.: (617)-391-5933, Fax: (617)-573-6901 1 bioRxiv preprint doi: https://doi.org/10.1101/742106; this version posted August 21, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT: Purpose: Current sequencing strategies can genetically solve 55-60% of inherited retinal degeneration (IRD) cases, despite recent progress in sequencing.
    [Show full text]
  • Supplementary Table 1 Double Treatment Vs Single Treatment
    Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19
    [Show full text]
  • Abstracts from the 53Rd European Society of Human Genetics (ESHG) Conference: Oral Presentations
    European Journal of Human Genetics (2020) 28:1–140 https://doi.org/10.1038/s41431-020-00740-6 ABSTRACTS COLLECTION Abstracts from the 53rd European Society of Human Genetics (ESHG) Conference: Oral Presentations © European Society of Human Genetics 2020. Modified from the conference website and published with permission 2020 Volume 28 | Supplement 1 Virtual Conference June 6–9, 2020 Sponsorship: Publication of this supplement was sponsored by the European Society of Human Genetics. All content was reviewed and approved by the ESHG Scientific Programme Committee, which held full responsibility for the abstract selections. 1234567890();,: 1234567890();,: Disclosure Information: In order to help readers form their own judgments of potential bias in published abstracts, authors are asked to declare any competing financial interests. Contributions of up to EUR 10 000.- (Ten thousand Euros, or equivalent value in kind) per year per company are considered “Modest”. Contributions above EUR 10 000.- per year are considered “Significant”. Presenting authors are indicated with asterisks in the contributor lists. Plenary Sessions somatic mutations affecting RNA splicing factors and tumorigenesis, the promise of correct mis-splicing for can- PL1 Opening Plenary cer therapy, and the recent creation of CRISPR/Cas-based technologies for conducting mRNA isoform-level genetic PL1.2 screens. RNA splicing defects in cancer R. K. Bradley: None. R. K. Bradley* PL2 What’s New? Highlight Session Fred Hutchinson Cancer Research Center, Seattle, WA, PL2.1 United States Evaluation of DNA methylation episignatures for diag- nosis and phenotype correlations in 42 Mendelian neu- Alternative RNA splicing, the process whereby a single rodevelopmental disorders gene can give rise to many different proteins, has long been known to be dysregulated in many cancers.
    [Show full text]