COLLOID CHEMISTRY Research in the Department of Colloid Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

COLLOID CHEMISTRY Research in the Department of Colloid Chemistry “ Heterophase Polymerization “ Porous Polymers “ Chimera Polymers and Novel Synthetic Methods “ Modern Techniques of Colloid Analysis “ Hydrothermal Carbon Nanostructures and Coatings “ De Novo Nanoparticles “ Poly(ionic liquid)s as innovative polyelectrolytes COLLOID CHEMISTRY Research in the Department of Colloid Chemistry Scientific Profile Heterophase Polymerization The overall size of the Department of Colloid The notation „Heterophase Polymerization“ summarizes the Chemistry is about 65 people, covering a techniques of suspension-, emulsion-, mini-, and microemul- wide range of research topics. The effective sion-polymerization as well as precipitation polymerization. constituting element of the scientific activi- The solvent is usually water, but heterophase polymerization ties is the “project”, a structure headed by a in inverse media is also examined. This class of techniques, senior scientist involving a mixture of techni- although one of the eldest in polymer science, is still most cians, graduate students and post-docs (3–8 peo- actual, as it allows the production of high polymer containing ple). Projects are related to scientists, but usually formulations in water as an environment-friendly solvent. Markus Antonietti 06.02.1960 have a temporal character of about 5 years. After this time, Solvent free coatings, glues, paper and fabric production are 1983: Diploma, Chemistry permanent scientists (including the director) have to redefine just a small excerpt of a long list where polymer dispersions (University of Mainz) their profile to justify the allocation of resources. In the case have opened new possibilities and technologies, omnipresent Thesis: Bestimmung der Diffusion von of non-permanent scientists, the projects usually leave the in daily life, but usually unseen to the public. photomarkiertem Polystyrol: spezielle department with the promotion of the scientist, i.e. the group Central points of interest of the team working on hetero - Systeme, chemische und physikalisch- leaders can continue their specific research in their new aca- phase polymerization are: chemische Aspekte demic environment (usually as professors) without competi- 1985: Doctorate for natural science tion of the institute. · We want to simplify the synthesis of complex polymer mor- (summa cum laude, University of Mainz In the time of this report and following these schemes, phologies on a molecular level (synthesis of block & graft Thesis: Diffusion in topological serious changes of my department already observed in the copolymers by emulsion polymerization) and on a colloidal constraint polymer melts with last two reporting periods continued to take place. Dr. Mag- level (core-shell latices, hollow spheres, one-step synthesis Prof. Dr. H. Sillescu dalena Titirici, group leader on “Sustainable Carbon”, accept- of reinforced materials) by a rational use of the particle 1990: Habilitation, Physical Chemistry ed a position at Queen Mary University London, and the move interfaces in heterophase polymerization (Dr. Klaus Tauer). (University of Mainz) Thesis: Microgels of Prof. Dr. Xinchen Wang to Fuzhou University was complet- – Polymers with a special architecture ed, moving “Artificial Photosynthesis” into an International · We use new stabilizer systems (such as PILs) to generate 02/1991: Associate Professor Joint Research Lab. At the same time, I hired Dr. Jiayin Yuan new latexes structures and films with switchable Hydropho- (University of Mainz) (“Polymer Ionic Liquids”, PILs), Dr. Filipe Vilela (“Photocataly- bicity (Dr. Klaus Tauer, with Dr. Jiayin Yuan) 09/1991: Full Professor sis”), Dr. Dariya Dontsova (“Photosynthesis”), Dr. Davide (Philipps University Marburg) Esposito (“Processes for the raw material change”), and Dr. · Emulsions stability can be accomplished even without mole- Since 1993: Director Tim Fellinger (“Electrocatalysis”) as new group leaders to cular stabilizers using ultraclean conditions. The mecha- (Max Planck Institute of Colloids and start to establish their own research profile. It is fair to say nisms of this process are analyzed (Dr. Klaus Tauer) Interfaces, Golm), that a majority of the group is now still in the primary phase Full Professor (University of Potsdam) of higher academic profiling, making the following report Chimera Polymers and more idea that publication oriented. This turnover of leading Novel Polymerization Techniques junior scientists is beyond typical and easy, but reflects the Amphiphilic polymers consist of components which dissolve dynamic character of the department. in different media, e.g. a hydrophilic and a hydrophobic part. The profile of the department has therefore been seri- Since we are able to adjust both components sensitively to ously reoriented, keeping only some of the old strongholds. the dispersion medium as well as to the dispersant, am phi - The following topics are now found within the department: philic polymers allow the stabilization of unusual dispersion problems. The newest observation in this direction is that · Heterophase Polymerization also block copolymers without hydrophobic contrast can self- · Chimera Polymers and Novel Polymerization Techniques assemble to complex structures. Focal points of interest in · Polymeric Ionic Liquids this project group are: · Service Lab Electron microscopy · Carbon Materials and Hybrids for Energy applications · The micelle formation and lyotropic liquid crystalline phase · Processes for the Raw Material Change behavior of blockcopolymers polymers is examined in depen- · De Novo Inorganic Nanostructures dence of the molecular structure, the relative amount of the · Photocatalysis and Artificial Photosynthesis different components, as well as the secondary interactions between the structure forming bio-like blocks (Dr. Helmut The projects below those headers are briefly explained: Schlaad). · The introduction of secondary interactions such as H-bridges or dipole interactions results in superstructures with more complex order and broken symmetry, which oint the way to general rules of biomimetic mesoscale organization (Dr. Helmut Schlaad) 76 Polymeric Ionic Liquids · Porous polymers as membranes for fuel cells and battery Polymerized ionic liquids or poly (ionic liquid)s (PILs) are usu- separators and as novel gas storage materials (Dr. Jens ally synthesized by polymerization of ionic liquid (IL) Weber) monomers and constitute a subclass of polyelectrolyte that combines a part of IL’s properties with the common features · Metal free catalysis and Nitride Catalysis for water split- of polymers. PILs are not only another class of ordinary poly- ting, methane and ammonia activation, or CO2-reactions electrolytes, but carry extra properties, which can be attrib- (Prof. Dr. Xinchen Wang in the international joint laboratory, uted to the high polarizability of the monomer units. As such, new group leader Dr. Dariya Dontsova) PILs hold some unique structural merits and are advanta- geous in a multitude of materials applications, such as gas · New engineering carbons based on ILs and salt templating separation/absorption, carbon preparation, energy conver- as electrodes and electrode membranes for fuel cells and sion, catalysis, and many more. PILs are also surface-active electroxcatalysis; this also includes work on supercapaci- and multifunctional polyelectrolytes. Though the originally tors. Another application are metal free carbon catalysts for designed task of PILs was only to effectively stabilize a wide O2 and H2 activation (Dr. Tim Fellinger) variety of diverse nanoparticles, their unexpected versatile powers were quickly recognized and contribute significant to Processes for the Raw Material Change create science from the products. Hydrothermal Carbonization is a 100 year old technique to generate carbonaceous materials from biomass in a colloidal · PILs with special stabilization behavior and switchable solu- heterophase reaction processes. We reactivated in tha last tion properties are constructed from a wider range on 10 years this process to address questions of the sustain- organic cations and anions (Dr. Jiayin Yuan). able/chemical synthesis of carbon nanostructures and – just recently – also organic compounds. First experiments indi- · Biodegradable and biomass-based PILs are built from cate that not only the non-oil based raw material base hydrothermal reforming chemicals (Dr. Jiayin Yuan, Dr. (“sugar”) is highly attractive. It is also the broad range of Davide Esposito) chemistry which can be addressed and which makes this approach attractive. · PILs are used via complexation and/or carbonization as mesoporous membrane materials with high chemical selec- · Analysis of the elemental chemical steps of HTC and tivity and permeation (Dr. Jiaiyn Yuan, Markus Antonietti). hybridization with technical monomers to generate new materials, such as mesoporous scaffolds for catalysis, bat- Service Lab on Electron Microscopy tery applications and modern chromatography These activi- All the work described above is necessarily accompanied by ties are reported, but are transferred to London with the for- a considerable amount of colloid analysis which includes mer group leader Dr. Maria Magdalena Titirici) special techniques of transmission and scanning electron microscopy on soft, structured matter which are runned on · Performing hydrothermal processing under distinct catalytic the base of a central service group (Dr. Jürgen Hartmann). conditions does not lead only to carbon materials, but also It is a big problem that due
Recommended publications
  • Novel Triadius-Like N4 Specie of Iron Nitride Compounds Under High
    www.nature.com/scientificreports OPEN Novel triadius-like N4 specie of iron nitride compounds under high pressure Received: 11 May 2018 Yuanzheng Chen1, Xinyong Cai1, Hongyan Wang1, Hongbo Wang2 & Hui Wang2 Accepted: 2 July 2018 Various nitrogen species in nitrides are fascinating since they often appear with these nitride as Published: xx xx xxxx superconductors, hard materials, and high-energy density. As a typical complex, though iron nitride has been intensively studied, nitrogen species in the iron–nitrogen (Fe-N) compounds only have been confned to single atom (N) or molecule nitrogen (N2). Using a structure search method based on the CALYPSO methodology, unexpectedly, we here revealed two new stable high pressure (HP) states at 1:2 and 1:4 compositions with striking nitrogen species. The results show that the proposed FeN2 stabilizes by a break up of molecule N2 into a novel planar N4 unit (P63/mcm, >228 GPa) while FeN4 stabilizes by a infnite 1D linear nitrogen chains N∞ (P-1, >50 GPa; Cmmm, >250 GPa). In the intriguing N4 specie of P63/mcm-FeN2, we fnd that it possesses three equal N = N covalent bonds and forms a perfect triadius-like confguration being never reported before. This uniqueness gives rise to a set of remarkable properties for the crystal phase: it is identifed to have a good mechanical property and a potential for phonon-mediated superconductivity with a Tc of 4–8 K. This discovery puts the Fe-N system into a new class of desirable materials combining advanced mechanical properties and superconductivity. Nitrogen (N) is the most abundant element in the earth’s atmosphere and is one of the least studied elements regarding the composition of the Earth1.
    [Show full text]
  • Nanoscale Iron Nitride, Ε-Fe3n: Preparation from Liquid Ammonia
    Nanoscale Iron Nitride, e-Fe3N: Preparation from Liquid Ammonia and Magnetic Properties Anne-Marie Zieschang,1 Joshua D. Bocarsly,2 Michael Dürrschnabel,3 Leopoldo Molina-Luna,3 Hans-Joachim Kleebe,3 Ram Seshadri,*2 Barbara Albert*1 1Technische Universität Darmstadt, Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany 2 University of California, Santa Barbara, Department of Chemistry & Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara CA 93106, U.S.A. 3Technische Universität Darmstadt, Department of Materials and Geosciences, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany ABSTRACT: e-Fe3N shows interesting magnetism but is difficult to obtain as a pure and single-phase sample. We report a new preparation method using the reduction of iron(II) bromide with elemental sodium in liquid ammonia at –78 °C, followed by annealing at 573 K. Nanostructured and monophasic oxygen-free iron nitride, e-Fe3N, is produced according to X-ray diffraction and transmission electron microscopy experiments. The magnetic properties between 2 K and 625 K were characterized using a vibrating sample magnetometer, revealing soft ferromagnetic behavior with a low-temperature average 1 moment of 1.5 µB/Fe and a Curie temperature of 500 K. TC is lower than that of bulk e-Fe3N (575 K), which corresponds well with the small particle size within the agglomerates (15.4 (± 4.1) nm according to TEM, 15.8(1) according to XRD). Samples were analyzed before and after partial oxidation (Fe3N-FexOy core-shell nanoparticles with a 2–3 nm thick shell) by X-ray diffraction, transmission electron microscopy, electron energy-loss spectroscopy and magnetic measurements.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0037529 A1 D'evelyn Et Al
    US 20060037529A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0037529 A1 D'Evelyn et al. (43) Pub. Date: Feb. 23, 2006 (54) SINGLE CRYSTAL AND QUASI-SINGLE Publication Classification CRYSTAL COMPOSITION, APPARATUS, AND ASSOCATED METHOD (51) Int. Cl. (75) Inventors: Mark Philip D’Evelyn, Niskayuna, NY C30B I5/00 (2006.01) (US); Dong-Sil Park, Niskayuna, NY C30B 30/04 (2006.01) (US); Victor Lienkong Lou, C30B 28/10 (2006.01) Niskayuna, NY (US); Thomas Francis C30B 27/02 (2006.01) McNulty, Ballston Lake, NY (US) C30B 21/06 (2006.01) (52) U.S. Cl. .................................. 117/36; 117/13; 117/19 Correspondence Address: Shawn A. McClintic General Electric Global Research One Research Circle (57) ABSTRACT Docket Room K1-4A59 Niskayuna, NY 12309 (US) A Single crystal or quasi-single crystal including one or more (73) Assignee: General Electric Company, Group III material and an impurity. The impurity includes Schenectady, NY (US) one or more elements from Group IA, Group IIA, Groups IIIB to VIIB, Group VIII, Group IB, Group IIB, or Group (21) Appl. No.: 11/249,872 VIIA elements of the periodic table of elements. A compo (22) Filed: Oct. 13, 2005 Sition for forming a crystal is also provided. The composi tion includes a Source material comprising a Group III Related U.S. Application Data element, and a flux comprising one or more of P, Rb, Cs, Mg, Ca, Sr., Ba, Sc., Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, (63) Continuation-in-part of application No. 10/063,164, Mo, Pd, Ag, Hf, Ta, W, Pt, Au, Hg, Ge, or Sb, or the flux may filed on Mar.
    [Show full text]
  • An Iron Nitride Complex** Carola Vogel, Frank W
    Angewandte Chemie DOI: 10.1002/anie.200800600 Coordination Chemistry An Iron Nitride Complex** Carola Vogel, Frank W. Heinemann, Jörg Sutter, Christian Anthon, and Karsten Meyer* Coordination compounds of iron in high oxidation states have nitride complex stabilized by the sterically encumbering N- been invoked as reactive intermediates in biocatalyses. anchored tris(carbene) ligand, tris[2-(3-aryl-imidazol-2-ylide- Iron(IV) ferryl species are examples of such highly reactive ne)ethyl]amine (TIMENR,R= xylyl (xyl), mesityl (mes)).[11] species that have long been known to be at the catalytic Structurally and electronically related to the tetrahedral centers of oxygenases.[1] Supported by X-ray diffraction phosphinoborate ligand system by Peters and Betley,[7] this studies on nitrogenase, the iron nitride moiety has recently tripodal N-heterocyclic carbene (NHC) system coordinates a been suggested to be present at the site of biological nitrogen high-spin FeII center in a trigonal-planar fashion, thus forming reduction.[2] As a result, well-characterized high-valent iron four-coordinate complexes with the metal ion in trigonal- complexes have been sought as biomimetic models for pyramidal environments. transformations mediated by iron-containing enzymes. Under inert atmosphere, treatment of TIMENR with To gain understanding of iron nitride reactivity and the one equivalent of anhydrous ferrous chloride in pyridine at possible role of such species in biocatalysis, insight into the room temperature yields the four-coordinate FeII complexes molecular structure of complexes stabilizing the [FeN] [(TIMENR)Fe(Cl)]Cl (1mes, 1xyl) as analytically pure, white synthon is highly desirable. Whereas significant progress has powders in 80% yield (Scheme 1).
    [Show full text]
  • Molecular Beam Epitaxial Growth of Zinc-Blende Fen(111) on Wurtzite Gan(0001)
    Molecular Beam Epitaxial Growth of Zinc-Blende FeN(111) on Wurtzite GaN(0001) Wenzhi Lin, Jeongihm Pak, David C. Ingram, and Arthur R. Smith∗ Nanoscale and Quantum Phenomena Institute, Department of Physics and Astronomy, Ohio University, Athens, OH 45701, USA Abstract We report a study of the growth of iron nitride on gallium nitride using molecular beam epitaxy with Fe e-beam evaporation and rf N-plasma growth. Thin iron nitride layers of thickness about 16 nm were grown and monitored in-situ using reflection high energy electron diffraction. The samples following growth were analyzed ex-situ using a variety of techniques including x-ray diffraction, Rutherford Backscattering, and atomic force microscopy. By monitoring the structure, morphology, and lattice constant evolution of the iron nitride film, the crystal phase and orientation with respect to the GaN substrate are deduced; and from RBS data, the stoichiometry is obtained. The growth is discussed in terms of a 2-D to 3-D growth mode transition, and a critical thickness is estimated. Keywords: Nitride materials; Crystal growth; Crystal structure; X-ray diffraction ∗ e-mail: [email protected] 1 INTRODUCTION Iron nitrides, having various complex phases such as Fe16N2,Fe8N, Fe4N, Fe3N2,Fe2N, and FeN, are attractive for their high magnetic moments [1], corrosion and oxidation resistance [2], and many other attractive properties. Motivated by the potential attractive properties, there have been many attempts to achieve Fe-N films of various composition, and using various growth methods including sputtering[3–9], nitriding [10–14], ion implantation[15– 18], and molecular beam epitaxy (MBE) [19–23].
    [Show full text]
  • COLLOID CHEMISTRY Research in the Department of Colloid Chemistry
    “ Heterophase Polymerization “ Porous Polymers “ Chimera Polymers and Novel Synthetic Methods “ Modern Techniques of Colloid Analysis “ Hydrothermal Carbon Nanostructures and Coatings “ De Novo Nanoparticles “ International Joint Laboratory COLLOID CHEMISTRY Research in the Department of Colloid Chemistry Scientific Profile renaissance, since it allows the production of high polymer The size of the Department of Colloid Chem - containing formulations in water as an environment-friendly istry is currently about 60 people, with inde - solvent. pendent researchers covering a wide range Central points of interest of the team working on het - of research topics. The effective constituting erophase polymerization are: element of the scientific activities is the “project”, structure headed by a senior scien - · We want to gain a better understanding of the nucleation tist involving a mixture of technicians, graduate period and particle formation for an optimal control of the students and post-docs (3-8 people). Projects are particle size and polydispersity. For this purpose, new exper - Markus Antonietti 06.02.1960 related to scientists, but have a temporal character of usual - imental online multidetection techniques are developed; the 1983: Diploma, Chemistry ly about 5 years. After this time, permanent scientists have to experimental investigations are supplemented by theoreti - (University of Mainz) redefine their profile to justify the allocation of resources. In cal and numerical descriptions (Dr. Klaus Tauer) . Thesis: Bestimmung der Diffusion
    [Show full text]
  • Nitride Layers on X37crmov51 Tool Steel Used in the Extrusion Aluminum Industry
    A STUDY OF TEMPERATURE EFFECT ON PROPERTIES OF NITRIDE LAYERS ON X37CRMOV51 TOOL STEEL USED IN THE EXTRUSION ALUMINUM INDUSTRY 32 SEPTEMBER 2020 After testing samples for structure, hardness, and abrasion immediately after nitriding and again after annealing, it was found that annealing the nitrided samples leads to degradation of the nitride layer, accounting for a decrease of hardness. By RAFAŁ HUBICKI, MARIA RICHERT, and MARCEL WIEWIÓRA he paper concerns the effect of annealing time and peratures of 500–600°C. The nitride layer of tempered steel is wear- temperature on the properties of the nitride layer on resistant. X37CrMoV51 tool steel used in the extrusion aluminum The nitriding process, which lasts from about 20 to 50 hours, pro- T industry. Samples made from X37CrMoV51 steel were duces a layer with a thickness of 0.2–0.4 mm. Increasing the nitrid- hardened and tempered, and then nitrided at 530°C. After nitrid- ing temperature causes an increase in the thickness of the nitride ing, the samples were annealed in a furnace at 470°C for 8 hours, layer; however, it reduces its hardness, which adversely affects the 12 hours, 24 hours, 30 hours, and 60 hours, and additionally for 20 resistance to abrasion. Literature data indicate that lower nitriding hours at 270°C. The samples were tested for structure, hardness, and temperature favors high hardness of the nitride layer and good resis- abrasion immediately after nitriding and again after annealing. It tance against erosion and corrosion resistance [1–3]. was found that annealing the nitrided samples leads to degradation The effect of nitrogen presence in the atomic structure of steel of the nitride layer, accounting for the decrease of hardness.
    [Show full text]
  • A Report on the Progress of the Research / Thesis Entitled
    SYNTHESIS AND CHARACTERIZATION OF IRON-COPPER NITRIDE THIN FILMS BY HRISHIKESH KAMAT A THESIS SUBMITTED TO THE FACULTY OF ALFRED UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN MATERIALS SCIENCE AND ENGINEERING ALFRED, NEW YORK SEPTEMBER, 2016 Alfred University theses are copyright protected and may be used for education or personal research only. Reproduction or distribution in part or whole is prohibited without written permission from the author. Signature page may be viewed at Scholes Library, New York State College of Ceramics, Alfred University, Alfred, New York. SYNTHESIS AND CHARACTERIZATION OF IRON-COPPER NITRIDE THIN FILMS BY HRISHIKESH KAMAT B.S. NATIONAL INSTITUTE OF TECHNOLOGY, SRINAGAR (2011) SIGNATURE OF AUTHOR APPROVED BY XINGWU WANG, ADVISOR STEVEN M. PILGRIM, ADVISORY COMMITTEE WILLIAM C. LACOURSE, ADVISORY COMMITTEE CHAIR, ORAL THESIS DEFENSE ACCEPTED BY ALASTAIR N. CORMACK, INTERIM DEAN KAZUO INAMORI SCHOOL OF ENGINEERING ACKNOWLEDGMENTS I would like to thank Dr. Xingwu Wang for the guidance and encouragement he provided during my graduate research and for financially supporting me during my graduate studies. I would also like to thank my thesis committee members; Dr. Steven M. Pilgrim and Dr. William C. LaCourse for providing me valuable feedback on my written thesis. A special thanks to Dr. Steven Tidrow for supporting me financially and encouraging me with his positive words. I would like to extend my gratitude to Dr. Hao Zeng, James Parry, Dr. Yueling Qin and Dr. Ruikun Pan at the University of Buffalo for helping me with Sputter deposition of my thin films and FIB analysis.
    [Show full text]
  • Ferrofluids 9
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace at VSB Technical University of Ostrava Future of electrotechnics: ferrofluids 9 FUTURE OF ELECTROTECHNICS: FERROFLUIDS D. Mayer University of West Bohemia, Faculty of Electrical Engineering, Univerzitni 26, 306 14 Plzen. [email protected] Summary: Magnetic liquids enabled development of new devices and technologies that are a useful alternative to the existing ones. Many of these applications are still in progress and do not represent any break-through discoveries yet. Nevertheless one may expect that owing to their remarkable qualities magnetic fluids will become in the future a part of original projects. The research of magnetic liquids has a strongly multidisciplinary character. It is thus desirable for technicians of different specializations or other specialists (such as physicians, biologists, pharmacists etc.) to be acquainted with the qualities and existing applications of these perspective materials. ferromagnetic particles do not separate from the 1. INTRODUCTION carrier liquid and do not settle at the bottom of th the container (do not sediment), neither creates In the 19 century some physicists (M. Faraday, T. mutual aggregations. To reach stability ferrofluids J. Seebeck and others) verified their presumptions of must contain ferromagnetic particles of the size 5 to the qualities of the magnetic field using liquids where 15 nm (1 nm = 10-9m), so called nanoparticles. fine metal dust was dissolved. A disadvantage of this Nanoparticles are usually formed by one Weiss environment was its instability - under the influence domain. As a result of spontaneous magnetization it of gravity the dust tended to settle down.
    [Show full text]
  • UC Santa Barbara UC Santa Barbara Previously Published Works
    UC Santa Barbara UC Santa Barbara Previously Published Works Title Nanoscale Iron Nitride, e-Fe3N: Preparation from Liquid Ammonia and Magnetic Properties Permalink https://escholarship.org/uc/item/9k10b1xq Journal Chemistry of Materials, 29(2) ISSN 0897-4756 1520-5002 Authors Zieschang, Anne-Marie Bocarsly, Joshua D Dürrschnabel, Michael et al. Publication Date 2017-01-24 DOI 10.1021/acs.chemmater.6b04088 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Nanoscale Iron Nitride, e-Fe3N: Preparation from Liquid Ammonia and Magnetic Properties Anne-Marie Zieschang,1 Joshua D. Bocarsly,2 Michael Dürrschnabel,3 Leopoldo Molina-Luna,3 Hans-Joachim Kleebe,3 Ram Seshadri,*2 Barbara Albert*1 1Technische Universität Darmstadt, Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Alarich-Weiss-Str. 12, 64287 Darmstadt, Germany 2 University of California, Santa Barbara, Department of Chemistry & Biochemistry, Materials Department, and Materials Research Laboratory, University of California, Santa Barbara CA 93106, U.S.A. 3Technische Universität Darmstadt, Department of Materials and Geosciences, Alarich-Weiss-Str. 2, 64287 Darmstadt, Germany ABSTRACT: e-Fe3N shows interesting magnetism but is difficult to obtain as a pure and single-phase sample. We report a new preparation method using the reduction of iron(II) bromide with elemental sodium in liquid ammonia at –78 °C, followed by annealing at 573 K. Nanostructured and monophasic oxygen-free iron nitride, e-Fe3N, is produced according to X-ray diffraction and transmission electron microscopy experiments. The magnetic properties between 2 K and 625 K were characterized using a vibrating sample magnetometer, revealing soft ferromagnetic behavior with a low-temperature average 1 moment of 1.5 µB/Fe and a Curie temperature of 500 K.
    [Show full text]
  • Precipitation of Nitrides in Iron-Based Binary and Ternary Alloys; Influence of Defects and Transformation-Misfit Stresses
    Max-Planck-Institut für Intelligente Systeme (ehemals Max-Planck-Institut für Metallforschung) Stuttgart Precipitation of nitrides in iron-based binary and ternary alloys; influence of defects and transformation-misfit stresses Maryam Akhlaghi Dissertation an der Universität Stuttgart Bericht Nr. 252 November 2015 Contents 2 Precipitation of nitrides in iron-based binary and ternary alloys; influence of defects and transformation-misfit stresses Von der Fakultät Chemie der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung Vorgelegt von Maryam Akhlaghi aus Teheran, Iran Hauptberichter: Prof. Dr. Ir. E. J. Mittemeijer Mitberichter: Prof. Dr. J. Bill Prüfungsvorsitzender: Prof. Dr. T. Schleid Tag der Einreichung: 16.09.2015 Tag der mündlichen Prüfung: 25.11.2015 MAX-PLANCK-INSTITUT FÜR INTELLIGENTE SYSTEME (ehemals MAX-PLANCK-INSTITUT FÜR METALLFORSCHUNG) INSTITUT FÜR MATERIALWISSENSCHAFT DER UNIVERSITÄT STUTTGART 2015 Contents 4 Contents I Table of contents Chapter 1. Introduction ............................................................................................................. 1 1.1. General introduction ......................................................................................................... 1 1.2. Microstructure of nitrided region ...................................................................................... 1 1.3. Nitriding of binary and ternary Fe-based alloys ................................................................ 2
    [Show full text]
  • Formation of a Non-Magnetic Metallic Iron Nitride Layer on Bcc Fe(100)
    OPEN ACCESS Related content - Metals on oxides: structure, morphology Formation of a non-magnetic metallic iron nitride and interface chemistry S Valeri, S Benedetti and P Luches layer on bcc Fe(100) - Surface characterization of sulfur and alkanethiol self-assembled monolayers onAu(111) To cite this article: C Navío et al 2010 New J. Phys. 12 073004 C Vericat, M E Vela, G A Benitez et al. - Polarity of oxide surfaces and nanostructures Jacek Goniakowski, Fabio Finocchi and Claudine Noguera View the article online for updates and enhancements. Recent citations - Mukul Gupta - Synthesis and structural investigation of stoichiometric iron mononitride thin films Niti et al - Hexagonal iron nitride monolayer on Cu(001): zigzag-line-in-trough alignment Masamichi Yamada et al This content was downloaded from IP address 150.244.1.242 on 28/12/2020 at 11:06 New Journal of Physics The open–access journal for physics Formation of a non-magnetic metallic iron nitride layer on bcc Fe(100) C Navío1,2,5, M J Capitán3, J Álvarez1,2, R Miranda1,2,4 and F Yndurain1,2 1 Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain 2 Instituto Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain 3 Instituto de Estructura de la Materia—CSIC, c/Serrano 119, 28006 Madrid, Spain 4 Instituto Madrileno de Estudios Avanzados en Nanociencia (IMDEA), Spain E-mail: [email protected] New Journal of Physics 12 (2010) 073004 (13pp) Received 28 January 2010 Published 1 July 2010 Online at http://www.njp.org/ doi:10.1088/1367-2630/12/7/073004 Abstract.
    [Show full text]