An Introduction to Educational Games Virtualization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Designing Multivocal Museums Designing Multivocal Museums Intercultural Practices at Museo Designing Diocesano, Milano
Books designing multivocal museums designing multivocal museums intercultural practices at museo designing diocesano, milano This book presents the process of designing multivocal of a museum experience, included in MeLa Project’s research, and accomplished at the Museo Diocesano di Milano. museums The museum experience put together many relevant issues for the renewal of museum Intercultural Practices at Museo interpretation, using a design discourse to Diocesano, Milano explore the combination of technological tools and multi-vocal content to enable diverse dynamics of cultural representation. edited by The volume maps the entire process of a Rita Capurro and Eleonora Lupo cross-disciplinary research to develop possible scenarios that can be translated not only as test verification of the theoretical investigations but Lupo edited by Rita Capurro and Eleonora also into the production of various experimental exhibition designs. With contributions by: Rita Capurro, Sara Chie- sa, Luca Greci, Eleonora Lupo, Ece Özdil, Davide Spallazzo, Raffaella Trocchianesi. editors Rita Capurro, Art Historian, Ph.D., Inde- pendent Researcher Eleonora Lupo, Ph.D., Associate Professor at School of Design, Politecnico di Milano. cover image — Test with users at Museo Diocesano, Milan, Raffaella Trocchianesi, 2014. Books MeLa–European Museums in an age of migrations 12 isbn978-88-941674-0-5 Designing Multivocal Museums: Intercultural Practices at Museo Diocesano, Milano Books Designing Multivocal Museums Intercultural Practices at Museo Diocesano, Milano edited by Rita Capurro and Eleonora Lupo Books 4 — designing multivocal museums: intercultural practices at museo diocesano, milano mela book 12 – designing multivocal museums intercultural practices at museo diocesano, milano. Published by Politecnico di Milano, Department of Design © January 2016, The Authors This work is provided on line as open access document under the terms of Creative Com- mons Attribution-NonCommercial-NoDerivatives 4.0 International. -
A Narrative Metaphor to Facilitate Educational Game Authoring Eugenio J
A narrative metaphor to facilitate educational game authoring Eugenio J. Marchiori 1, Javier Torrente 1, Ángel del Blanco 1, Pablo Moreno-Ger 1, Pilar Sancho1, Baltasar Fernández-Manjón 1,2 1 Department of Software Engineering and Artificial Intelligence, Complutense University, Madrid 2 Laboratory of Computer Science, Massachusetts General Hospital, Harvard University, Boston (emarchiori, jtorrente, angel.dba, pablom)@fdi.ucm.es, [email protected], [email protected] Abstract In this paper we present WEEV (Writing Environment for Educational Video games), a methodology for educational point-and-click adventure game authoring. Our approach aims to allow educators to actively collaborate in the educational game development process, using a narrative-based representation. WEEV is based on a pragmatic reinterpretation of previous works on narrativity and video games, enhanced by the use of a novel visual language to represent the flow of the story or narrative. The WEEV methodology has been implemented into an actual tool based on the already established <e-Adventure> platform for educational games. This tool was improved with feedback gathered from formative evaluation, end-users testing (i.e. educators), and actual use in the development of an educational game. The system, still under development, presents some user-interaction problems along with a need for the educational effectiveness of the resulting games to be further analyzed. However, this paper highlights that, according to the qualitative results of evaluations, WEEV can indeed be successfully applied to simplify the game creation process and that by using representations of games that educators can understand, WEEV can help provide educational value to games. -
A Method for Designing Educational Games
The 5/10 Method: A method for designing educational games Rick van Rooij Bsc Supervised by Johan Jeuring and Nicolas Pronost Utrecht University 2 Abstract ABSTRACT 3 1. INTRODUCTION 3 1.1 GAMES IN EDUCATION AND PROBLEM POSTULATION 3 1.2 THE DESIGN PROCESS 4 1.3 TEN STEPS TO COMPLEX LEARNING 5 1.3.1 4C/ID METHOD 5 1.3.2 THE 10 STEPS IN DETAIL 6 2. A METHOD FOR EDUCATIONAL GAME DESIGN 9 2.1 THE GOAL OF THE 5/10 METHOD 9 2.2 THE 5/10 METHOD 10 2.2.1 ANALYZE 10 2.2.2 DESIGN 11 2.2.3 DEVELOP 16 2.2.4 IMPLEMENT 16 2.2.5 EVALUATE 16 3. CASE STUDY: MOTH 17 3.1 THE GOAL 17 3.2 USING THE METHOD 18 3.2.1 ANALYZE 18 3.2.2 DESIGN 21 3.2.3 DEVELOP 29 3.2.4 IMPLEMENT 31 3.2.5 EVALUATE 31 4. CONCLUSION AND FUTURE WORK 33 REFERENCES 33 APPENDIX A: LEARNING GOALS, TASKS AND BACKGROUND INFORMATION 36 APPENDIX B: LEVEL SCREENSHOTS 39 APPENDIX C: THE SURVEY 45 Abstract 3 Abstract Over the last few years educative games have been on a rise. They have been shown to improve insight, involvement (Marino and Hayes, 2012), engagement in the subject (Wilson et al, 2009) scientific discourse, reasoning and inquiry (Barab et al. 2007). They have been used in schools with success and good results (Ketelhut, 2007). However recent studies show that in spite of this potential games are often misused and are hard to integrate in the instructional environment. -
Openbsd Gaming Resource
OPENBSD GAMING RESOURCE A continually updated resource for playing video games on OpenBSD. Mr. Satterly Updated August 7, 2021 P11U17A3B8 III Title: OpenBSD Gaming Resource Author: Mr. Satterly Publisher: Mr. Satterly Date: Updated August 7, 2021 Copyright: Creative Commons Zero 1.0 Universal Email: [email protected] Website: https://MrSatterly.com/ Contents 1 Introduction1 2 Ways to play the games2 2.1 Base system........................ 2 2.2 Ports/Editors........................ 3 2.3 Ports/Emulators...................... 3 Arcade emulation..................... 4 Computer emulation................... 4 Game console emulation................. 4 Operating system emulation .............. 7 2.4 Ports/Games........................ 8 Game engines....................... 8 Interactive fiction..................... 9 2.5 Ports/Math......................... 10 2.6 Ports/Net.......................... 10 2.7 Ports/Shells ........................ 12 2.8 Ports/WWW ........................ 12 3 Notable games 14 3.1 Free games ........................ 14 A-I.............................. 14 J-R.............................. 22 S-Z.............................. 26 3.2 Non-free games...................... 31 4 Getting the games 33 4.1 Games............................ 33 5 Former ways to play games 37 6 What next? 38 Appendices 39 A Clones, models, and variants 39 Index 51 IV 1 Introduction I use this document to help organize my thoughts, files, and links on how to play games on OpenBSD. It helps me to remember what I have gone through while finding new games. The biggest reason to read or at least skim this document is because how can you search for something you do not know exists? I will show you ways to play games, what free and non-free games are available, and give links to help you get started on downloading them. -
Introduction to Games-Based Learning
Chapter I Introduction to Games-Based Learning Stephen Tang Liverpool.John.Moores.University,.UK Martin Hanneghan Liverpool.John.Moores.University,.UK Abdennour El Rhalibi Liverpool.John.Moores.University,.UK ABSTRACT Games-based.learning.takes.advantage.of.gaming.technologies.to.create.a.fun,.motivating,.and.inter- active.virtual.learning.environment.that.promotes.situated.experiential.learning..Many.researchers. now.believe.that.this.approach.can.better.motivate.present.day.entertainment-driven.learners.to.more. thoroughly engage in learning through meaningful activities defined in the game context as opposed to those.offered.using.more.traditional.didactic.approaches..This.chapter.describes.games-based.learning,. the.related.terms.and.scope,.current.approaches,.embedded.pedagogies.and.challenges.for.providing. high-quality.education.in.the.21st.Century. INTRODUCTION 2006). These digital cultures have significantly changed the ways humans work, communicate, The 21st Century has witnessed emergent cultures socialise and play and they are also affecting such as ‘blogging’ (Khan & Kellner, 2004), file the way younger generations learn. It is crucial sharing (Lessig, 2004) and gaming (Pearce, that learning is congruent to lifestyle for effec- Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited. Introduction to Games-Based Learning tive learning to take place (JISC, 2004). These such opportunities (BECTa, 2006; FAS, 2006a). changes in lifestyle are inevitable and have since Many also agree that it is now appropriate to introduced additional challenges to teachers in take advantage of gaming technologies to create providing high-quality education. a new generation of educational technology tools One of the significant changes experienced to equip learners of all ages with necessary skills in the education sector is the change of learners’ through experiential learning (FAS, 2006a). -
Serious Educational Game Assessment
Serious Educational Game Assessment Serious Educational Game Assessment Serious Educational Practical Methods and Models for Educational Games, Simulations and Virtual Worlds Game Assessment Leonard Annetta George Mason University, Fairfax, VA, USA Practical Methods and Models for and Educational Games, Simulations and Stephen Bronack (Eds.) Virtual Worlds Clemson University, Clemson, South Carolina, USA In an increasingly scientifi c and technological world the need for a knowledgeable citizenry, individuals who understand the fundamentals of technological ideas and think Leonard Annetta and Stephen Bronack (Eds.) critically about these issues, has never been greater. There is growing appreciation across the broader education community that educational three dimensional virtual learning environments are part of the daily lives of citizens, not only regularly occurring in schools and in after-school programs, but also in informal settings like museums, science centers, zoos and aquariums, at home with family, in the workplace, during leisure time when children and adults participate in community-based activities. This blurring of the boundaries of where, when, why, how and with whom people learn, along with better understandings of learning as a personally constructed, life-long process of making meaning and shaping identity, has initiated a growing awareness in the fi eld that the questions and frameworks guiding assessing these environments (Eds.) Bronack Stephen and Annetta Leonard should be reconsidered in light of these new realities. The audience for this book will be researchers working in the Serious Games arena along with distance education instructors and administrators and students on the cutting edge of assessment in computer generated environments. S e n s e P u b l i s h e r s DIVS SensePublishers Serious Educational Game Assessment Serious Educational Game Assessment Practical Methods and Models for Educational Games, Simulations and Virtual Worlds Edited by Leonard Annetta George Mason University, Fairfax, VA, USA Stephen C. -
Card Game Maker: a Card Game Creation System for Unity
SBC - Proceedings of the SBGames 2014 | ISSN: 2179-2259 Card Game Maker: A card game creation system for Unity Rainer M. Vieira¹ João R. Bittencourt² Universidade do Vale do Rio dos Sinos, Brazil Abstract existing generic game engine and adapt it to run card games employing the specifications of the creation The current article reports the development process system. This engine, being a layer below the CGM, of a card game creation system bundled with an was named Card Game Maker Engine (CGME). engine to execute these games. To find out the project requirements, case studies of modern card This article is organized into six Sections: in games were used as guidelines to define common Section 1 the motivation for creating the CGM was components in card games that can be used to the presented; In Section 2 a brief review of related work development of said system. With the data acquired will be done; in Section 3 the results of case studies on these studies, a two-layered architecture model that demonstrate the common elements in classic and had been defined, demonstrated by a class diagram. modern card games will be reported; In Section 4 the With the architecture proposed, a study to define the CGME layer proposed model will be presented; In technology requirements to the project had been Section 5 the technological decisions for the made, defining the system as a Unity extension implementation of the presented model will be developed in C#. When the Card Game Maker presented; and finally, in Section 6 the concluding creational process is concluded, a complete game remarks will be made, also reporting future work. -
A Recommended Workflow Methodology in the Creation of An
Manson et al. BMC Medical Imaging (2015) 15:44 DOI 10.1186/s12880-015-0088-6 TECHNICAL ADVANCE Open Access A recommended workflow methodology in the creation of an educational and training application incorporating a digital reconstruction of the cerebral ventricular system and cerebrospinal fluid circulation to aid anatomical understanding Amy Manson1,2, Matthieu Poyade2 and Paul Rea1* Abstract Background: The use of computer-aided learning in education can be advantageous, especially when interactive three-dimensional (3D) models are used to aid learning of complex 3D structures. The anatomy of the ventricular system of the brain is difficult to fully understand as it is seldom seen in 3D, as is the flow of cerebrospinal fluid (CSF). This article outlines a workflow for the creation of an interactive training tool for the cerebral ventricular system, an educationally challenging area of anatomy. This outline is based on the use of widely available computer software packages. Methods: Using MR images of the cerebral ventricular system and several widely available commercial and free software packages, the techniques of 3D modelling, texturing, sculpting, image editing and animations were combined to create a workflow in the creation of an interactive educational and training tool. This was focussed on cerebral ventricular system anatomy, and the flow of cerebrospinal fluid. Results: We have successfully created a robust methodology by using key software packages in the creation of an interactive education and training tool. This has resulted in an application being developed which details the anatomy of the ventricular system, and flow of cerebrospinal fluid using an anatomically accurate 3D model. -
A Survey Full Text Available At
Full text available at: http://dx.doi.org/10.1561/0600000083 Publishing and Consuming 3D Content on the Web: A Survey Full text available at: http://dx.doi.org/10.1561/0600000083 Other titles in Foundations and Trends R in Computer Graphics and Vision Crowdsourcing in Computer Vision Adriana Kovashka, Olga Russakovsky, Li Fei-Fei and Kristen Grauman ISBN: 978-1-68083-212-9 The Path to Path-Traced Movies Per H. Christensen and Wojciech Jarosz ISBN: 978-1-68083-210-5 (Hyper)-Graphs Inference through Convex Relaxations and Move Making Algorithms Nikos Komodakis, M. Pawan Kumar and Nikos Paragios ISBN: 978-1-68083-138-2 A Survey of Photometric Stereo Techniques Jens Ackermann and Michael Goesele ISBN: 978-1-68083-078-1 Multi-View Stereo: A Tutorial Yasutaka Furukawa and Carlos Hernandez ISBN: 978-1-60198-836-2 Full text available at: http://dx.doi.org/10.1561/0600000083 Publishing and Consuming 3D Content on the Web: A Survey Marco Potenziani Visual Computing Lab, ISTI CNR [email protected] Marco Callieri Visual Computing Lab, ISTI CNR [email protected] Matteo Dellepiane Visual Computing Lab, ISTI CNR [email protected] Roberto Scopigno Visual Computing Lab, ISTI CNR [email protected] Boston — Delft Full text available at: http://dx.doi.org/10.1561/0600000083 Foundations and Trends R in Computer Graphics and Vision Published, sold and distributed by: now Publishers Inc. PO Box 1024 Hanover, MA 02339 United States Tel. +1-781-985-4510 www.nowpublishers.com [email protected] Outside North America: now Publishers Inc. -
Designing Educational Games for Computer Programming: a Holistic Framework
Designing Educational Games for Computer Programming: A holistic Framework Christos Malliarakis, Maya Satratzemi and Stelios Xinogalos University of Macedonia, Thessaloniki, Greece [email protected] [email protected] [email protected] Abstract: Computer science is continuously evolving during the past decades. This has also brought forth new knowledge that should be incorporated and new learning strategies must be adopted for the successful teaching of all sub-domains. For example, computer programming is a vital knowledge area within computer science with constantly changing curriculum and its teaching remains a difficult endeavour. On the other hand, students start from a very early age to interact with computers through games and other entertaining multimedia software. Therefore, they seem to be keen on environments with impressive special effects and graphical interfaces where they interact with the environment’s elements. In response, teachers are trying to connect computer programming learning with computer operations that students are familiar with, which does not include textual editors for programming lines of code with no other interaction. Educational games used in computer programming courses are considered to benefit learning, because they motivate students towards actively participating and interacting with the game’s activities. Thus, we have developed an educational multiplayer game that aims to further enhance computer programming education by addressing occurring problems. This process, however, requires proper planning during the design of educational games, and thus the availability of adequate guidelines that include all characteristics that should be incorporated in such games. This paper aims to introduce and elaborate on a holistic framework that has been constructed as a guide towards the development of this game. -
An Empirical Study of the Effects of Narrative
Educational Game Design: An Empirical Study of the Effects of Narrative Chaima Jemmali Sara Bunian Andrea Mambretti Magy Seif El-Nasr Northeastern University Northeastern University Northeastern University Northeastern University [email protected] [email protected] [email protected] m.seifel-nasr@ northeastern.edu ABSTRACT their interactive characteristics offer the ability of experiential learn- Integrating narrative elements into a game is a key element in de- ing [36], thus improving content relevance and increasing intrinsic signing an immersive experience. Narrative has been hypothesized motivation [23, 55]. While the relationship between learning and en- to improve engagement, motivation, and learning within educational gagement in educational games is under ongoing investigation, most environments. While empirical results have been produced to show research studies agree that engagement enhances and encourages that narrative enhances engagement and motivation, its effects on learning [66, 68]. learning were shown to either be insignificant or negative. We, there- Integrating narrative elements into a game is a key design element fore, aim to address the question of how to integrate narrative in a for creating an immersive experience [3, 34]. The work on narrative game to improve learning. We address this through the design of and games is exhaustive with several conferences associated with the May’s Journey, an educational game that teaches basic programming topic. With space limitation, we will only discuss relevant definitions concepts where a story is integrated. The game design seamlessly and work. Juul defines game narrative as discourse (the telling of integrates learning goals, core mechanic and narrative elements. In a story) containing the existents and events [31]. -
Digital Educational Game Development Methodology) and IDEALLY (Digital Educational Game Software Quality Evaluation Methodology)
Digital Educational Games: Methodologies for Development and Software Quality by Serdar Aslan Dissertation submitted to the Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science and Applications Osman Balci, Chair James D. Arthur Reza Barkhi Mat Grove Anderson Norton Eli Tilevich September 30th, 2016 Blacksburg, Virginia Key words: Digital game development, educational game development, game development life cycle, game development methodology, game development processes, game development workflows, game software quality evaluation, and game-based learning. Digital Educational Games: Methodologies for Development and Software Quality by Serdar Aslan ABSTRACT Development of a game in the form of software for game-based learning poses significant technical challenges for educators, researchers, game designers, and software engineers. The game development consists of a set of complex processes requiring multi-faceted knowledge in multiple disciplines such as digital graphic design, education, gaming, instructional design, modeling and simulation, psychology, software engineering, visual arts, and the learning subject area. Planning and managing such a complex multidisciplinary development project require unifying methodologies for development and software quality evaluation and should not be performed in an ad hoc manner. This dissertation presents such methodologies named: GAMED (diGital educAtional gaMe dEvelopment methoDology) and IDEALLY (dIgital eDucational gamE softwAre quaLity evaLuation methodologY). GAMED consists of a body of methods, rules, and postulates and is embedded within a digital educational game life cycle. The life cycle describes a framework for organization of the phases, processes, work products, quality assurance activities, and project management activities required to develop, use, maintain, and evolve a digital educational game from birth to retirement.