I Aerial Ice Dam Control & Removal Major Qualifying Project Report Project

Total Page:16

File Type:pdf, Size:1020Kb

I Aerial Ice Dam Control & Removal Major Qualifying Project Report Project Aerial Ice Dam Control & Removal Major Qualifying Project Report Project: JMS-1604 Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science in Mechanical Engineering By: Stephen Arata Riley Shoneck Mitchell Weeks Advisor: Professor John M. Sullivan Jr. 25 March 2015 i Abstract Ice dams can cause serious damage to homes during the wintertime. A multirotor mounted solution was sought to drop salt on these ice dams, allowing backed-up water to flow through and prevent water damage. Two mechanisms were developed and prototyped. The prototypes had rapid interchangeability and a unified static multirotor mount. They were created with rapid prototyping technology for quick assembly and repair, with the majority of parts composed of lightweight laser-cut acrylic and 3D-printed PLA. One mechanism carries and deploys 0.7 kg of standard calcium chloride throw-able ice pucks, while the other carries drops 1.239 kg of granular pet-safe ice melt. They are both controlled manually by the same transmitter/receiver system (tested to a line-of-sight range of over 450m), which is independent of the multirotor flight control system. Both mechanisms perform as intended, and jams are clearable using the transmitter. ii Acknowledgements Firstly, we would like to thank our advisor, Professor Sullivan. He kept us on-task and always cognizant of the practical considerations we may have otherwise overlooked. Secondly, Joseph St Germain in the Robotics Engineering department proved instrumental in helping with the multirotor aspect of the project. The feasibility of many multirotors and the workings of our electronics (specifically, the transmitter and receiver) went through him first. He also assisted in the procurement of motors and miscellaneous other hardware that we incorporated into the final designs. Finally, Gregory Tighe, an undergraduate in the Robotics Engineering department, kindly allowed us to survey the S1000+ multirotor that his MQP used as a vehicle. We were able to obtain measurements and a working components list with his assistance. iii Authorship All sections were written and edited jointly by all members. iv Contents Abstract....................................................................................................................................... ii Acknowledgements .................................................................................................................... iii Authorship .................................................................................................................................. iv Contents ..................................................................................................................................... v Table of Figures ....................................................................................................................... viii Table of Tables .......................................................................................................................... ix Executive Summary .................................................................................................................... x Terminology ............................................................................................................................... xi 1.0 Introduction .......................................................................................................................... 1 2.0 Identification of Need ........................................................................................................... 4 3.0 Background Research .......................................................................................................... 5 3.1 Ice Dams and Their Effects............................................................................................... 5 3.2 Ice Dam Prevention, Control, and Removal ...................................................................... 6 3.2.1 Ice Dam Prevention .................................................................................................... 6 3.2.2 Ice Dam Mitigation ....................................................................................................10 3.2.3 Ice Dam Removal ......................................................................................................13 3.3 Multirotors ........................................................................................................................15 3.3.1 DJI Phantom 3 ..........................................................................................................16 3.3.2 3D Robotics X8+ .......................................................................................................17 3.3.3 DJI S900 ...................................................................................................................18 3.3.4 DJI S1000+ ...............................................................................................................19 3.3.5 Feasibility of Select Multirotor Modifications ..............................................................20 3.3.6 Legality of Multirotor Use ...........................................................................................21 4.0 Goal Statement ...................................................................................................................23 5.0 Task Specifications .............................................................................................................23 6.0 Development of Preliminary Designs...................................................................................24 6.1 Preliminary Designs .........................................................................................................24 6.1.1 Design 1 - Vertical Tube with Shelves .......................................................................24 6.2.2 Design 2 - Swivel Arm ...............................................................................................26 6.2.3 Design 3 - Crank-Slider .............................................................................................27 6.2.4 Design 4 - Rack and Pinion .......................................................................................28 v 6.2.5 Design 5 - Turntable ..................................................................................................29 6.2.6 Design 6 - Turbo Puck Release .................................................................................30 6.2.7 Design 7 - CD Changer .............................................................................................31 6.2.8 Design 8 - Granular Funnel .......................................................................................33 6.2 Weighted Design Matrix ...................................................................................................34 7.0 Selection of Final Designs ...................................................................................................37 7.1 Constraints ......................................................................................................................37 7.2 Selection of Materials and Fasteners ...............................................................................41 7.2.1 Material Selection ......................................................................................................41 7.2.2 Rapid Prototyping ......................................................................................................42 7.2.3 Fastener Selection ....................................................................................................42 7.3 Inclusion of Motors and Electronic Components ..............................................................42 7.4 Mounting Mechanisms to the Multirotor ...........................................................................43 7.4.1 Design of the Multirotor Mounting Units .....................................................................43 7.4.2 Design of the Generic Rectangular Mounting Plate ...................................................44 7.4.3 Finite Element Analysis of the Mounting Units ...........................................................45 7.5 Development of the Puck Mechanism Final Design .........................................................48 7.5.1 General Description of Purpose ................................................................................48 7.5.2 Determining a Mass Limit for the Mechanism ............................................................48 7.5.3 Design Development/Construction ............................................................................49 7.5.4 How the Puck Mechanism Works ..............................................................................55 7.5.5 Customization of the Mounting Plate .........................................................................58 7.5.6 Description of the Motor ............................................................................................59 7.5.7 Ensuring an Optimal Center of Mass .........................................................................59 7.5.8 Overall Mass and Height Check of the Final Design ..................................................63 7.6 Final Design of the Granular Mechanism .........................................................................65 7.6.1 General Description of Purpose ................................................................................65
Recommended publications
  • 100 Magic Water Words
    WaterCards.(WebFinal).qxp 6/15/06 8:10 AM Page 1 estuary ocean backwater canal ice flood torrent snowflake iceberg wastewater 10 0 ripple tributary pond aquifer icicle waterfall foam creek igloo cove Water inlet fish ladder snowpack reservoir sleet Words slough shower gulf rivulet salt lake groundwater sea puddle swamp blizzard mist eddy spillway wetland harbor steam Narcissus surf dew white water headwaters tide whirlpool rapids brook 100 Water Words abyssal runoff snow swell vapor EFFECT: Lay 10 cards out blue side up. Ask a participant to mentally select a word and turn the card with the word on it over. You turn all marsh aqueduct river channel saltwater the other cards over and mix them up. Ask the participant to point to the card with his/her water table spray cloud sound haze word on it. You magically tell the word selected. KEY: The second word from the top on the riptide lake glacier fountain spring white side is a code word for a number from one to ten. Here is the code key: Ocean = one (ocean/one) watershed bay stream lock pool Torrent = two (torrent/two) Tributary = three (tributary/three) Foam = four (foam/four) precipitation lagoon wave crest bayou Fish ladder = five (fish ladder/five) Shower = six (shower/six) current trough hail well sluice Sea = seven (sea/seven) Eddy = eight (eddy/eight) Narcissus = nine (Narcissus/nine) salt marsh bog rain breaker deluge Tide = ten (tide/ten) Notice the code word on the card that is first frost downpour fog strait snowstorm turned over. When the second card is selected the chosen word will be the secret number inundation cloudburst effluent wake rainbow from the top.
    [Show full text]
  • In the United States District Court for the District of Maine
    Case 2:21-cv-00154-JDL Document 1 Filed 06/14/21 Page 1 of 13 PageID #: 1 IN THE UNITED STATES DISTRICT COURT FOR THE DISTRICT OF MAINE ICE CASTLES, LLC, a Utah limited liability company, Plaintiff, COMPLAINT vs. Case No.: ____________ CAMERON CLAN SNACK CO., LLC, a Maine limited liability company; HARBOR ENTERPRISES MARKETING AND JURY TRIAL DEMANDED PRODUCTION, LLC, a Maine limited liability company; and LESTER SPEAR, an individual, Defendants. Plaintiff Ice Castles, LLC (“Ice Castles”), by and through undersigned counsel of record, hereby complains against Defendants Cameron Clan Snack Co., LLC; Harbor Enterprises Marketing and Production, LLC; and Lester Spear (collectively, the “Defendants”) as follows: PARTIES 1. Ice Castles is a Utah limited liability company located at 1054 East 300 North, American Fork, Utah 84003. 2. Upon information and belief, Defendant Cameron Clan Snack Co., LLC is a Maine limited liability company with its principal place of business at 798 Wiscasset Road, Boothbay, Maine 04537. 3. Upon information and belief, Defendant Harbor Enterprises Marketing and Production, LLC is a Maine limited liability company with its principal place of business at 13 Trillium Loop, Wyman, Maine 04982. Case 2:21-cv-00154-JDL Document 1 Filed 06/14/21 Page 2 of 13 PageID #: 2 4. Upon information and belief, Defendant Lester Spear is an individual that resides in Boothbay, Maine. JURISDICTION AND VENUE 5. This is a civil action for patent infringement arising under the Patent Act, 35 U.S.C. § 101 et seq. 6. This Court has subject matter jurisdiction over this controversy pursuant to 28 U.S.C.
    [Show full text]
  • Glossary of Marine Navigation 792
    GLOSSARY OF MARINE NAVIGATION 792 ice fog. Fog composed of suspended particles of ice, partly ice crystals 20 to 100 microns in diameter but chiefly, especially when dense, droxtals 12 to 20 microns in diameter. It occurs at very low temper- atures, and usually in clear, calm weather in high latitudes. The sun I is usually visible and may cause halo phenomena. Ice fog is rare at temperatures warmer than -30° C or -20°F. Also called RIME FOG. See also FREEZING FOG. IALA Maritime Buoyage System. A uniform system of maritime buoy- icefoot, n. A narrow fringe of ice attached to the coast, unmoved by tides age which is now implemented by most maritime nations. Within and remaining after the fast ice has moved away. the single system there are two buoyage regions, designated as Re- ice-free, adj. Referring to a locale with no sea ice; there may be some ice gion A and Region B, where lateral marks differ only in the colors of port and starboard hand marks. In Region A, red is to port on en- of land origin present. tering; in Region B, red is to starboard on entering. The system is a ice front. The vertical cliff forming the seaward face of an ice shelf or oth- combined cardinal and lateral system, and applies to all fixed and er floating glacier varying in height from 2 to 50 meters above sea floating marks, other than lighthouses, sector lights, leading lights level. See also ICE WALL. and marks, lightships and large navigational buoys. ice island.
    [Show full text]
  • A Tale of Three Sisters: Reconstructing the Holocene Glacial History and Paleoclimate Record at Three Sisters Volcanoes, Oregon, United States
    Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 2005 A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States Shaun Andrew Marcott Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Geology Commons, and the Glaciology Commons Let us know how access to this document benefits ou.y Recommended Citation Marcott, Shaun Andrew, "A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States" (2005). Dissertations and Theses. Paper 3386. https://doi.org/10.15760/etd.5275 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. THESIS APPROVAL The abstract and thesis of Shaun Andrew Marcott for the Master of Science in Geology were presented August II, 2005, and accepted by the thesis committee and the department. COMMITTEE APPROVALS: (Z}) Representative of the Office of Graduate Studies DEPARTMENT APPROVAL: MIchael L. Cummings, Chair Department of Geology ( ABSTRACT An abstract of the thesis of Shaun Andrew Marcott for the Master of Science in Geology presented August II, 2005. Title: A Tale of Three Sisters: Reconstructing the Holocene glacial history and paleoclimate record at Three Sisters Volcanoes, Oregon, United States. At least four glacial stands occurred since 6.5 ka B.P. based on moraines located on the eastern flanks of the Three Sisters Volcanoes and the northern flanks of Broken Top Mountain in the Central Oregon Cascades.
    [Show full text]
  • Steelhead Use of Icicle Creek: a Review ______
    U.S. Fish and Wildlife Service Steelhead Use of Icicle Creek: A Review ______________________________________________________________________________ Matt Hall, William Gale, and Malenna Cappellini U.S. Fish and Wildlife Service Mid-Columbia River Fisheries Resource Office Leavenworth, WA 98826 On the cover: Oncorhynchus mykiss caught in a screw trap in the Entiat River. USFWS The correct citation for this report is: Hall, M, W. Gale, and M. Cappellini. 2014. Steelhead Use of Icicle Creek: A Review. U.S. Fish and Wildlife Service. Leavenworth WA. STEELHEAD USE OF ICICLE CREEK: A REVIEW Authored by Matt Hall, William Gale, and Malenna Cappellini U.S. Fish and Wildlife Service Mid-Columbia River Fisheries Resource Office 7501 Icicle Road Leavenworth, WA 98826 Final May 21, 2014 Disclaimers Any findings and conclusions presented in this report are those of the authors and may not necessarily represent the views of the U.S. Fish and Wildlife Service. The mention of trade names or commercial products in this report does not constitute endorsement or recommendation for use by the federal government. Table of Contents List of Tables ..................................................................................................................................v List of Figures ................................................................................................................................ ii Introduction ....................................................................................................................................1
    [Show full text]
  • Preventing Ice Dams
    {Property} Preventing Ice Dams waterWhat CAU Recommends: Introduction > Clean rain gutters annually to Ice dams represent a costly (and potentially remove obstructions that can dangerous) hazard for property owners and block the flow of water from community associations. Even worse, once a the roof building has shown itself to be susceptible to ice > Inspect attic insulation and dams, it is more likely to keep developing them ventilation during future cold weather. > Install ice shields or other waterproof membranes The majority of ice dams form as a ridge of ice beneath the roof covering along a rain gutter and roof eave. As ice builds during roof replacement up, it creates an unintended dam that prevents projects melting snow from draining off of the roof. Some > Locate a contractor that can can be very easy to see, but others form around clear ice dams from your skylights, chimneys, and other features that make buildings them harder to detect from the ground. Need More Information? Whether they are visible or not, ice dams can Additional information relating cause significant damage to a building or unit. to ice dam prevention is That’s because water that pools up behind it can available from The Institute find its way under the roof and into the structure for Business and Home Safety and the interior of a home. It isn’t unusual for (www.disastersafety.org) or by ice dams to cause damage to insulation, wall contacting CAU’s Loss Control interiors, ceiling finishes, and trim. Exterior Department. damage to roofs, gutters, and spaces below an ice dam (like windows and landscaping) is also common.
    [Show full text]
  • A Free-Boundary Theory for the Shape of the Ideal Dripping Icicle Martin B
    PHYSICS OF FLUIDS 18, 083101 ͑2006͒ A free-boundary theory for the shape of the ideal dripping icicle Martin B. Short Department of Physics, University of Arizona, Tucson, Arizona 85721 James C. Baygents Department of Chemical and Environmental Engineering and Program in Applied Mathematics, University of Arizona, Tucson, Arizona 85721 ͒ Raymond E. Goldsteina Department of Physics, Program in Applied Mathematics, and BIO5 Institute, University of Arizona, Tucson, Arizona 85721 ͑Received 16 January 2006; accepted 10 July 2006; published online 18 August 2006͒ The growth of icicles is considered as a free-boundary problem. A synthesis of atmospheric heat transfer, geometrical considerations, and thin-film fluid dynamics leads to a nonlinear ordinary differential equation for the shape of a uniformly advancing icicle, the solution to which defines a parameter-free shape which compares very favorably with that of natural icicles. Away from the tip, the solution has a power-law form identical to that recently found for the growth of stalactites by precipitation of calcium carbonate. This analysis thereby explains why stalactites and icicles are so similar in form despite the vastly different physics and chemistry of their formation. In addition, a curious link is noted between the shape so calculated and that found through consideration of only the thin coating water layer. © 2006 American Institute of Physics. ͓DOI: 10.1063/1.2335152͔ The formation of patterns in snow and ice has been a boundary layer in the surrounding air through which latent source of fascination since antiquity. As early as 1611, Jo- heat is transported by diffusion and convection.
    [Show full text]
  • Ice Dams and Icicles Presented By: Steve Norwood, AIA Norwood Architecture, Inc
    Ice Dams and Icicles Presented by: Steve Norwood, AIA Norwood Architecture, Inc. 363 Centennial Pkwy, #150 Louisville, CO 80027 (303)-664-1528 www.norwoodarchitecture.com © 2011 Norwood Architecture, Inc. 363 Centennial Pkwy #150 Louisville, CO (303)-664-1528 www.norwoodarchitecture.com 1 INTRODUCTION: o Roofs that drain to cold eaves may experience ice dams and icicles at their roof eaves and gutters in winter1. o Water that ponds upslope of ice dams may leak into the building envelope2. o Ice dams and icicles can create problems and hazards for building structures and their occupants. fig. A © 2011 Norwood Architecture, Inc. 363 Centennial Pkwy #150 Louisville, CO (303)-664-1528 www.norwoodarchitecture.com 2 ICE DAM: o An ice dam is the accumulation of thick layers of ice at roof eaves and gutters that results from periodic melting of snow over warmer areas of roof flowing down and re-freezing at the colder eaves and overhangs. fig. B © 2011 Norwood Architecture, Inc. 363 Centennial Pkwy #150 Louisville, CO (303)-664-1528 www.norwoodarchitecture.com 3 ICICLE: o An icicle is a spike of ice formed when water dripping or falling from an object freezes3. o Icicles form when ice or snow melts and then re-freezes at the eave3. fig. C © 2011 Norwood Architecture, Inc. 363 Centennial Pkwy #150 Louisville, CO (303)-664-1528 www.norwoodarchitecture.com 4 COLD REGIONS o Icings typically do not form when outside temperatures are above 22° F 2. When it is warmer than 22° F outside, meltwater seldom re-freezes at roof eaves4. o Snow is an insulator.
    [Show full text]
  • Snow Removal and Ice Control. Proceedings of a Conference Gold, L
    NRC Publications Archive Archives des publications du CNRC Snow Removal and Ice Control. Proceedings of a Conference Gold, L. W.; Williams, G. P. For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous. Publisher’s version / Version de l'éditeur: https://doi.org/10.4224/40001167 Technical Memorandum (National Research Council of Canada. Associate Committee on Soil and Snow Mechanics), 1964-02-17 NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=8f163de6-fe2d-4138-9c00-52a914883cdd https://publications-cnrc.canada.ca/fra/voir/objet/?id=8f163de6-fe2d-4138-9c00-52a914883cdd Access and use of this website and the material on it are subject to the Terms and Conditions set forth at https://nrc-publications.canada.ca/eng/copyright READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site https://publications-cnrc.canada.ca/fra/droits LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB. Questions? Contact the NRC Publications Archive team at [email protected]. If you wish to email the authors directly, please see the first page of the publication for their contact information. Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à [email protected].
    [Show full text]
  • Ice Dams: Formations and Fixes 1St Edition
    Ice Dams: Formations and Fixes 1st Edition 516.621.2900 • [email protected] • jsheld.com Copyright © 2018 J.S. Held LLC, All rights reserved. TECHNICAL TOPICS As we approach the cooler change of seasons, we look forward to many things; the stunning change of foliage, football, and atmospheric water vapor frozen into ice crystals and falling in light white flakes, more commonly known as snow. If you live in the north, you’ve probably had anywhere from a few inches to several feet of snow at one time or another. If you have experienced snow accumulation, freezing temperatures, and certain building conditions, you may have been the recipient of an ice dam. The term “ice dam” refers to the damming of water behind an accumulation of ice buildup along the eaves and/or valleys on a roof covered with snow. Heat loss into the attic space or rafter cavities warms the roof deck and causes snow to melt. As this melted water makes it way to the eaves, it freezes at the eaves as there is no heat loss in this area. This can lead to a buildup of ice and a backup of water, hence the term “ice dam”. See Figure 1 below for additional details. Within this paper we review the cause of ice dams, steps to prevent their formation, and mitigation of damage when an ice dam forms. We will also review ANSI/IICRC standards to determine the categorization of water from ice dams. Ice Dam Basics There are a few key points that differentiate an ice dam condition from typical snow accumulation on a roof: • The outside temperatures must be below freezing for a duration long enough to allow freezing at the roof edge to occur.
    [Show full text]
  • 20130201 ICAR Glossary
    20130201 ICAR Glossary English Deutsch Italiano Español Slovenščina ablation Ablation; Abtrag ablazione ablación ablacija abrasion Abrasion abrasione abrasion abrazija access Zugang accesso acceso dohod accident Unfall incidente accidente nesreča accident site Unfallort; Unfallstelle luogo dell’incidente lugar del accidente mesto nesreče accumulation Akkumulation; Ablagerung accumulazione acumulación; depósito akumulacija accuracy of location Ortungsgenauigkeit precisione della localizzazione precisión de la localización natančnost določanja nahajališča active identifying object; active object for location aktives Merkmal identificatore attivo elemento activo para localización aktivno obeležje additional load Zusatzbelastung sovraccarico; carico supplementare carga adicional; carga suplementaria dodatna obremenitev additional stress Zusatzspannung tensione supplementare tensión suplementaria; tensión adicional dodatna napetost air pressure gradient Luftdruckgefälle gradiente di pressione dell'aria gradiente de presión de aire gradient zračnega tlaka air rescue Flugrettung soccorso aereo socorro aereo letalsko reševanje akja (sled) Akja akia; slitta di soccorso akia akia albedo Albedo albedo; coefficiente di diffusione albedo albedo alder Erle ontano aliso jelša solicitación admisible; solicitación tolerable; carga allowable loading; acceptable loading zulässige Beanspruchung sollecitazione ammissibile; sollecitazione tollerabile mejna obremenitev tolerable allowable stress zulässige Spannung tensione ammissibile; tensione tollerabile
    [Show full text]
  • Crusty Alga Uncovers Sea-Ice Loss That Inhibits COX-2
    Selections from the RESEARCH HIGHLIGHTS scientific literature PHARMACOLOGY Painkiller kills the bad effects of pot Marijuana’s undesirable effects NICK CALOYIANIS on the brain can be overcome by using painkillers similar to ibuprofen, at least in mice. Chu Chen and his colleagues at Louisiana State University Health Sciences Center in New Orleans treated mice with THC, marijuana’s main active ingredient. They found that THC impaired the animals’ memory and the efficiency of their neuronal signalling, probably by stimulating the enzyme COX-2. The authors reversed these negative effects — and were able to maintain marijuana’s benefits, such as reducing CLIMATE SCIENCES neurodegeneration — when they also treated the mice with a drug, similar to ibuprofen, Crusty alga uncovers sea-ice loss that inhibits COX-2. The authors suggest that the Like tree rings, layers of growth in a long-lived marine alga Clathromorphum compactum benefits of medical marijuana Arctic alga may preserve a temperature record (pictured). It can live for hundreds of years and could be enhanced with the use of past climate. Specimens from the Canadian builds a fresh layer of crust each year. of such inhibitors. Arctic indicate that sea-ice cover has shrunk The thickness of each layer, and the ratio of Cell 155, 1154–1165 (2013) drastically in the past 150 years — to the lowest magnesium to calcium within it, are linked to levels in the 646 years of the algal record. water temperature and the amount of sunlight PALAEOECOLOGY Satellite records of the Arctic’s shrinking the organism receives. The discovery suggests sea-ice cover date back only to the late 1970s.
    [Show full text]