Asean Drug Monitoring Report 2016
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zootaxa,Namtokocoris Sites, a New Genus of Naucoridae
Zootaxa 1588: 1–29 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Namtokocoris Sites, a new genus of Naucoridae (Hemiptera: Heteroptera) in waterfalls of Indochina, with descriptions of six new species ROBERT W. SITES AND AKEKAWAT VITHEEPRADIT Enns Entomology Museum, Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA Abstract A new genus with six new species of Naucoridae inhabiting waterfalls of Indochina are described from a decade of aquatic insect collections in Thailand and Vietnam. Namtokocoris Sites NEW GENUS is diagnosed by a pair of promi- nent scutellar protuberances, the prosternal midline bears an expansive, thin, plate-like carina, the forelegs of both sexes have a one-segmented tarsus apparently fused with the tibia, and a single claw. Prominent linear series of stout hairs occur on the hemelytra, although this attribute is not unique within the subfamily. Despite the lack of sexual dimorphism in the forelegs, this new genus is a member of the subfamily Laccocorinae, an assignment based on other characters con- sistent with this subfamily. Character states of this genus are compared with those of other Asian genera of Laccocori- nae. The type species, Namtokocoris siamensis Sites NEW SPECIES, is widely distributed from northern through eastern Thailand in waterfalls of several mountain ranges. Namtokocoris khlonglan Sites NEW SPECIES was collected only at Namtok Khlong Lan at Khlong Lan National Park. Namtokocoris minor Sites NEW SPECIES was collected at two waterfalls near the border with Burma in Kanchanaburi Province and is the smallest species known. -
(Unofficial Translation) Order of the Centre for the Administration of the Situation Due to the Outbreak of the Communicable Disease Coronavirus 2019 (COVID-19) No
(Unofficial Translation) Order of the Centre for the Administration of the Situation due to the Outbreak of the Communicable Disease Coronavirus 2019 (COVID-19) No. 1/2564 Re : COVID-19 Zoning Areas Categorised as Maximum COVID-19 Control Zones based on Regulations Issued under Section 9 of the Emergency Decree on Public Administration in Emergency Situations B.E. 2548 (2005) ------------------------------------ Pursuant to the Declaration of an Emergency Situation in all areas of the Kingdom of Thailand as from 26 March B.E. 2563 (2020) and the subsequent 8th extension of the duration of the enforcement of the Declaration of an Emergency Situation until 15 January B.E. 2564 (2021); In order to efficiently manage and prepare the prevention of a new wave of outbreak of the communicable disease Coronavirus 2019 in accordance with guidelines for the COVID-19 zoning based on Regulations issued under Section 9 of the Emergency Decree on Public Administration in Emergency Situations B.E. 2548 (2005), by virtue of Clause 4 (2) of the Order of the Prime Minister No. 4/2563 on the Appointment of Supervisors, Chief Officials and Competent Officials Responsible for Remedying the Emergency Situation, issued on 25 March B.E. 2563 (2020), and its amendments, the Prime Minister, in the capacity of the Director of the Centre for COVID-19 Situation Administration, with the advice of the Emergency Operation Center for Medical and Public Health Issues and the Centre for COVID-19 Situation Administration of the Ministry of Interior, hereby orders Chief Officials responsible for remedying the emergency situation and competent officials to carry out functions in accordance with the measures under the Regulations, for the COVID-19 zoning areas categorised as maximum control zones according to the list of Provinces attached to this Order. -
Estimation of Cadmium Contamination in Different Restoration Scenarios by RUSLE Model
Environment and Natural Resources Journal 2020; 18(4): 376-386 Estimation of Cadmium Contamination in Different Restoration Scenarios by RUSLE Model Arisara Charoenpanyanet1* and Panlop Huttagosol2 1Department of Geography, Faculty of Social Sciences, Chiang Mai University, Chiang Mai 50200, Thailand 2Department of Mining and Petroleum Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai 50200, Thailand ARTICLE INFO ABSTRACT Received: 9 May 2020 The Mae Tao watershed of Thailand faced cadmium (Cd) contamination Received in revised: 27 Jul 2020 problems from zinc mining for a long time until the mining area was closed to Accepted: 31 Jul 2020 decrease the level of Cd concentration. This study reproduced the possible Published online: 25 Aug 2020 scenarios of Cd contamination due to soil loss. Four scenarios of forest DOI: 10.32526/ennrj.18.4.2020.36 restoration were implemented in this study, all of which were calculated with Keywords: the Revised Universal Soil Loss Equation (RUSLE) integrated with satellite RUSLE model/ Soil loss/ Cadmium imagery and Geographic Information Systems (GIS). Landsat 8-OLI was contamination/ Forest restoration/ acquired and land use/land cover (LULC) was classified in each scenario. Soil Mae Tao watershed loss maps were created. An inverse distance weighting (IDW) technique was used to estimate the concentration of Cd based on the field data consisting of * Corresponding author: 101 points of measured Cd concentration. Results from RUSLE model and IDW E-mail: [email protected] technique were combined to calculate Cd contamination due to soil loss for all four scenarios. Results showed that the restoration of Scenario 3, forest restoration in old and new mining areas in cooperation with reservoir construction, helped decrease Cd contamination the most. -
Nitrate Contamination in Groundwater in Sugarcane Field, Suphan Buri Province, Thailand
International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8 Issue-1S, May 2019 Nitrate Contamination in Groundwater in Sugarcane Field, Suphan Buri Province, Thailand Sorranat Ratchawang, Srilert Chotpantarat - infants and human birth defects [6], [7]. Nitrate (NO3 ) is a Abstract: Due to the intensive agricultural activities, nitrate chemical compound with one part nitrogen and three parts - (NO3 ) contamination is one of the problems for groundwater oxygen. This common form of nitrogen is usually found in resource protection in Thailand, well-known as an agricultural water. In general, occurring concentrations of nitrate in country. Nitrate has no taste and odorless in water and can be detected by chemical test only. It was reported that Suphan Buri is groundwater are naturally less than 2 mg/L originated from considered as one of the provinces with intensive agricultural natural sources such as decaying plant materials, atmospheric - areas, especially sugarcane fields. In this study, NO3 deposition, and inorganic fertilizers. concentrations were measured in 8 groundwater wells located in In Asia, nitrogen fertilizer application has increased - sugarcane fields in this province. NO3 concentration in the area dramatically approximately 17-fold in the last 40 years [8]. was ranged from 2.39 to 68.19 mg/L with an average As comparing to other countries, it was found that average concentration of 30.49 mg/L which was a bit higher than the previous study by Department of Groundwater Resources or fertilizer application rates of Thailand are low (Thailand: 101 - DGR, which found that NO3 was in the range of 0.53-66 mg/L kg/ha; USA: 113 kg/ha; China: 321 kg/ha). -
NEWSLETTER MONTH of January 2018
TECHNICAL DEPARTMENT E -NEWSLETTER MONTH of January 2018 COACH EDUCATION AFC C Licence Prerequisite Test The Theory and Practical certification test was held on 13th January 2018 Candidates being assessed for their coaching competency AFC Coach Trainer explaining the finer points in coaching Announcing the academy structure for the 2018 Football Association of Singapore Football Academy (FFA) General Manager of Youth Development S. Rajan presenting the 2018 structure to the respective coaches of the FFA U-15 to FFA U-18 Teams Presenting the Head Coaches and Assistant Coaches for the respective FFA Youth Teams FFA Team Head Coach Assistant Coach Goalkeeper Coach FFA U-18 Takuya Inoue Toni Teo Ahmaddulhaq Bin Che Omar FFA U-17 Mohamed Tokijan Bin Yeo Jun Guang Fadzuhasny Bin Darimosuvito Juraimi FFA U-16 Ryo Shigaki Muir Rafik Bin Taha Muhammad Amran Bin Addin FFA U-15 Syed Azmir Syed Ramoo Tharmaretnam Yeo Jun Guang Azman The FFA Teams are scheduled to train and play regularly at the following locations subject to inclement weather conditions which an alternative location will be sought FFA Team Training Location Time FFA U-18 Yishun Stadium 7 to 9 pm FFA U-17 Jurong West Stadium / Meridian 7 to 9 pm Junior College/Innova Junior College FFA U-16 Singapore Sports School 5 to 7 pm FFA U-15 Singapore Sports School 7 to 9 pm Establishing the expectations from the Technical perspective Technical Director Michel Sablon presenting his plans to the FFA Coaches and his expectations from the respective teams Working towards a common goal for Youth Development Former National Captain and current FAS Vice-President Mr. -
Kanchanaburi Province Holds River Kwai Bridge Festival 2015 (28/11/2015)
Kanchanaburi Province Holds River Kwai Bridge Festival 2015 (28/11/2015) Kanchanaburi Province is organizing the River Kwai Bridge Week, an event to promote tourism and take visitors back to the times of World War II. Both Thai and international tourists are welcome to the River Kwai Bridge Week, also known as the River Kwai Bridge Festival. It is held in conjunction with the Kanchanaburi Red Cross Fair, under the theme \"70 Years of Peace, Peaceful Kanchanaburi. The River Kwai Bridge Week and Kanchanaburi Red Cross Fair 2015 takes place in the River Kwai Bridge area and the Klip Bua field in Mueang district from 28 November to 7 December 2015. The highlight of this event is the spectacular light and sound presentation, telling the history of the River Kwai Bridge and the Death Railway of World War II. The festival also features cultural performances, concerts, exhibitions, a fun fair, and a bazaar of local products. Visitors will learn more about Kanchanaburi, which is the location of monuments associated with World War II. During the war, a large number of Allied prisoners of war and locally conscripted laborers were forced to build the River Kwai Bridge, which was part of the historic \"Death Railway linking Thailand with Burma, presently Myanmar. The Japanese who occupied Thailand at that time demanded free passage to Burma, and they wanted the railway bridge to serve as their supply line between Thailand, Burma, and India. The prisoners of war were from Australia, England, Holland, New Zealand, and the United States. Asian workers were also employed to build the bridge and the railway line, passing through rugged mountains and jungles. -
The Water Footprint Assessment of Ethanol Production from Molasses in Kanchanaburi and Supanburi Province of Thailand
Available online at www.sciencedirect.com APCBEE Procedia 5 ( 2013 ) 283 – 287 ICESD 2013: January 19-20, Dubai, UAE The Water Footprint Assessment of Ethanol Production from Molasses in Kanchanaburi and Supanburi Province of Thailand. Chooyok P, Pumijumnog N and Ussawarujikulchai A Faculty of Environment and Resource Studies, Mahidol University, Salaya, Phutthamonthon, Nakhon Pathom 73170, THAILAND. Abstract This study aims to assess water footprint of ethanol production from molasses in Kanchanaburi and Suphanburi Provinces of Thailand, based on the water footprint concept methodology. The water footprint of ethanol from molasses can be calculated into three parts: sugar cane, molasses, and ethanol production. The green, blue, and grey water footprints of ethanol production from molasses in the Kanchanaburi Province are 849.7, 209.6, and 45.0 (m3/ton), respectively, whereas those of ethanol in the Suphanburi Province are 708.3, 102.9, and 64.8 (m3/ton), respectively. Study results depend on several factors such as climate, soil, and planting date. These are related and effective to the size of water footprint. Especially, if schedule of planting and harvest date are different, which causes the volume of rainfall to be different; these affect the size of water footprints. A limitation of calculation of grey water footprint from crop process has been based on a consideration rate of nitrogen only. Both provinces in the study area have their respective amount of the grey water footprint of molasses, and ethanol production is zero. The wastewater in molasses and ethanol production have a very high temperature and BOD, whereas the grey water footprint in this study is zero because the wastewater may be stored in pond, or it may be reused in area of factory and does not have a direct discharge into the water system. -
UNHCR/UNIFEM/UNOHCHR/WB Joint Tsunami Migrant Assistance
TECHNICAL ASSISTANCE MISSION REPORT IOM/ UNHCR/UNIFEM/UNOHCHR/WB Joint Tsunami Migrant Assistance Mission to the Provinces of Krabi, Phangnga, Phuket and Ranong, Thailand 20-25 January 2005 Date of publication: 16 February 2005 Table of Contents Overview............................................................................................................................. 3 Executive Summary............................................................................................................ 4 Summary of Recommendations.......................................................................................... 5 Map of Affected Areas........................................................................................................ 6 I. Size and location of the Tsunami-Affected Migrant Population ............................ 7 a) Total number of migrants in four provinces ....................................................... 7 b) Phangnga Province.............................................................................................. 8 c) Ranong Province............................................................................................... 10 d) Phuket Province ................................................................................................ 11 e) Krabi Province .................................................................................................. 11 II. Effect of Tsunami on Migrant Workers................................................................ 13 a) Death Toll and Injuries -
STARTING LIST Match No
STARTING LIST Match No. 164 BG PATHUM UNITED VS TRUE BANGKOK UNITED 20 February 2021 17:00 BG Stadium Referee: WARINTRON SASSADEE Fifth Official: Referee Assessor: SOMSAK SEMSAYAN (THA) Assistant Referee 1: CHOTRAWEE TONGDUANG (THA) VAR: Match Commissioner: DANAI MONGKOLSIRI (THA) Assistant Referee 2: NATTHAPHON MALA (THA) Asst. VAR 1: WIWAT JUMPAOON General Coordinator: Fourth Official: SUWAT WONGSUWAN (THA) Asst. VAR 2: RACHAN DAWANGPA BG PATHUM UNITED BLUE, BLUE, BLUE Competition Statistic # Name Pos Jersey Name DOB MP Min GF GA Y 2Y R 1 CHATCHAI BOOTPROM GK GK CHATCHAI 04-02-1987 21 1890 -11 5 VICTOR MATTOS CARDOZO F DF VICTOR 19-12-1989 20 1764 12 4 6 SARACH YOOYEN MF SARACH 30-05-1992 19 1708 51 8 THITIPAN PUANGCHAN (C) MF THITIPHAN 01-09-1993 19 1622 3 7 10 SUMANYA PURISAY MF SUMANYA 05-12-1986 20 1699 3 2 11 SAHARAT PONGSUWAN DF SAHARAT P. 11-07-1996 18 1519 2 17 IRFAN FANDI AHMAD S U23 DF IRFAN 13-08-1997 14 1100 1 1 1 18 PATHOMPHON CHAROENRATTANAPHIROM MF PATHOMPON 21-04-1994 13 652 1 19 CHENROP SAMPHAODI FW CHENROP 02-06-1995 15 1013 3 1 22 SANTIPHARP CHUNNGOM DF SANTIPHARP 23-09-1996 20 1724 61 30 ANDRES JOSE TUNEZ ARCEO F DF TUNEZ 15-03-1987 20 1776 6 5 Substitutes 3 THOSSAPOL CHOMCHON DF THOSSAPOL 09-12-1989 7 351 1 4 CHAOWAT WEERACHART MF CHAOWAT 23-06-1996 15 549 9 SURACHAT SAREEPIM FW SURACHAT 24-05-1986 13 405 1 1 24 SARAWIN SAENGRA U23 MF SARAWIN 09-06-1997 1 15 1 25 FAHAS BILANGLOD U21 GK GK FAHAS 23-03-1999 28 TEERASIL DANGDA FW TEERASIL 06-06-1988 4 240 1 29 CHATREE CHIMTALE FW CHATREE C. -
Seismic Hazards in Thailand: a Compilation and Updated Probabilistic Analysis Santi Pailoplee* and Punya Charusiri
Pailoplee and Charusiri Earth, Planets and Space (2016) 68:98 DOI 10.1186/s40623-016-0465-6 FULL PAPER Open Access Seismic hazards in Thailand: a compilation and updated probabilistic analysis Santi Pailoplee* and Punya Charusiri Abstract A probabilistic seismic hazard analysis (PSHA) for Thailand was performed and compared to those of previous works. This PSHA was based upon (1) the most up-to-date paleoseismological data (slip rates), (2) the seismic source zones, (3) the seismicity parameters (a and b values), and (4) the strong ground-motion attenuation models suggested as being suitable models for Thailand. For the PSHA mapping, both the ground shaking and probability of exceed- ance (POE) were analyzed and mapped using various methods of presentation. In addition, site-specific PSHAs were demonstrated for ten major provinces within Thailand. For instance, a 2 and 10 % POE in the next 50 years of a 0.1–0.4 g and 0.1–0.2 g ground shaking, respectively, was found for western Thailand, defining this area as the most earthquake-prone region evaluated in Thailand. In a comparison between the ten selected specific provinces within Thailand, the Kanchanaburi and Tak provinces had comparatively high seismic hazards, and therefore, effective mitiga- tion plans for these areas should be made. Although Bangkok was defined as being within a low seismic hazard in this PSHA, a further study of seismic wave amplification due to the soft soil beneath Bangkok is required. Keywords: Seismic hazard analysis, Probabilistic method, Active fault, Seismic source zone, Thailand Introduction mainly on the present-day instrumental seismicity data, At present, much evidence supports the idea that Thailand Pailoplee and Choowong (2014) investigated and revealed is an earthquake-prone area. -
Supplementary Materials Anti-Infectious Plants of The
Supplementary Materials Anti‐infectious plants of the Thai Karen: A meta‐analysis Methee Phumthum and Henrik Balslev List of data sources 1. Anderson EF. Plants and people of the Golden Triangle ethnobotany of the hill tribes of northern Thailand. Southwest Portland: Timber Press, Inc.,; 1993. 2. Junkhonkaen J. Ethnobotany of Ban Bowee, Amphoe Suan Phueng, Changwat Ratchaburi. Master thesis. Bangkok: Kasetsart University Library; 2012. 3. Junsongduang A. Roles and importance of sacred Forest in biodiversity conservation in Mae Chaem District, Chiang Mai Province. PhD thesis. Chiang Mai: Chiang Mai University. 2014. 4. Kaewsangsai S. Ethnobotany of Karen in Khun Tuen Noi Village, Mae Tuen Sub‐district, Omkoi District, Chiang Mai Province. Master thesis. Chiang Mai: Chiang Mai University; 2017. 5. Kamwong K. Ethnobotany of Karens at Ban Mai Sawan and Ban Huay Pu Ling, Ban Luang Sub‐District, Chom Thong District, Chiang Mai Province. Master thesis. Chiang Mai: Chiang Mai University; 2010. 6. Kantasrila, R. Ethnobotany fo Karen at Ban Wa Do Kro, Mae Song Sub‐district, Tha Song Yang District, Tak Province. Master thesis. Chiang Mai: Chiang Mai University Library. 2016. 7. Klibai, A. Self‐care with indigenous medicine of long‐eared Karen ethnic group: Case study Ban Mae Sin, Ban Kang Pinjai, Ban Slok, Wang Chin district, Phrae province. Master thesis. Surin: Surin Rajabhat University. 2013. 8. Mahawongsanan, A., Change of herbal plants utilization of the Pgn Kʹnyau : A case study of Ban Huay Som Poy, Mae Tia Watershed, Chom Thong District, Chiang Mai Province. Master thesis. Chiang Mai: Chiang Mai University Library. 2008. 9. Prachuabaree L. Medicinal plants of Karang hill tribe in Baan Pong‐lueg, Kaeng Krachan District, Phetchaburi Province. -
24/7 Emergency Operation Center for Flood, Storms and Landslide
No. 68/2011, Wednesday, November 2, 2011, 11:00 AM 24/7 Emergency Operation Center for Flood, Storms and Landslide DATE: Wednesday, November 2, 2011 TIME: 09.00 LOCATION: Disaster Relief Operation Center at Energy Complex CHAIRPERSON: Mr. Pranai Suwannarat, Permanent Secretary for Interior 1. CURRENT SITUATION 1.1 Current flooded provinces: there are 26 recent flooded provinces: North; (Phichit, Phitsanulok, Nakhon Sawan, and Uthai Thani); Central (Chai Nat, Sing Buri, Ang Thong, Phra Nakhon Si Ayutthaya, Lopburi, Saraburi, Suphan Buri, Nakhon Pathom, Pathumthani, Nonthaburi, Samutsakhon and Bangkok) Northeast ; (Ubon Ratchathani, Khon Kaen, Srisaket, Roi-et, Surin, Mahasarakham and Kalasin); Eastern (Chacheongsao, Nakhon Nayok and Prachinburi) The total of 147 Districts, 1,133 Sub-Districts, 8,327 Villages, 720,145 families and/or 2,125,175,152 people are affected by the flood. The total fatalities are 427 deaths and 2 missing. (Missing: 1 in Mae Hong Son, and 1 in Uttaradit) 1.2 Amount of Rainfall: The heaviest rainfall in the past 24 hours is in Chumpol Sub-District, Si Nakarin District, Phutthalung Province at 37.5 mm. 1.3 Estimate Losses and Damages: 1.3.1 Agricultural impact : Farming areas which would be affected are estimated at 10,986,252 rai; 194,012 rai of fish/shrimp ponds and over 13.28 million livestock (source: Ministry of Agriculture and Cooperatives). 1.3.2 Transportation Routes : Highway: 70 main highways in 13 provinces are flooded and cannot be passed. For more information, contact 1568 or DDPM Hotline 1784. Rural roads: 223 rural roads in 30 provinces are not passable.