Chapter 23: Population Genetics (Microevolution)

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 23: Population Genetics (Microevolution) BIOL 1020 – CHAPTER 23 LECTURE NOTES Chapter 23: Population Genetics (Microevolution) 1. Explain what terms in the Hardy-Weinberg equation give: allele frequencies (dominant allele, recessive allele, etc.) each genotype frequency (homozygous dominant, heterozygous, etc.) each phenotype frequency 2. [do some pop gen problems from slides, and make some more up if there is time] 3. Describe the assumptions of the Hardy-Weinberg equilibrium model. 4. Describe conditions that can keep populations from establishing or maintaining genetic equilibrium. 5. Explain three main types of natural selection. 6. Discuss the importance of genetic variation for evolution, and the concept of neutral variation. 7. Give a hypothetical example of how genetic variation that was once neutral may no longer be neutral. I. Microevolution is a change in allele frequencies or genotype frequencies in a population over time A. population – a localized group of individuals capable of interbreeding and producing fertile offspring, and that are more or less isolated from other such groups B. gene pool – all alleles present in a population at a given time C. phenotype frequency – proportion of a population with a given phenotype D. genotype frequency – proportion of a population with a given genotype E. allele frequency – proportion of a specific allele in a population 1. diploid individuals have two alleles for each gene 2. if you know genotype frequencies, it is easy to calculate allele frequencies 3. example: 1 of 4 BIOL 1020 – CHAPTER 23 LECTURE NOTES population (1000) = genotypes AA (490) + Aa (420) + aa (90) allele number (2000) = A (490x2 + 420) + a (420 + 90x2) = A (1400) + a (600) freq[A] = 1400/2000 = 0.70 freq[a] = 600/2000 = 0.30 note that the sum of all allele frequencies is 1.0 II. Genetic equilibrium in populations: the Hardy-Weinberg theorem A. the Hardy-Weinberg theorem describes the frequencies of genotypes in a population based on the frequency of occurrence of alleles in the population that is in a state of genetic equilibrium (that is, not evolving) 1. the usual case for calculations: if allele “A” is dominant to “a”, and they are the only two alleles possible at the A-locus, then p = freq[A] = the frequency of occurrence of the A-allele in the population q = freq[a] = the frequency of occurrence of the a-allele in the population 2. Then p + q = 1 (following the sum rule for probability) 3. Allele associations follow the product rule for probability, so you multiply to predict the genotype frequencies: ( p + q ) x ( p + q ) = p2 + 2 pq + q2 p2 = frequency of homozygous dominant genotypes 2 pq = frequency of heterozygous genotypes q2 = frequency of homozygous recessive genotypes note that ( p + q ) x ( p + q ) = 1 x 1 = 1, so p2 + 2 pq + q2 = 1 B. Hardy-Weinberg equilibrium 1. if the Hardy-Weinberg theorem can be used to accurately predict genotype frequencies from allele frequencies for a population then the population is in Hardy-Weinberg equilibrium or genetic equilibrium 2. in such cases you can use data from one generation to predict the allele, genotype, and phenotype frequencies for the next generation 3. such populations are not evolving, but are static instead C. the assumptions of this model are: 1. large population size (due to statistical constraints, to minimize genetic drift) 2. no migration – no exchange of alleles with other populations (no gene flow) 3. no mutations of the alleles under study occur 4. random mating of all genotypes 5. no natural selection III. Microevolution thus can be described as deviation from Hardy-Weinberg equilibrium, where the allele or genotype frequencies in a population change over time A. consequences of small population size: genetic drift 1. Consider taking a small sample of individuals from a larger population. If only two individuals were picked they cannot reflect the allele frequency in the larger population. Neither can 3, 4, or 5 individuals, but as the selected sample gets larger it becomes more likely that the sample reflects the allele frequency in the larger population. 2. genetic drift is a change in gene frequencies of populations because of small population size 3. genetic drift tends to decrease genetic variation within a population 4. genetic drift tends to increase genetic variation between populations 5. two general mechanisms lead to small population sizes 2 of 4 BIOL 1020 – CHAPTER 23 LECTURE NOTES genetic bottlenecks are created by dramatic reduction in population size – endangered species face a genetic bottleneck on a species-wide scale, and suffer lasting effects even if population size later recovers founder effect – when a new population is established, typically only a few individuals (founders) are involved in colonizing the new area; this is common for islands B. migration – when individuals leave or join a population 1. migrating individuals carry their alleles with them (gene flow), usually resulting in changes in allele frequencies 2. gene flow tends to decrease genetic variation between populations C. mutations increase variation in the gene pool of a species 1. remember that mutations may be neutral, harmful, or beneficial 2. even at the risk of harmful effects, mutations are necessary to increase variation in the population so that natural selection can produce organisms more suited to their environment D. nonrandom mating 1. if individuals do not mate at random, then Hardy-Weinberg equilibrium is not achieved 2. the most common cases of nonrandom mating involve mating between individuals of similar genotypes, either by choice or location such inbreeding does not change allele frequencies, but increases the frequency of homozygous genotypes inbreeding depression is seen in some cases, where inbred individuals have lower fitness that non-inbred individuals . fitness – relative ability of a genotype to contribute to future generations . fertility declines and high juvenile mortality associated with “unmasking” harmful recessive alleles can reduce fitness for inbred individuals . hybrid vigor also leads to higher relative fitness for hybrids self-fertilization is the most extreme case of inbreeding 3. assortive mating – mates are selected by phenotypes positive assortive mating – selection for the same phenotype; works like inbreeding for the genes governing that phenotype, and for loci closely linked to those genes negative assortive mating – selection for the opposite phenotype . less common than positive assortive mating . leads to a decrease in homozygous genotypes for the genes governing the selected phenotype, and for loci closely linked to those genes E. natural selection changes allele frequencies in a way that leads to adaptation to the environment 1. fitness is the ability of an organism to compete successfully and pass its alleles on to the next generation 2. populations undergoing natural selection are evolving, with alleles that contribute to better fitness increasing in frequency over successive generations 3. natural selection only operates based on the current environment – as environmental conditions change, different alleles will be selected for 4. sexual selection (mate choices based on inherited characteristics) is an aspect of natural selection 3 of 4 BIOL 1020 – CHAPTER 23 LECTURE NOTES 5. there are 3 types of natural selection stabilizing selection – occurs in populations well adapted to their environments, selecting against phenotypic extremes . this is probably the type of selection most commonly faced by populations . example - human birth weight directional selection – permits species to adapt to environmental change by favoring selection of one extreme over the other; example – peppered moth disruptive selection – when more than one extreme phenotype is favored over intermediate phenotypes . really a special case of direction selection, where there are trends in more than one direction . can produce a genetic “split” in a population and thus serve as a mechanism for speciation . example – pocket mice in New Mexico IV. Genetic variation must exist for natural selection to occur A. the ultimate source of genetic variation is mutations B. once variation exists, it can be affected by independent assortment and genetic recombination during gamete formation 1. consider the cross AaBb x AaBb – 9 different genotypes arise 2. this involves only 2 alleles at 2 loci; if there were 6 alleles possible at just 5 loci, over 4 million genotypes are possible 3. thus, given that there are thousands of genes in an organism, and that many alleles are possible at most of these loci, it becomes clear that in nature there is great genetic variability C. the demonstrated presence of two or more alleles at a given locus is genetic polymorphism 1. biologists have produced tools for studying the genetic polymorphism of populations at the molecular level (RFLP, DNA sequencing, etc.) 2. these tools can be used to demonstrate and study polymorphism in populations without necessarily knowing the specific genes involved D. genetic polymorphisms can be maintained by heterozygote advantage or hybrid vigor 1. when either the homozygous dominant or recessive is more suited to an environment than the heterozygote, the homozygous genotype will be more likely to be fixed in the population 2. but when heterozygous genotypes have advantage over either of the homozygous genotypes, variation tends to increase in the population 3. example - sickle cell anemia and malaria resistance E. genetic polymorphisms can be maintained due to frequency-dependent
Recommended publications
  • Adaptation from Standing Genetic Variation and from Mutation
    Adaptation from standing genetic variation and from mutation Experimental evolution of populations of Caenorhabditis elegans Sara Carvalho Dissertation presented to obtain the Ph.D degree in Biology Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Oeiras, Janeiro, 2012 Adaptation from standing genetic variation and from mutation Experimental evolution of populations of Caenorhabditis elegans Sara Carvalho Dissertation presented to obtain the Ph.D degree in Evolutionary Biology Instituto de Tecnologia Química e Biológica | Universidade Nova de Lisboa Research work coordinated by: Oeiras, Janeiro, 2012 To all the people I love. Table of contents List of Figures 3 List of Tables 5 Acknowledgements 7 Abstract 9 Resumo 13 CHAPTER 1 – Introduction 17 1.1 And yet…it changes 18 1.1.2 Evolution and adaptation 19 1.1.3 Mutation and standing genetic variation 25 Mutation 26 Standing genetic variation 32 Mutation versus standing genetic variation 34 Genetic recombination among adaptive alleles 35 1.1.4 Other players in evolution 37 1.1.5 Evolution in the wild and in the lab 40 1.1.6 Objectives 43 1.2 Caenorhabditis elegans as a model for experimental evolution 45 1.2.1 Experimental populations of C. elegans 50 1.3 References 53 CHAPTER 2 – Adaptation from high levels of standing genetic 63 variation under different mating systems 2.1 Summary 64 2.2 Introduction 64 2.3 Materials and Methods 69 2.4 Results 84 2.5 Discussion 98 2.6 Acknowledgements 103 2.7 References 103 2.8 Supplementary information 110 1 CHAPTER 3 – Evolution
    [Show full text]
  • Hybrid Vigor Between Native and Introduced Salamanders Raises New Challenges for Conservation
    Hybrid vigor between native and introduced salamanders raises new challenges for conservation Benjamin M. Fitzpatrick*† and H. Bradley Shaffer‡ *Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN 37996; and ‡Evolution and Ecology, University of California, Davis, CA 95616 Edited by John C. Avise, University of California, Irvine, CA, and approved August 10, 2007 (received for review May 22, 2007) Hybridization between differentiated lineages can have many populations by alleviating inbreeding depression (13, 14) or different consequences depending on fitness variation among facilitating adaptive evolution in modified or degraded habitats hybrid offspring. When introduced organisms hybridize with na- (15–17). tives, the ensuing evolutionary dynamics may substantially com- The long-term consequences of hybridization are strongly plicate conservation decisions. Understanding the fitness conse- influenced by the genetic basis of hybrid fitness. In the case of quences of hybridization is an important first step in predicting its hybrid vigor, genetic models fall into two classes: heterozygote evolutionary outcome and conservation impact. Here, we mea- advantage and recombinant hybrid vigor (18–20). Heterozygote sured natural selection caused by differential viability of hybrid advantage (overdominance) refers to beneficial interactions larvae in wild populations where native California Tiger between heterospecific alleles of a single locus. Recombinant Salamanders (Ambystoma californiense) and introduced Barred hybrid vigor depends on multilocus genotypes and may be caused Tiger Salamanders (Ambystoma tigrinum mavortium) have been by epistasis (beneficial interactions between heterospecific al- hybridizing for 50–60 years. We found strong evidence of hybrid leles from different loci) or by complementary effects of inde- vigor; mixed-ancestry genotypes had higher survival rates than pendent advantageous alleles from each parental population (19, genotypes containing mostly native or mostly introduced alleles.
    [Show full text]
  • Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
    Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B.
    [Show full text]
  • Microevolution and the Genetics of Populations ​ ​ Microevolution Refers to Varieties Within a Given Type
    Chapter 8: Evolution Lesson 8.3: Microevolution and the Genetics of Populations ​ ​ Microevolution refers to varieties within a given type. Change happens within a group, but the descendant is clearly of the same type as the ancestor. This might better be called variation, or adaptation, but the changes are "horizontal" in effect, not "vertical." Such changes might be accomplished by "natural selection," in which a trait ​ ​ ​ ​ within the present variety is selected as the best for a given set of conditions, or accomplished by "artificial selection," such as when dog breeders produce a new breed of dog. Lesson Objectives ● Distinguish what is microevolution and how it affects changes in populations. ● Define gene pool, and explain how to calculate allele frequencies. ● State the Hardy-Weinberg theorem ● Identify the five forces of evolution. Vocabulary ● adaptive radiation ● gene pool ● migration ● allele frequency ● genetic drift ● mutation ● artificial selection ● Hardy-Weinberg theorem ● natural selection ● directional selection ● macroevolution ● population genetics ● disruptive selection ● microevolution ● stabilizing selection ● gene flow Introduction Darwin knew that heritable variations are needed for evolution to occur. However, he knew nothing about Mendel’s laws of genetics. Mendel’s laws were rediscovered in the early 1900s. Only then could scientists fully understand the process of evolution. Microevolution is how individual traits within a population change over time. In order for a population to change, some things must be assumed to be true. In other words, there must be some sort of process happening that causes microevolution. The five ways alleles within a population change over time are natural selection, migration (gene flow), mating, mutations, or genetic drift.
    [Show full text]
  • Genetic Variation in Polyploid Forage Grass: Assessing the Molecular Genetic Variability in the Paspalum Genus Cidade Et Al
    Genetic variation in polyploid forage grass: Assessing the molecular genetic variability in the Paspalum genus Cidade et al. Cidade et al. BMC Genetics 2013, 14:50 http://www.biomedcentral.com/1471-2156/14/50 Cidade et al. BMC Genetics 2013, 14:50 http://www.biomedcentral.com/1471-2156/14/50 RESEARCH ARTICLE Open Access Genetic variation in polyploid forage grass: Assessing the molecular genetic variability in the Paspalum genus Fernanda W Cidade1, Bianca BZ Vigna2, Francisco HD de Souza2, José Francisco M Valls3, Miguel Dall’Agnol4, Maria I Zucchi5, Tatiana T de Souza-Chies6 and Anete P Souza1,7* Abstract Background: Paspalum (Poaceae) is an important genus of the tribe Paniceae, which includes several species of economic importance for foraging, turf and ornamental purposes, and has a complex taxonomical classification. Because of the widespread interest in several species of this genus, many accessions have been conserved in germplasm banks and distributed throughout various countries around the world, mainly for the purposes of cultivar development and cytogenetic studies. Correct identification of germplasms and quantification of their variability are necessary for the proper development of conservation and breeding programs. Evaluation of microsatellite markers in different species of Paspalum conserved in a germplasm bank allowed assessment of the genetic differences among them and assisted in their proper botanical classification. Results: Seventeen new polymorphic microsatellites were developed for Paspalum atratum Swallen and Paspalum notatum Flüggé, twelve of which were transferred to 35 Paspalum species and used to evaluate their variability. Variable degrees of polymorphism were observed within the species. Based on distance-based methods and a Bayesian clustering approach, the accessions were divided into three main species groups, two of which corresponded to the previously described Plicatula and Notata Paspalum groups.
    [Show full text]
  • Phenotypic Plasticity Vs. Microevolution in Relation to Climate Change Noticeable Impacts of Climate Change Phenotypic Plasticit
    6/6/14 Phenotypic Plasticity vs. Microevolution in Relation to Climate Change By Elizabeth Berry, Alex Lefort, Andy Tran, and Maya Vrba (EPA, 2013) Noticeable Impacts of Climate Change Phenotypic Plasticity vs Microevolution !! Canadian Squirrel: earlier breeding !! Phenotypic Plasticity: The ability of a genotype to produce different phenotypes in different environments (Charmantier & Gienapp 2013) !! American Mosquito: changes in dormancy !! Microevolution: Evolution in a small scale-within a single population (UC Museum of Paleontology 2008) !! Field Mustard plant: early blooming times !! Distinction: Phenotypic Plasticity acts on individuals, Microevolution acts on populations. !! Drosophila melanogaster: changes in gene flow !! Norm of Reaction: The range of phenotypic variation available to a given genotype that can change based on the environment. University of California Museum of Paleontology, 2008 European Great Tit: Parus major European Blackcap: Sylvia atricapilla !! Breeding times are evolving earlier in females to account for !! ADCYAP1: gene that controls the Climate Change. expression of migratory behavior !! Phenotypic Plasticity evident in (Mueller et al., 2011) laying times. !! Migratory activity is heritable and population-specific (Berthold & !! Some females having more flexible laying dates. Pulido 1994) ! Climate change causes evolving !! Success of offspring dependent ! on breeding times and caterpillar migratory patterns (Berthold & biomass coinciding, Pulido 1994) Jerry Nicholls and BBC, 2014 University of California
    [Show full text]
  • Gene Flow by Pollen Into Small Populations
    Proc. Natl. Acad. Sci. USA Vol. 86, pp. 9044-9047, November 1989 Population Biology Gene flow by pollen into small populations: Data from experimental and natural stands of wild radish (Raphanus sativus/spatial isolation/interpopulation mating) NORMAN C. ELLSTRANDt, B. DEVLINt, AND DIANE L. MARSHALL§ Department of Botany and Plant Sciences and Program in Genetics, University of California, Riverside, CA 92521-0124 Communicated by R. W. Allard, August 14, 1989 (received for review August 18, 1988) ABSTRACT Gene flow can have an especially strong im- much from population to population, whether it varies within pact on the evolution of small populations. However, empirical a population over a season, and whether it varies with spatial studies on the actual rates and patterns of gene flow into small isolation from the nearest conspecific. More data are needed populations are few. Thus, we sought to measure gene flow into that focus more closely on a number ofpopulations ofa single small populations of wild radish, Raphanus sativus. We found species. significant differences in gene flow receipt among experimental Therefore, we selected wild radish, Raphanus sativus L. populations and within those populations over a season. A (Brassicaceae), to measure patterns of gene flow by pollen maximum-likelihood estimate revealed that almost all of the into small populations. This species is especially suitable for gene flow into these synthetic populations had its origin in both experimental and descriptive gene flow studies because relatively distant (>650 m), large natural populations rather it is a common outcrossing weed in southern California (8), than the proximal (255400 m), small synthetic populations.
    [Show full text]
  • Working at the Interface of Phylogenetics and Population
    Molecular Ecology (2007) 16, 839–851 doi: 10.1111/j.1365-294X.2007.03192.x WorkingBlackwell Publishing Ltd at the interface of phylogenetics and population genetics: a biogeographical analysis of Triaenops spp. (Chiroptera: Hipposideridae) A. L. RUSSELL,* J. RANIVO,†‡ E. P. PALKOVACS,* S. M. GOODMAN‡§ and A. D. YODER¶ *Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA, †Département de Biologie Animale, Université d’Antananarivo, Antananarivo, BP 106, Madagascar, ‡Ecology Training Program, World Wildlife Fund, Antananarivo, BP 906 Madagascar, §The Field Museum of Natural History, Division of Mammals, 1400 South Lake Shore Drive, Chicago, IL 60605, USA, ¶Department of Ecology and Evolutionary Biology, PO Box 90338, Duke University, Durham, NC 27708, USA Abstract New applications of genetic data to questions of historical biogeography have revolutionized our understanding of how organisms have come to occupy their present distributions. Phylogenetic methods in combination with divergence time estimation can reveal biogeo- graphical centres of origin, differentiate between hypotheses of vicariance and dispersal, and reveal the directionality of dispersal events. Despite their power, however, phylo- genetic methods can sometimes yield patterns that are compatible with multiple, equally well-supported biogeographical hypotheses. In such cases, additional approaches must be integrated to differentiate among conflicting dispersal hypotheses. Here, we use a synthetic approach that draws upon the analytical strengths of coalescent and population genetic methods to augment phylogenetic analyses in order to assess the biogeographical history of Madagascar’s Triaenops bats (Chiroptera: Hipposideridae). Phylogenetic analyses of mitochondrial DNA sequence data for Malagasy and east African Triaenops reveal a pattern that equally supports two competing hypotheses.
    [Show full text]
  • Hybrid Fitness, Adaptation and Evolutionary Diversification: Lessons
    Heredity (2012) 108, 159–166 & 2012 Macmillan Publishers Limited All rights reserved 0018-067X/12 www.nature.com/hdy REVIEW Hybrid fitness, adaptation and evolutionary diversification: lessons learned from Louisiana Irises ML Arnold, ES Ballerini and AN Brothers Estimates of hybrid fitness have been used as either a platform for testing the potential role of natural hybridization in the evolution of species and species complexes or, alternatively, as a rationale for dismissing hybridization events as being of any evolutionary significance. From the time of Darwin’s publication of The Origin, through the neo-Darwinian synthesis, to the present day, the observation of variability in hybrid fitness has remained a challenge for some models of speciation. Yet, Darwin and others have reported the elevated fitness of hybrid genotypes under certain environmental conditions. In modern scientific terminology, this observation reflects the fact that hybrid genotypes can demonstrate genotypeÂenvironment interactions. In the current review, we illustrate the development of one plant species complex, namely the Louisiana Irises, into a ‘model system’ for investigating hybrid fitness and the role of genetic exchange in adaptive evolution and diversification. In particular, we will argue that a multitude of approaches, involving both experimental and natural environments, and incorporating both manipulative analyses and surveys of natural populations, are necessary to adequately test for the evolutionary significance of introgressive hybridization. An appreciation of the variability of hybrid fitness leads to the conclusion that certain genetic signatures reflect adaptive evolution. Furthermore, tests of the frequency of allopatric versus sympatric/parapatric divergence (that is, divergence with ongoing gene flow) support hybrid genotypes as a mechanism of evolutionary diversification in numerous species complexes.
    [Show full text]
  • Saving Our Tree HUMAN GENETICS
    HIGHLIGHTS EVOLUTION IN BRIEF Saving our tree HUMAN GENETICS Identification of a gene responsible for familial For several years, evolutionary biolo- Wolff–Parkinson–White syndrome. gists interested in gene flow between species have been investigating and Gollob, M. H. et al. N. Engl. J. Med. 344, 1823–1831 (2001) debating a controversial issue: the hor- Wolff–Parkinson–White (WPW) syndrome is an inherited heart izontal exchange of genes between dis- defect associated with arrhythmia, cardiac arrest and sudden death. tantly related species, its extent and Gollob et al. studied two large families with autosomal-dominant possible adaptive significance. WPW syndrome, and used a positional candidate-gene approach to Horizontal gene transfer (HGT) is an identify the causative gene, which encodes a regulatory subunit of important evolutionary force in appears in a cluster of bacterial AMP-activated protein kinase. This finding should shed light on prokaryotes, as their life cycles facilitate sequences, then the vertebrate gene the mechanisms that lead to heart arrhythmias. the exchange of genes between even was probably horizontally transferred distantly related species. However, this from bacteria. Conversely, if all GENETIC NETWORKS is trickier in multicellular organisms, eukaryotic sequences cluster together, in which the fixation of horizontally then HGT has probably not occurred Ordering genes in a flagella pathway by analysis of transferred genes can only occur if as this grouping is most parsimo- expression kinetics from living bacteria. they are transmitted through the germ niously explained by vertebrates hav- Kalir, S. et al. Science 292, 2080–2083 (2001) line. It was therefore surprising when ing acquired the sequence by descent the International Human Genome through other eukaryotes.
    [Show full text]
  • Muller's Ratchet As a Mechanism of Frailty and Multimorbidity
    bioRxivMuller’s preprint ratchetdoi: https://doi.org/10.1101/439877 and frailty ; this version posted[Type Octoberhere] 10, 2018. The copyright holder Govindarajufor this preprint and (which Innan was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Muller’s ratchet as a mechanism of frailty and multimorbidity 2 3 Diddahally R. Govindarajua,b,1, 2, and Hideki Innanc,1,2 4 5 aDepartment of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138; 6 and bThe Institute of Aging Research, Albert Einstein College of Medicine, Bronx, 7 NY 1046, and cGraduate University for Advanced Studies, Hayama, Kanagawa, 8 240-0193, Japan 9 10 11 12 Authors contributions: D.R.G., H.I designed study, performed research, contributed new 13 analytical tools, analyzed data and wrote the paper 14 15 The authors declare no conflict of interest 16 1D.R.G., and H.I. contributed equally to this work and listed alphabetically 17 2 Correspondence: Email: [email protected]; [email protected] 18 19 Senescence | mutation accumulation | asexual reproduction | somatic cell-lineages| 20 organs and organ systems |Muller’s ratchet | fitness decay| frailty and multimorbidity 21 22 23 24 25 26 27 28 29 30 31 32 1 bioRxivMuller’s preprint ratchetdoi: https://doi.org/10.1101/439877 and frailty ; this version posted[Type Octoberhere] 10, 2018. The copyright holder Govindarajufor this preprint and (which Innan was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 33 Mutation accumulation has been proposed as a cause of senescence.
    [Show full text]
  • •How Does Microevolution Add up to Macroevolution? •What Are Species
    Microevolution and Macroevolution • How does Microevolution add up to macroevolution? • What are species? • How are species created? • What are anagenesis and cladogenesis? 1 Sunday, March 6, 2011 Species Concepts • Biological species concept: Defines species as interbreeding populations reproductively isolated from other such populations. • Evolutionary species concept: Defines species as evolutionary lineages with their own unique identity. • Ecological species concept: Defines species based on the uniqueness of their ecological niche. • Recognition species concept: Defines species based on unique traits or behaviors that allow members of one species to identify each other for mating. 2 Sunday, March 6, 2011 Reproductive Isolating Mechanisms • Premating RIMs Habitat isolation Temporal isolation Behavioral isolation Mechanical incompatibility • Postmating RIMs Sperm-egg incompatibility Zygote inviability Embryonic or fetal inviability 3 Sunday, March 6, 2011 Modes of Evolutionary Change 4 Sunday, March 6, 2011 Cladogenesis 5 Sunday, March 6, 2011 6 Sunday, March 6, 2011 7 Sunday, March 6, 2011 Evolution is “the simple way by which species (populations) become exquisitely adapted to various ends” 8 Sunday, March 6, 2011 All characteristics are due to the four forces • Mutation creates new alleles - new variation • Genetic drift moves these around by chance • Gene flow moves these from one population to the next creating clines • Natural selection increases and decreases them in frequency through adaptation 9 Sunday, March 6, 2011 Clines
    [Show full text]