Evolution.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  Foucault's Darwinian Genealogygenealogy Article Foucault’s Darwinian Genealogy Marco Solinas Political Philosophy, University of Florence and Deutsches Institut Florenz, Via dei Pecori 1, 50123 Florence, Italy; [email protected] Academic Editor: Philip Kretsedemas Received: 10 March 2017; Accepted: 16 May 2017; Published: 23 May 2017 Abstract: This paper outlines Darwin’s theory of descent with modification in order to show that it is genealogical in a narrow sense, and that from this point of view, it can be understood as one of the basic models and sources—also indirectly via Nietzsche—of Foucault’s conception of genealogy. Therefore, this essay aims to overcome the impression of a strong opposition to Darwin that arises from Foucault’s critique of the “evolutionistic” research of “origin”—understood as Ursprung and not as Entstehung. By highlighting Darwin’s interpretation of the principles of extinction, divergence of character, and of the many complex contingencies and slight modifications in the becoming of species, this essay shows how his genealogical framework demonstrates an affinity, even if only partially, with Foucault’s genealogy. Keywords: Darwin; Foucault; genealogy; natural genealogies; teleology; evolution; extinction; origin; Entstehung; rudimentary organs “Our classifications will come to be, as far as they can be so made, genealogies; and will then truly give what may be called the plan of creation. The rules for classifying will no doubt become simpler when we have a definite object in view. We possess no pedigrees or armorial bearings; and we have to discover and trace the many diverging lines of descent in our natural genealogies, by characters of any kind which have long been inherited.
- 
												  Additions, Deletions and Corrections to AnBulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe.
- 
												  Epilogue: Pattern Cladistics from Goethe to BradyEpilogue: Pattern Cladistics From Goethe to Brady Most, if not all, ideas in science are recycled, rediscovered, or rehashed, either sur- reptitiously, through rereading and rediscovering old works, or simply (commonly?) through lack of knowledge of past achievements. The idea of transformation—that things might change, transform, convert into other things—for instance, has been proposed many times, by both evolutionists and non-evolutionists alike. Yet the notion of transformation is really a myth, a story which many scientists embrace, a story that tells of living things transforming into other living things, with their role to interpret its meaning and mechanism: The fall of Paradise to the untamed wild, the tamed landscape to the Biblical flood, the reigns of monarchs, a kingdom to a republic and the pastoral to the industrial—of transformations there are plenty. A deep desire to uncover what mechanism(s) lie behind these transformations has provided many explanations, from the acquisition of sin after the fall from grace, to God’s will, to progress, however construed. The belief that every transformation neatly fits a law or model by which nature abides has shaped our way of thinking. Yet concomitant with such thoughts is the recognition that Nature is complex, and that Nature’s complexity obeys no single law or theory that places it neatly into a box. For every law and theory, we are told, there are exceptions, which are given ad hoc explanations. Man may have toiled the soil to shape nature into his or her image of Eden, but complexity does not fit any man-made law.
- 
												  The Anti-Lebanon Ridge As the Edge of the Distribution Range for EuroSHILAP Revista de Lepidopterología ISSN: 0300-5267 [email protected] Sociedad Hispano-Luso-Americana de Lepidopterología España Kravchenko, V. D.; Friedman, A.-L.-L.; Müller, G. C. The Anti-Lebanon ridge as the edge of the distribution range for Euro-Siberian and Irano- Turanian faunistic elements in the Mediterranean biome: A case study (Lepidoptera: Noctuidae) SHILAP Revista de Lepidopterología, vol. 45, núm. 180, diciembre, 2017, pp. 639-650 Sociedad Hispano-Luso-Americana de Lepidopterología Madrid, España Available in: http://www.redalyc.org/articulo.oa?id=45553890016 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative SHILAP Revta. lepid., 45 (180) diciembre 2017: 639-650 eISSN: 2340-4078 ISSN: 0300-5267 The Anti-Lebanon ridge as the edge of the distribution range for Euro-Siberian and Irano-Turanian faunistic elements in the Mediterranean biome: A case study (Lepidoptera: Noctuidae) V. D. Kravchenko, A.-L.-L. Friedman & G. C. Müller Abstract The Lebanon and Anti-Lebanon ridges are located in the middle of a narrow “Mediterranean ecozone” corridor stretching along the Levantine coast. Both ridges are high enough to feature a complete range of altitude zones, which includes an alpine tragacanth belt (> 2000 m a.s.l.). The southernmost part of the Anti-Lebanon ridge is situated in the northernmost part of Israel. Among the 548 Israeli Noctuidae species, 106 species (21%) occur only in this small mountainous area. Among them, 17 are endemic and the populations of the remaining 89 species are at the edge of their distribution range.
- 
												  Database of Irish Lepidoptera. 1 - Macrohabitats, Microsites and Traits of Noctuidae and ButterfliesDatabase of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies Irish Wildlife Manuals No. 35 Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies Ken G.M. Bond and Tom Gittings Department of Zoology, Ecology and Plant Science University College Cork Citation: Bond, K.G.M. and Gittings, T. (2008) Database of Irish Lepidoptera. 1 - Macrohabitats, microsites and traits of Noctuidae and butterflies. Irish Wildlife Manual s, No. 35. National Parks and Wildlife Service, Department of the Environment, Heritage and Local Government, Dublin, Ireland. Cover photo: Merveille du Jour ( Dichonia aprilina ) © Veronica French Irish Wildlife Manuals Series Editors: F. Marnell & N. Kingston © National Parks and Wildlife Service 2008 ISSN 1393 – 6670 Database of Irish Lepidoptera ____________________________ CONTENTS CONTENTS ........................................................................................................................................................1 ACKNOWLEDGEMENTS ....................................................................................................................................1 INTRODUCTION ................................................................................................................................................2 The concept of the database.....................................................................................................................2 The structure of the database...................................................................................................................2
- 
												  Bat Aggregational Response to Pest Caterpillar Emergence Ján Blažek*, Adam Konečný & Tomáš Bartoničkawww.nature.com/scientificreports OPEN Bat aggregational response to pest caterpillar emergence Ján Blažek*, Adam Konečný & Tomáš Bartonička Moths (Lepidoptera) are major agricultural and forest pests in many parts of the world, including Europe, with many causing great economic damage to crops, horticultural plants, stored items, and wool products. Here, we focus on two ecologically similar inchworms, Operophtera brumata and Erannis defoliaria, known for their high foliage consumption during the spring emergence of caterpillars. We hypothesise that bats could play a role in reducing pests such as caterpillars by switching to this abundant emerging prey. At two infested and one control forest sites, caterpillars were sampled during spring to determine levels of infestation. At the same time, bat fight activity was monitored during the peak in caterpillar abundance. During the spring caterpillar outbreak, we collected faecal samples of forest-dwelling bats capable of using gleaning. The majority of samples were positive for our focus species, being 51.85% for O. brumata and 29.63% for E. defoliaria faecal samples. The foraging activity of two gleaning bats, Myotis nattereri and Myotis bechsteinii, increased at both infested sites, but not at the control site, during caterpillar emergence, as did foraging of Plecotus auritus/austriacus, which used both gleaning and aerial hawking. We conclude that both specialists and occasional gleaners, which prefer diferent prey but are able to switch their foraging strategies, aggregate at sites during pest emergence and, as such, our results confrm the high potential of bats to reduce numbers of pest species such as caterpillars. A predator’s efect on prey populations is generally studied using numerical responses 1,2 driven by two mecha- nisms, migration of predators to sites with high prey concentrations (aggregational response) and predator reproduction, which results in a delayed increase in the density of predators3.
- 
												  Moth Moniioring SchemeMOTH MONIIORING SCHEME A handbook for field work and data reporting Environment Data Centre 1/1/1/ National Boord of Waters and the Environment Nordic Council of Ministers /////// Helsinki 1 994 Environmental Report 8 MOTH MONITORING SCHEME A handbook for field work and data reporting Environment Data Centre National Board of Waters and the Environment Helsinki 1994 Published by Environment Data Centre (EDC) National Board of Waters and the Environment P.O.BOX 250 FIN—001 01 Helsinki FINLAND Tel. +358—0—73 14 4211 Fax. +358—0—7314 4280 Internet address: [email protected] Edited by Guy Söderman, EDC Technical editng by Päivi Tahvanainen, EDC This handbook has been circulated for comments to the members of the project group for moth monitoring in the Nordic countries under the auspices of the Monitoring and Data Group of the Nordic Council of Ministers. Cover photo © Tarla Söderman Checking of installation of light trap at Vilsandi National Park in Estonia. Printed by Painotalo MIKTOR Ky, Helsinki 1 994 ISBN 951—47—9982—8 ISSN 0788—3765 CONTENTS .4 INTRODUCTION 5 PART 1: OBJECTIVES 7 1 Short term objectives 7 2 Medium-long term objectives 8 3 Additional objectives 8 4 Specific goals 9 5 Network design 9 5.1 Geographical coverage 9 5.2 Biotopes coverage 10 PART II: METRODOLOGY 11 1 Technical equipments and use 11 1.1 Structure of Iight traps 11 1.2 Field installation 13 1.3 Structure ofbait trap 14 1.4 Documentation of sites 15 1.5 Timing the light traps 15 1.6 Sampling procedures 15 2 Sample handling 16 2.1 Prestoring 16 2.2 Posting 16
- 
												  The Lepidoptera of Bucharest and Its Surroundings (Romania)Travaux du Muséum National d’Histoire Naturelle © 30 Décembre Vol. LIV (2) pp. 461–512 «Grigore Antipa» 2011 DOI: 10.2478/v10191-011-0028-9 THE LEPIDOPTERA OF BUCHAREST AND ITS SURROUNDINGS (ROMANIA) LEVENTE SZÉKELY Abstract. This study presents a synthesis of the current knowledge regarding the Lepidoptera fauna of Bucharest and the surrounding areas within a distance up to 50 kilometers around the Romanian capital. Data about the fauna composition are presented: the results of the research work beginning with the end of the 19th century, as well the results of the research work carried out in the last 15 years. The research initiated and done by the author himself, led to the identification of 180 species which were unknown in the past. Even if the natural habitats from this region have undergone through radical changes in the 20th century, the area still preserves a quite rich and interesting Lepidoptera fauna. The forests provide shelter to rich populations of the hawk moth Dolbina elegans A. Bang-Haas, 1912, one of the rarest Sphingidae in Europe, and some other species with high faunistical and zoogeographical value as: Noctua haywardi (Tams, 1926) (it is new record for the Romanian fauna from this area), Catocala dilecta (Hübner, 1808), Tarachidia candefacta (Hübner, [1831]), Chrysodeixis chalcites (Esper, [1789]), Aedia leucomelas (Linnaeus, 1758), and Hecatera cappa (Hübner, [1809]). We also present and discuss the current status of the protected Lepidoptera species from the surroundings of the Romanian capital for the first time. Résumé. Ce travail représente une synthèse des connaissances actuelles concernant la faune de lépidoptères de Bucarest et de ses zones limitrophes sur un rayon de 50 km autour de la capitale de la Roumanie.
- 
												  Folio N° 869Folio N° 869 ANTECEDENTES ENTREGADOS POR ÁLVARO BOEHMWALD 1. ANTECEDENTES SOBRE BIODIVERSIDAD • Ala-Laurila, P, (2016), Visual Neuroscience: How Do Moths See to Fly at Night?. • Souza de Medeiros, B, Barghini, A, Vanin, S, (2016), Streetlights attract a broad array of beetle species. • Conrad, K, Warren, M, Fox, R, (2005), Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. • Davies, T, Bennie, J, Inger R, (2012), Artificial light pollution: are shifting spectral signatures changing the balance of species interactions?. • Van Langevelde, F, Ettema, J, Donners, M, (2011), Effect of spectral composition of artificial light on the attraction of moths. • Brehm, G, (2017), A new LED lamp for the collection of nocturnal Lepidoptera and a spectral comparison of light-trapping lamps. • Eisenbeis, G, Hänel, A, (2009), Chapter 15. Light pollution and the impact of artificial night lighting on insects. • Gaston, K, Bennie, J, Davies, T, (2013), The ecological impacts of nighttime light pollution: a mechanistic appraisal. • Castresana, J, Puhl, L, (2017), Estudio comparativo de diferentes trampas de luz (LEDs) con energia solar para la captura masiva de adultos polilla del tomate Tuta absoluta en invernaderos de tomate en la Provincia de Entre Rios, Argentina. • McGregor, C, Pocock, M, Fox, R, (2014), Pollination by nocturnal Lepidoptera, and the effects of light pollution: a review. • Votsi, N, Kallimanis, A, Pantis, I, (2016), An environmental index of noise and light pollution at EU by spatial correlation of quiet and unlit areas. • Verovnik, R, Fiser, Z, Zaksek, V, (2015), How to reduce the impact of artificial lighting on moths: A case study on cultural heritage sites in Slovenia.
- 
												  HSNS4801 03 Sepkoski 56..109DAVID SEPKOSKI* AND MARCO TAMBORINI§ ‘‘An Image of Science’’: Cameralism, Statistics, Downloaded from http://online.ucpress.edu/hsns/article-pdf/48/1/56/377855/hsns_2018_48_1_56.pdf by Max Planck Institute for the History of Science user on 15 June 2021 and the Visual Language of Natural History in the Nineteenth Century ABSTRACT This paper traces the emergence of a new visual language for statistical paleontology in the early nineteenth century as part of a broader project to uncover a deep genealogy of modern practices in data visualization. In the first decades of the nineteenth century, natural historians had amassed large quantities of taxonomic data, but lacked quantitative and visual methods to produce and communicate knowledge derived from their data collections. As our ‘‘main witness’’ (in Ian Hacking’s sense), we call on the German paleontologist H. G. Bronn—one of the earliest pro- ponents of a ‘‘data-driven’’ approach to statistical natural history—to highlight two unexpected sources of a transformative visual idiom introduced at the time: so-called spindle diagrams representing historical patterns in taxonomic diversity. The first source—which informed Bronn’s general statistical approach to fossil data—was the bureaucratic science of cameralism, in which Bronn was steeped as a student and professor at the University of Heidelberg. The second was an earlier tradition of historical visualization popularized by Joseph Priestley and others, which represented time—or the ‘‘timeline’’—as measured graphical space on the horizontal axis of a chart. In combining the tabular statistical approach of Heidelberg cameralism and the historical timeline, Bronn contributed to the emergence of a powerful new visual language for producing and communicating aggregative statistical generalizations.
- 
												  Catalogue of Phytophagous Insects and Mites on Trees in Great BritainA Catalogue of Phytophagous Insects and Mites on Trees in Great Britain Forestry Commission T G Winter ARCHIVE Forestry Commission Booklet 53 Front Cover: Larva of the Pine hawk mothHyloicus pinastri (Linnaeus) on Scots pine foliage.C 3064 FORESTRY COMMISSION Booklet 53 A Catalogue of Phytophagous Insects and Mites on Trees in Great Britain Compiled by T. G. Winter Entomologist, Forest Research Station, Alice Holt Lodge, Wrecclesham, Farnham, Surrey, GU10 4LH CONTENTS Pag. Introduction v Abbreviations and symbols vi Phytophagous insects and mites on trees in Great Britain Scientific names 1 Common names 29 Host plants 41 iii A Catalogue of Phytophagous Insects and Mites on Trees in Great Britain Compiled by T G Winter Entomologist, Forestry Commission INTRODUCTION The main objective of this catalogue is to bring some uniformity into exchanges concerning forest entomology. It consists of three lists: a basic one and two supplementaries. The basic list includes all species inPests and Diseases o f Forest Plantation Trees (F G Brown, 1968) occurring in Britain, to which have been added many others from both the literature and from records kept by the Entomology Branch of the Forestry Commission Research and Development Division. Besides insects the list also includes some mites and several nematodes. This list was originally designed for use within the F.C. Research Division as a source of valid insect names and authors together with a selected synonymy for all species with some claim to forest importance or significance. The species included show great variability in status, some being pests of economic importance, while others are of interest only.
- 
												  Foundations of Systematics and Biogeography David MFoundations of Systematics and Biogeography David M. Williams · Malte C. Ebach Foundations of Systematics and Biogeography Foreword by Gareth Nelson David M. Williams Malte C. Ebach Dept. Botany Botanischer Garten und Natural History Museum Botanisches Museum Berlin-Dahlem Cromwell Road Freie Universität Berlin London SW7 5BD Königin-Luise-Str. 6–8 United Kingdom 14191 Berlin Germany ISBN: 978-0-387-72728-8 e-ISBN: 978-0-387-72730-1 Library of Congress Control Number: 2007938218 c 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC., 233 Spring Street, New York, NY10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper 987654321 springer.com Dedicated to Agnes Arber (1879–1960) Adolf Naef (1883–1949) Léon Croizat (1894–1982) Lars Brundin (1907–1993) Rainer Zangerl (1912–2004) Colin Patterson (1933–1998) Ronald H. Brady (1937–2003) Foreword “But where shall wisdom be found? and where is the place of understanding?” Job 28: 12 Where, indeed? Today in systematics and biogeography, DNA is revered as the source of all.