Existing Biodiversity, Non-Indigenous Species, Food-Web and Seafloor Integrity Gens Indicators

Total Page:16

File Type:pdf, Size:1020Kb

Existing Biodiversity, Non-Indigenous Species, Food-Web and Seafloor Integrity Gens Indicators ! ! WP 3 Deliverable 3.1 Existing biodiversity, non-indigenous species, food-web and seafloor integrity GEnS indicators Deliverable 3 . 1 Dissemination level Public' LEAD CONTRACTOR JRC!–!Joint!Research!Center,!European!Commission! AUTHORS Heliana!Teixeira!(JRC),!Torsten!Berg!(MariLim),!Karin!Fürhaupter!(MariLim),!Laura!Uusitalo!(SYKE),!Nadia!Papadopoulou!(HCMR),! Kemal!Can!Bizsel!(DEU),!Sabine!Cochrane!(APN),!Tanya!Churilova!(MHIONASU),!AnnaOStiina!Heiskanen!(SYKE),!Maria!C.!Uyarra!(AZTI),! Nikolaos! Zampoukas!(JRC),! Angel!Borja!(AZTI),! Baris!Akcali!(DEU),!Jesper!Harbo!Andersen!(AU),!Olivier!Beauchard! (NIOZ),!Marco! Berzano!(CONISMA),!Nihayet!Bizsel!(DEU),!Martynas!Bucas!(KUCORPI),!Jordi!Camp!(CSIC),!Susana!Carvalho!(KAUST),!Eva!Flo!(CSIC),! Esther! Garces! (CSIC),! Peter! Herman! (NIOZ),! Stelios! Katsanevakis! (JRC),! Remzi! Kavcioglu! (DEU),! Dorte! KrauseOJensen! (AU),! Olga! Kryvenko! (MHIONASU),! Christopher! Lynam! (Cefas),! Krysia! Mazik! (UHULL),! Snejana! Moncheva! (IOOBAS),! Suzanna! Neville! (Cefas),! Murat!Ozaydinli!(DEU),!Mairi!Pantazi!(HCMR),!Joana!Patricio!(JRC),!Chiara!Piroddi!(JRC),!Ana!M!Queirós!(PML),!Silje!Ramsvatn!(APN),! J.!German!Rodriguez!(AZTI),!Naiara!RodriguezOEzpeleta!(AZTI),!Chris!Smith!(HCMR),!Kremena!Stefanova!(IOOBAS),!Fernando!Tempera! (JRC),!Vassiliki!Vassilopoulou!(HCMR),!Helena!Verissimo!(IMAR),!Elif!Can!Yılmaz!(DEU),!Anastasija!Zaiko!(KUCORPI),!Argyro!Zenetos! (HCMR)! SUBMISSION DATE 31!|!January!|!2014! 1 Deliverable 3.1 Existing biodiversity, non-indigenous species, food-web, and seafloor integrity GEnS indicators ' ' 2 Contents' 1.! Technical!summary! 4! 2.! Introduction! 6! 2.1.! Scope!and!content!of!the!deliverable!............................................................................................................!6! 2.1.1.! Brief!summary!of!the!structure!of!this!report!........................................................................................!7! 2.2.! Assessment!of!GEnS!for!the!MSFD:!building!on!existent!knowOhow!and!initiatives!...................................!10! 2.3.! Catalogue!of!Indicators!–!potential!uses!and!value!to!endOusers!................................................................!15! 3.! Overview!of!indicators!to!support!biological!diversity!(D1),!nonOindigenous!species!(D2),!foodOweb! (D4),!and!seafloor!integrity!(D6)! 20! 3.1.! DEVOTES!Catalogue!of!Indicators:!general!overview!of!indicators’!characteristics!....................................!20! 3.2.! Indicators’!potential!to!address!MSFD!GEnS!assessment!criteria!and!indicators!for!D1/D2/D4/D6!...........!25! 3.2.1.! Descriptors!...........................................................................................................................................!25! 3.2.2.! Criteria!..................................................................................................................................................!28! 3.3.! Indicators’!coverage!of!biodiversity!components,!habitats,!pressures!and!spatial!EU!coverage!................!41! 3.3.1.! Biodiversity!components!......................................................................................................................!42! 3.3.2.! Habitat!type!..........................................................................................................................................!48! 3.3.3.! Pressures!..............................................................................................................................................!56! 3.3.4.! Spatial!coverage!...................................................................................................................................!60! 4.! Regional!seas:!ecosystem!overview!and!indicators’!capability! 64! 4.1.! NorthOEast!Atlantic!......................................................................................................................................!64! 4.1.1.! Ecosystem!overview!.............................................................................................................................!64! 4.1.2.! Indicators!availability!and!capability!....................................................................................................!71! 4.1.3.! Gaps!in!the!NorthOEast!Atlantic!............................................................................................................!78! 4.2.! Baltic!Sea!......................................................................................................................................................!79! 4.2.1.! Ecosystem!overview!.............................................................................................................................!79! 4.2.2.! Indicators!availability!and!capability!....................................................................................................!86! 4.2.3.! Gaps!in!the!Baltic!Sea!.........................................................................................................................!104! 4.3.! Black!Sea!....................................................................................................................................................!108! 4.3.1.! Ecosystem!overview!...........................................................................................................................!108! 4.3.2.! Indicators!availability!and!capability!..................................................................................................!125! 4.3.3.! Gaps!in!the!Black!Sea!..........................................................................................................................!134! 4.4.! Mediterranean!Sea!....................................................................................................................................!136! 4.4.1.! Ecosystem!overview!...........................................................................................................................!136! 4.4.2.! Indicators!availability!and!capability!..................................................................................................!147! 4.4.3.! Gaps!in!the!Mediterranean!Sea!..........................................................................................................!166! 5.! Overall!GAP!analysis! 171! 5.1.! Gaps!in!relation!to!MSFD!descriptors,!criteria!and!indicators!...................................................................!171! 5.2.! Gaps!in!relation!to!biodiversity!components!and!habitats!........................................................................!172! 5.3.! Gaps!in!relation!to!the!most!important!pressures!.....................................................................................!173! 5.4.! Gaps!in!the!status!of!development!of!the!indicators!.................................................................................!173! 5.5.! Gaps!in!the!coverage!of!the!Indicator!catalogue!.......................................................................................!174! 6.! Molecular!tools!in!synergy!to!emerging!indicators:!reviewing!the!potential!application! 175! 7.! Selecting!indicators!from!the!Catalogue! 177! 7.1.! Main!questions!driving!selection!of!indicators!..........................................................................................!177! 7.2.! Scoring!of!criteria!and!ranking!of!indicators!..............................................................................................!179! 8.! Relevance!for!future!DEVOTES!outputs! 183! 9.! References! 186! 10.! List!of!annexes! 198! 3 Deliverable 3.1 Existing biodiversity, non-indigenous species, food-web, and seafloor integrity GEnS indicators 1. Technical summary Within!the!DEVOTES!project,!a!catalogue!of!existing!indicators!of!marine!biodiversity!and!closely!related! topics! such! as! nonOindigenous! species,! foodOwebs,! and! seafloor! integrity! (EU! Marine! Strategy! MSFD! Descriptors! 1,! 2,! 4,! 6)! has! been! established.! Currently,! the! catalogue! includes! 557! entries! with! information!on!metadata!ranging!from!indicator!descriptions,!data!requirements,!assignment!to!MSFD! descriptors/criteria/indicators! and! developmental! status! to! geographical! coverage! and! applicable! habitats,!biodiversity!components!and!related!pressures.!Both!operational!indicators!and!indicators!in! earlier!stages!of!development!are!included.!The!aims!of!the!catalogue!are!twofold:!firstly,!to!identify!the! strengths!and!possible!gaps!of!the!European!indicator!set!in!order!to!be!able!to!focus!the!development! of!new!indicators!where!it!is!most!urgently!needed;!and!secondly,!to!foster!transfer!of!knowOhow!across! countries!and!marine!regions,!so!that!indicators!operational!in!one!area!could!be!potentially!adapted!to! other!areas.!To!enable!efficient!learning!also!from!outside!the!European!borders,!the!catalogue!includes! indicators!not!only!from!the!EU!but!also!from!countries!outside!the!EU.! The! catalogue! is! available! as! a! database! with! accompanying! software,! DEVOTool,! which! enables! browsing!the!metadata!as!well!as!extracting!lists!of!indicators!using!various!criteria.!Lists!of!indicators! best!fulfilling!any!set!of!criteria!can!be!produced,!enabling!users!to!search,!for!example,!for!indicators! that!could!be!suitable!to!fill!an!identified!gap!in!their!marine!area.!Additionally,!an!analysis!capability!is! included!that!can!produce!simple!rankings!of!specific!subsets!of!indicators!based!on!different!criteria! and!calculations.!The!tool!and!the!indicator!catalogue!will!be!continuously!updated.! In!this!deliverable,!the!collected!set!of!indicators!was!analysed!for!coverage!and!gaps!in!general!and!for!
Recommended publications
  • National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
    UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1.
    [Show full text]
  • HELCOM Red List
    SPECIES INFORMATION SHEET Corophium multisetosum English name: Scientific name: – Corophium multisetosum Taxonomical group: Species authority: Class: Malacostraca Stock, 1952 Order: Amphipoda Family: Corophiidae Subspecies, Variations, Synonyms: Generation length: 2 years? Trophonopsis truncata Strøm, 1768 Trophon truncatus Strøm, 1768 Past and current threats (Habitats Directive Future threats (Habitats Directive article 17 article 17 codes): Fishing (bottom trawling; codes): Fishing (bottom trawling; F02.02.01), F02.02.01), Eutrophication (H01.05) Eutrophication (H01.05) IUCN Criteria: HELCOM Red List NT B2b Category: Near Threatened Global / European IUCN Red List Category Habitats Directive: – – Protection and Red List status in HELCOM countries: Denmark –/–, Estonia –/–, Finland –/–, Germany –/G (endangered by unknown extent), Latvia –/–, Lithuania –/–-, Poland –/–, Russia –/–, Sweden: –/– Distribution and status in the Baltic Sea region C. multisetosum is reported mainly from coastal waters (bays) along southern shores of the Baltic Sea and those in the Danish straits, including adjacent fjords, canals, lagoons, e.g. the Curonian Lagoon, which is the easternmost area. However, there are also records from more open sea, and thus more saline areas such as the Hevring Bay, Arhus Bay, Arkona Basin by Darss-Zingst Peninsula, and the outer Puck Bay. Declining population trends are reported from the Szczecin Lagoon (Wawrzyniak-Wydrowska, pers. comm.). ©HELCOM Red List Benthic Invertebrate Expert Group 2013 www.helcom.fi > Baltic Sea trends > Biodiversity > Red List of species SPECIES INFORMATION SHEET Corophium multisetosum Distribution map The georeferenced records of species compiled from the Danish national database for marine data (MADS), Russian monitoring data (Elena Ezhova, pers. comm), and the database of the Leibniz Institute for Baltic Sea Research (IOW), where also the Polish literature and monitoring data for the species are stored.
    [Show full text]
  • Profile of Nutrition and Hazards of Om-Elkholool (Donax Trunculus) and Gandofly (Ruditapes Decussatus) Clams from Alexandria, Egypt
    International Journal For Research In Agricultural And Food Science ISSN: 2208-2719 Profile of Nutrition and Hazards of Om-Elkholool (Donax Trunculus) and Gandofly (Ruditapes Decussatus) Clams From Alexandria, Egypt Sherief Mohammed Sayed Abd-Allah Assistant Professor, Department of Food Hygiene "Meat Hygiene", Faculty of Veterinary Medicine, Assiut University, Assiut 71526, Egypt Email:[email protected] ABSTRACT Clams are delicate nutritious food; however they can harbor potential health hazards. The current work aimed to investigate and compare some of the nutritive criteria and hazards of Om-Elkholool (Donax trunculus) and Gandofly (Ruditapes decussatus) clams sold at Alexandria, Egypt. A total of 46 samples (22 of Om-Elkholool and 24 of Gandofly) were randomly collected from fish retailers during summer of 2017. Samples were analyzed for proximate composition (dry matter, moisture, protein, fat, and ash %). The carbohydrates and energy content was calculated. The count of coliforms, fecal coliforms, E. coli and Cl. perfringenes (MPN/g) was determined. Concentration (mg/kg) of lead and cadmium in 10 randomly selected samples of each type were estimated. The dry matter, moisture, protein, fat, ash and carbohydrates percentages mean values for Om-Elkholool “Om” samples were 30.37±0.22, 69.60±0.21, 8.49±0.14, 1.29±0.03, 18.63±0.09, and 1.99±11, respectively, while for Gandofly “Gd” samples were 16.81±0.21, 83.28±0.2, 8.69±0.13, 1.22±0.03, 3.43±0.09, and 3.37±10, respectively. The gross energy content (Kcal/100g) mean value was 53.55±0.88 for Om and 59.24±0.85 for Gd.
    [Show full text]
  • Donacidae - Bivalvia)
    Bolm. Zool., Univ. S. P aub 3:121-142, 1978 FUNCTIONAL ANATOMY OF DON AX HANLEY ANUS PHILIPPI 1847 (DONACIDAE - BIVALVIA) Walter Narchi Department o f Zoology University o f São Paulo, Brazil ABSTRACT Donax hanleyanus Philippi 1847 occurs throughout the southern half o f the Brazilian littoral. The main organ systems were studied in the living animal, particular attention being paid to the cilia­ ry feeding and cleasing mechanisms in the mantle cavity. The anatomy, functioning of the stomach and the ciliary sorting mechanisms are described. The stomach unlike that of almost all species of Donax and like the majority of the Tellinacea belongs to type V, as defined by Purchon, and could be regarded as advanced for the Donacidae. A general comparison has been made between the known species of Donax and some features of Iphigenia brasiliensis Lamarck 1818, also a donacid. INTRODUCTION Very little is known of donacid bivalves from the Brazilian littoral. Except for the publications of Narchi (1972; 1974) on Iphigenia brasiliensis and some ecological and adaptative features on Donax hanleyanus, all references to them are brief descrip­ tions of the shell and cheklists drawn up from systematic surveys. Beach clams of the genus Donax inhabit intertidal sandy shores in most parts of the world. Donax hanleyanus Philippi 1847 is one of four species occuring through­ out the Brazilian littoral. Its known range includes Espirito Santo State and the sou­ thern Atlantic shoreline down to Uruguay (Rios, 1975). According to Penchaszadeh & Olivier (1975) the species occur in the littoral of Argentina. 122 Walter Narchi The species is fairly common in São Paulo, Parana and Santa Catarina States whe­ re it is used as food by the coastal population (Goffeijé, 1950), and is known as “na- nini” It is known by the name “beguara” (Ihering, 1897) in the Iguape region, but not in S.
    [Show full text]
  • Zernov's Phyllophora Field) at the Beginning of the 21St Century
    Ecologica Montenegrina 39: 92-108 (2021) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2021.39.11 Structure of the macrozoobenthos assemblages in the central part of the northwestern Black Sea shelf (Zernov's Phyllophora field) at the beginning of the 21st century NIKOLAI K. REVKOV1* & NATALIA A. BOLTACHOVA1 1 A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS; 2, Nakhimov ave., Sevastopol 299011, Russia *Corresponding author. E-mail: [email protected] Received 24 December 2020 │ Accepted by V. Pešić: 11 February 2021 │ Published online 16 February 2021. Abstract In the first half of the 20th century, there was an extensive biocoenosis of the unattached red algae Phyllophora crispa on the mussel muds of the central section of the Black Sea’s northwestern shelf, which is known as Zernov’s Phyllophora Field (ZPF). At that time, the area of ZPF was approximately 11000 km2. More than a century after the description of ZPF, long-term changes in its phyto- and zoobenthos have been noted. A period of ecological crisis of the Black Sea ecosystem during the second half of the 20th century was destructive for the phytobenthos of ZPF, with the complete degradation of unattached Phyllophora biocoenosis. In contrast, after a sharp decline in the quantitative development of macrozoobenthos of the soft bottoms in the 1970s, its recovery to pre-crisis levels in the 2010s was noted. Despite the difference in the aforementioned phyto- and zoobenthos dynamics, habitat in the 4025 km² area of the botanical sanctuary of national importance “Zernov’s Phyllophora Field” was recognised as Critically Endangered (CR) within the European Red List of Habitats.
    [Show full text]
  • Int. J. Biosci. 2018
    Int. J. Biosci. 2018 International Journal of Biosciences | IJB | ISSN: 2220-6655 (Print), 2222-5234 (Online) http://www.innspub.net Vol. 12, No. 1, p. 82-89, 2018 RESEARCH PAPER OPEN ACCESS Describing shell shapes of Venerid bivalves using elliptic fourier analysis Mark Lloyd Dapar, Sharon Rose Tabugo* Department of Biological Sciences, College of Science and Mathematics Mindanao State University-Iligan Institute of Technology, Iligan City, Philippines Key words: Veneridae, CVA, MANOVA, Variation, Elliptic Fourier Analysis. http://dx.doi.org/10.12692/ijb/12.1.82-89 Article published on January 12, 2018 Abstract In this study, Elliptic Fourier (EF) analysis was used to describe phenotypic variation among the selected venerid bivalve species Meretrix lyrata (lyrate asiatic hard clam), Chamelea striatula (striped venus clam) and Tapes dorsatus (turgid venus clam). Thus, to describe possible phenotypic diversity, a total of 90 venerid bivalves (30 specimens for each species) were photographed on their right valves. Canonical variate analysis (CVA), multivariate analysis of variance (MANOVA), principal component analysis (PCA) and Kruskal-Wallis tests showed significant difference between species based on the Fourier coefficients. This study showed significant variations in the shape of the right external valve of the shell. CVA plot generated show separation of populations examined indicating significant difference between groups. Observed differences in the external shell shapes of different venerid bivalve species were based in the umbo, anterior margin, shell width, length depth and anterior margin depression. Results suggest hypothesized variable factors behind the disparity of the external shell shape which include habitat differences, environment and genotype interactions. Herewith, the use of Elliptic Fourier (EF) analysis proved to be useful in effective quantification of inter-specific variation between species.
    [Show full text]
  • Kinematic and Dynamic Scaling of Copepod Swimming
    fluids Review Kinematic and Dynamic Scaling of Copepod Swimming Leonid Svetlichny 1,* , Poul S. Larsen 2 and Thomas Kiørboe 3 1 I.I. Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Str. B. Khmelnytskogo, 15, 01030 Kyiv, Ukraine 2 DTU Mechanical Engineering, Fluid Mechanics, Technical University of Denmark, Building 403, DK-2800 Kgs. Lyngby, Denmark; [email protected] 3 Centre for Ocean Life, Danish Technical University, DTU Aqua, Building 202, DK-2800 Kgs. Lyngby, Denmark; [email protected] * Correspondence: [email protected] Received: 30 March 2020; Accepted: 6 May 2020; Published: 11 May 2020 Abstract: Calanoid copepods have two swimming gaits, namely cruise swimming that is propelled by the beating of the cephalic feeding appendages and short-lasting jumps that are propelled by the power strokes of the four or five pairs of thoracal swimming legs. The latter may be 100 times faster than the former, and the required forces and power production are consequently much larger. Here, we estimated the magnitude and size scaling of swimming speed, leg beat frequency, forces, power requirements, and energetics of these two propulsion modes. We used data from the literature together with new data to estimate forces by two different approaches in 37 species of calanoid copepods: the direct measurement of forces produced by copepods attached to a tensiometer and the indirect estimation of forces from swimming speed or acceleration in combination with experimentally estimated drag coefficients. Depending on the approach, we found that the propulsive forces, both for cruise swimming and escape jumps, scaled with prosome length (L) to a power between 2 and 3.
    [Show full text]
  • Anthropogenic Hybridization Between Endangered Migratory And
    Evolutionary Applications Evolutionary Applications ISSN 1752-4571 ORIGINAL ARTICLE Anthropogenic hybridization between endangered migratory and commercially harvested stationary whitefish taxa (Coregonus spp.) Jan Dierking,1 Luke Phelps,1,2 Kim Præbel,3 Gesine Ramm,1,4 Enno Prigge,1 Jost Borcherding,5 Matthias Brunke6 and Christophe Eizaguirre1,* 1 Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany 2 Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, Plon,€ Germany 3 Department of Arctic and Marine Biology, Faculty of Biosciences Fisheries and Economics, University of Tromsø, Tromsø, Norway 4 Faculty of Science, University of Copenhagen, Frederiksberg, Denmark 5 General Ecology & Limnology, Ecological Research Station Grietherbusch, Zoological Institute of the University of Cologne, Cologne, Germany 6 Landesamt fur€ Landwirtschaft, Umwelt und landliche€ Raume€ (LLUR), Flintbek, Germany * Present address: School of Biological and Chemical Sciences, Queen Mary University of London, London, UK Keywords Abstract admixture, anadromous fish, conservation, evolutionarily significant unit, gill raker, Natural hybridization plays a key role in the process of speciation. However, introgression, stocking anthropogenic (human induced) hybridization of historically isolated taxa raises conservation issues. Due to weak barriers to gene flow and the presence of endan- Correspondence gered taxa, the whitefish species complex is an
    [Show full text]
  • Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria
    Historia naturalis bulgarica, 22: 45-71, 2015 Invertebrate Animals (Metazoa: Invertebrata) of the Atanasovsko Lake, Bulgaria Zdravko Hubenov, Lyubomir Kenderov, Ivan Pandourski Abstract: The role of the Atanasovsko Lake for storage and protection of the specific faunistic diversity, characteristic of the hyper-saline lakes of the Bulgarian seaside is presented. The fauna of the lake and surrounding waters is reviewed, the taxonomic diversity and some zoogeographical and ecological features of the invertebrates are analyzed. The lake system includes from freshwater to hyper-saline basins with fast changing environment. A total of 6 types, 10 classes, 35 orders, 82 families and 157 species are known from the Atanasovsko Lake and the surrounding basins. They include 56 species (35.7%) marine and marine-brackish forms and 101 species (64.3%) brackish-freshwater, freshwater and terrestrial forms, connected with water. For the first time, 23 species in this study are established (12 marine, 1 brackish and 10 freshwater). The marine and marine- brackish species have 4 types of ranges – Cosmopolitan, Atlantic-Indian, Atlantic-Pacific and Atlantic. The Atlantic (66.1%) and Cosmopolitan (23.2%) ranges that include 80% of the species, predominate. Most of the fauna (over 60%) has an Atlantic-Mediterranean origin and represents an impoverished Atlantic-Mediterranean fauna. The freshwater-brackish, freshwater and terrestrial forms, connected with water, that have been established from the Atanasovsko Lake, have 2 main types of ranges – species, distributed in the Palaearctic and beyond it and species, distributed only in the Palaearctic. The representatives of the first type (52.4%) predomi- nate. They are related to the typical marine coastal habitats, optimal for the development of certain species.
    [Show full text]
  • Distinctness, Phylogenetic Relations and Biogeography of Intertidal Mussels (Brachidontes, Mytilidae) from the South-Western Atlantic Berenice Trovant1, Daniel E
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CONICET Digital Journal of the Marine Biological Association of the United Kingdom, 2013, 93(7), 1843–1855. # Marine Biological Association of the United Kingdom, 2013 doi:10.1017/S0025315413000477 Distinctness, phylogenetic relations and biogeography of intertidal mussels (Brachidontes, Mytilidae) from the south-western Atlantic berenice trovant1, daniel e. ruzzante2,ne’stor g. basso1 and j.m. (lobo) orensanz1 1Centro Nacional Patago´nico (CONICET), Boulevard Brown 2915, U9120ACF Puerto Madryn, Chubut, Argentina, 2Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada Rocky shore intertidal communities along the cold- and warm-temperate coasts of the south-western Atlantic are dominated by small mussels of the genus Brachidontes s.l. (Mytilidae), yet the status of species occurring in the region remains unresolved. Taxonomic studies have been based on shell morphology, but high phenotypic variability has led to much confusion. Based on mitochondrial and nuclear genes (COI, 28S rDNA and ITS1) from nine localities in Uruguay and Argentina we confirmed the occurrence of three species in the south-western Atlantic: Brachidontes darwinianus and B. rodriguezii in the warm- temperate and B. purpuratus in the cold-temperate sector. The latter two species coexist in the same beds along the transition zone (41–438S). The phylogeny based on mitochondrial and nuclear genes, indicate an early divergence of B. purpuratus.Atthe intra-specific level, low genetic differentiation and absence of fossil record for B. purpuratus from the earlier Quaternary marine terraces of Patagonia likely result from a relatively recent (post-LGM) colonization originated from populations in the south- eastern Pacific.
    [Show full text]
  • Coregonus Maraena) Ecological Risk Screening Summary
    Maraena Whitefish (Coregonus maraena) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, September 2014 and June 2017 Web Version, 09/14/2017 Image: E. Östman. Public domain. Available: http://eol.org/data_objects/26779416. (June 2017). 1 Native Range, and Status in the United States Native Range From Froese and Pauly (2017): “Europe: In the Baltic Sea: Swedish coast (including Bothnian Gulf, not in Gotland); in southern Baltic, extending from the Schlei to Gulf of Finland. Southeast North Sea Basin: Ems, Weser and Elbe drainages 1 and small rivers of Schleswig-Holstein and Denmark. Landlocked in several lakes in Poland, Sweden, and Russia.” Status in the United States From Neilson (2017): “Failed introduction.” “A shipment of 409 individuals from Lake Miedwie (formerly Madue Lake), Poland was stocked in Garnder Lake, Michigan in 1877 (Baird 1879; Todd 1983).” Means of Introductions in the United States From Neilson (2017): “Coregonus maraena, along with other species of Coregonus, was intentionally stocked as a food fish by the U.S. Fish Commission (Todd 1983). According to Baird (1879), 1,000 eggs of C. maraena were shipped from Poland to Michigan in 1877 and hatched in captivity at the State Hatching House in Detroit. A total of 409 of the young fish were stocked in Gardner Lake (Baird 1879; Todd 1983). Baird (1879) considered the stocking an experimental introduction of a European food fish.” Remarks From Neilson (2017): “There is much confusion regarding the identity of whitefish imported from Germany in the late 1800s by the U.S. Fish Commission, primarily due to the uncertain taxonomy and systematics of Coregonus (Kottelat and Freyhof 2007).
    [Show full text]
  • Spatio-Temporal Variability of Amphipod Assemblages Associated with Rhodolith Seabeds
    CSIRO PUBLISHING Marine and Freshwater Research, 2020, 71, 1–8 https://doi.org/10.1071/MF19360 Spatio-temporal variability of amphipod assemblages associated with rhodolith seabeds Sandra Navarro-MayoralA, Victoria Fernandez-GonzalezB, Francisco Otero-FerrerA and Fernando TuyaA AGrupo en Biodiversidad y Conservacio´n, IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Marine Scientific and Technological Park, Courta. Taliarte s/n, E-35214 Telde, Spain. BDepartment of Marine Sciences and Applied Biology, University of Alicante, PO Box 99, E-03080 Alicante, Spain. CCorresponding author. Email: [email protected] Abstract. Rhodolith seabeds are habitats underpinned by free-living calcareous macroalgae. We partitioned the relevance of the scale of temporal (four seasons throughout two successive years) and spatial (three depth strata: 18, 25 and 40 m) variation on the diversity, structure and abundance of amphipod assemblages living in rhodolith seabeds from Gran Canaria Island. In total, 3996 individuals, belonging to 32 taxa, were identified. Multivariate analyses showed consistent differences in assemblage structure among seasons and depths; more diverse and abundant amphipod assemblages were often observed during spring at 18- and 25-m than at 40-m depth. Ovigerous females of Gammaropsis ostroumowi and Ampithoe ramondi were observed mainly at 18 and 25 m. Juveniles of both species were exclusively recorded at 18 and 25 m, so denoting a clear segregation in their population structure with depth. In summary, this study has demonstrated that the ecological pattern of amphipods associated with rhodolith seabeds can vary greatly across both time (seasons) and space (depth). Additional keywords: algal biomass, Atlantic Ocean, Canary Islands, crustaceans, maerl, population structure.
    [Show full text]