Bsc Chemistry

Total Page:16

File Type:pdf, Size:1020Kb

Bsc Chemistry Input Template for Content Writers (e-Text and Learn More) 1. Details of Module and its Structure Module Detail Subject Name <Botany> Paper Name <Ecology> Module Name/Title <Species Interaction II> Module Id Pre-requisites <Basic knowledge about interactionsamong organisms> <To make students aware about different negative interaction prevailing Objectives in a community > <Amensalism>,<Predation>,< Herbivory>,< Parasitism>; < Competition>; Keywords < Competitive Exclusion > Structure of Module / Syllabus of a module (Define Topic / Sub-topic of module ) < Species Interactions II> <Introduction>, <Types of Negative Interactions><Summary> 2. Development Team Role Name Affiliation Subject Coordinator <Prof. Sujata Bhargava> Savitribai Phule Pune University Paper Coordinator <Prof. NSR Krishnayya> MS University Baroda Content Writer/Author (CW) <Prof.. Neeta Pandya> MS University Baroda Content Reviewer (CR) < Prof. NSR Krishnayya > Language Editor (LE) < Prof. NSR Krishnayya > Species Interaction II Ecology Negative interactions prevailing among different species TABLE OF CONTENTS(for textual content) 1.Introduction: 2.Types of Negative Interactions: 2.1.Amensalism: 2.2. Predation 2.2.1 Predator-Prey Adaptations 2.2.1.1 Defensive Coloration 2.2.1.2Camouflage 2.2.1.3 Mimicry 2.2.2Predation- Prey Dynamics 2.3. Herbivory 2.4. Parasitism 2.4.1. Endoparasites 2.4.2. Ectoparasites 2.5. Competition 2.5.1 Different Types of Competition: 2.5.1.1 Intraspecific competition 2.5.1.2. Interspecific competition 2.5.1.3. Interference Competition 2.5.1.4. Exploitation competition 2.5.2. Models of competition 2.5.3 Competitive Exclusion Principle 1.Introduction: Ecological communities are assemblage of populations of different species, present in a defined geographic area. The species interact with each other directly and indirectly. The influence of interactions varies in degree of impact and outcome. Species interactions form the basis for many ecosystem properties and processes such as nutrient cycling and food webs. There are several classes of interactions which broadly are divided into positive and negative interactions. 2.Types of Negative Interactions: Negative interactions are mainly classified into following five types: Interaction Effect on species A Effect on species B Nature of Interaction Amensalism (-) (0) One is harmed; other is unaffected Predation (+) (-) Beneficial to predator ; harmful to prey Herbivory (+) (-) Beneficial to herbivore ;harmful to plants Parasitism (+) (-) Beneficial to parasite ;harmful to host Competition (-) (-) Inhibitory to both Table 1: Types of Negative Interactions. The sign +, 0 & - represent the effect of one species on another and indicate positive, neutral or negative effect respectively. Species Interaction II Ecology Negative interactions prevailing among different species 2.1.Amensalism: It is an antagonistic interspecificinteraction where one species suffers and the other species remains unaffected. This is commonly the effect when one species produces a chemical compound (as part of its normal metabolic reactions) that is harmful to the other species.It is also called antibiosis , the affected species is called amensal and the affecting species is called inhibitor. Allelopathy, in which some plants produce chemical compounds that inhibit the growth of nearby would-be competitors, is one type of amensalistic interaction ,for example Black Walnut tree (Juglans nigra), secretes juglone from its roots, it is a chemical that harms or kills some of the surrounding plants species(Fig.1). The other plants are prohibited from growing under or near the trees while the walnut trees do not really get benefit in any way. Interaction between an antibiotic and a pathogenic microbe is also an example of amensalism (antibiosis). Fig.1 Black Walnut tree showing avoidance of plants in its close territory. (Source: www.biomiami.edu) 2.2. Predation: Predation is an in antagonistic interspecific interaction in which members of one species (the predator) consume members of other smaller species (the prey). In most examples of this relationship, the predator and prey are both animals; the best-known examples of predation involve carnivorous interactions, in which one animal consumes another .Predation is also exhibited by a group of plants. Carnivorous plants, such as the Venus fly trap, Bladderwort and Pitcher plant, consume insects. Pitcher plants catch their prey in a pool of water containing digestive enzymes, whereas the Venus fly trap captures an insect between the two lobes of a leaf and seals the insect inside with digestive enzymes (Fig.2 ). A B Fig. 2 (A) Predator and Prey (Lynx and Hare) (B) A carnivorous plant (Venus fly trap) (Source: A - www.bio.georgeasouthern.edu; B - www.ehow.com) 2.2.1 Predator-Prey Adaptations: Species Interaction II Ecology Negative interactions prevailing among different species Predation has a direct effect on density of prey population .Both, prey as well as predator try to increase their efficiency ,prey tries to avoid predation and predator wants to catch maximum number of prey organism to satisfy its own hunger. During a long term history of predation both have developed number of adaptive features involving an evolutionary arms race.The major adaptive mechanism are : 2.2.1.1 Defensive Coloration: Many insects are brightly colored; they advertise their poisonous nature using an ecological strategy known as warning coloration, or aposematic coloration. It helps to prevent predation, by signaling to potential predators that the brightly colored individual is toxic. Toxins may be manufactured within the body or they may be acquired passively via consumption of toxic plants (Fig.3). Showy coloration is characteristic of animals that use poisons and stings to repel predators, while organisms that lack specific chemical defenses are seldom brightly colored. A B Fig.3: Aposematic coloration shown by a caterpillar (A) and Dyeing Dart Frog (B) (Source: www.lifeandscience.org) 2.2.1.2Camouflage:One adaptation helping both predators and prey to avoid detection is camouflage; Camouflage consists of not only color but also shape and pattern. Camouflage, also called cryptic coloration, is a defense or tactic that organisms use to disguise their appearance, usually to blend in with their surroundings.Cryptic coloration is especially common in small animals such as insects, lizards, snakes, and frogs. (Fig.4). In addition to visual crypsis there is also olfactory crypsis. This is the situation when an organism uses scent to camouflage itself. Camouflage is adapted by predators too. A B Fig.4 Crab Spider(A) and Leaf butterfly (B) showing camouflage ( Source: www.duskyswodersites.com) Species Interaction II Ecology Negative interactions prevailing among different species 2.2.1.3 Mimicry: In mimicry a species resembles to the superficial appearance of another species, it can be Batesian mimicryin whicha nontoxic species (the mimic) resembles a toxic species (the model) and is avoided by the predator in response to the toxic model species. Examples of such Batesian mimicry is shown by harmless Viceroy butterfly which mimics poisonous Monarch butterfly (Fig.5).The other type is Mullerian mimicry in which one toxic species resembles another toxic species and both are avoided by predator in confusion. Fig. 5 Batesian mimicry exhibited by two species of Butterflies (Source: www.education.portal.com) Evolution of surface features like thorns, spines hard shells etc. also protect prey from predation. Predators also follow some tactics to catch the prey like they show camouflage, release poisonous chemicals, form web or a trap etc. 2.2. Predation- Prey Dynamics: Predation is not as simple to understand as it seems. In complex food webs, a predator may also be the prey of another species. Some predators eat only specific types of prey, for example, the Canadian lynx feeds mostly on snowshoe hares during the winter. No other cat is so dependent on a single prey species, in this kind of close relationship, the sizes of each population tend to increase and decrease in linked patterns, and show a coupled oscillation. Initially, highprey density increases predator density to a point where the predation causes population decline in the prey, this decline affects dependent predator population and it falls ,this rise and fall is repeated in both populations (Fig. 6).Predator-prey dynamics are also influenced by climate dynamics, changes in food availability for the prey species, and dynamics in other areas of the food web. Species Interaction II Ecology Negative interactions prevailing among different species Fig.6 The predator-prey dynamics showing coupled oscillation in populations (Source:Hijausawah.blogspot.com) 2.3. Herbivory: Herbivory involves eating of plant material by an animal herbivore. Plants are eaten by a tremendous array of herbivores, it is a type of predation in which animals/organisms consume autotrophs such as plants, algae, and photosynthesizing bacteria.Itis almost always non-fatal, and can sometimes be advantageous for the plant, as it may stimulate growth and promote community diversity. Herbivores are at the second level of the food chain. Herbivores like squirrels eat grass and small plants near the ground and are called grazers, herbivores that eat leaves, shoots, and twigs are called browsers. Three terms are commonly used to describe the host range of herbivores, monophagous, oligophagous and polyphagous. Monophagous feeds on only one species of plant. Oligophagous feeds on
Recommended publications
  • Habitat Selection by Two K-Selected Species: an Application to Bison and Sage Grouse
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-01 Habitat Selection by Two K-Selected Species: An Application to Bison and Sage Grouse Joshua Taft Kaze Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Animal Sciences Commons BYU ScholarsArchive Citation Kaze, Joshua Taft, "Habitat Selection by Two K-Selected Species: An Application to Bison and Sage Grouse" (2013). Theses and Dissertations. 4284. https://scholarsarchive.byu.edu/etd/4284 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Habitat Selection by Two K-Selected Species: An Application to Bison and Sage-Grouse in Utah Joshua T. Kaze A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Masters of Science Randy T. Larsen, Chair Steven Peterson Rick Baxter Department of Plant and Wildlife Science Brigham Young University December 2013 Copyright © 2013 Joshua T. Kaze All Rights Reserved ABSTRACT Habitat Selection by Two K-Selected Species: An Application to Bison and Sage-Grouse in Utah Joshua T. Kaze Department of Plant and Wildlife Science, BYU Masters of Science Population growth for species with long lifespans and low reproductive rates (i.e., K- selected species) is influenced primarily by both survival of adult females and survival of young. Because survival of adults and young is influenced by habitat quality and resource availability, it is important for managers to understand factors that influence habitat selection during the period of reproduction.
    [Show full text]
  • Predators As Agents of Selection and Diversification
    diversity Review Predators as Agents of Selection and Diversification Jerald B. Johnson * and Mark C. Belk Evolutionary Ecology Laboratories, Department of Biology, Brigham Young University, Provo, UT 84602, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-801-422-4502 Received: 6 October 2020; Accepted: 29 October 2020; Published: 31 October 2020 Abstract: Predation is ubiquitous in nature and can be an important component of both ecological and evolutionary interactions. One of the most striking features of predators is how often they cause evolutionary diversification in natural systems. Here, we review several ways that this can occur, exploring empirical evidence and suggesting promising areas for future work. We also introduce several papers recently accepted in Diversity that demonstrate just how important and varied predation can be as an agent of natural selection. We conclude that there is still much to be done in this field, especially in areas where multiple predator species prey upon common prey, in certain taxonomic groups where we still know very little, and in an overall effort to actually quantify mortality rates and the strength of natural selection in the wild. Keywords: adaptation; mortality rates; natural selection; predation; prey 1. Introduction In the history of life, a key evolutionary innovation was the ability of some organisms to acquire energy and nutrients by killing and consuming other organisms [1–3]. This phenomenon of predation has evolved independently, multiple times across all known major lineages of life, both extinct and extant [1,2,4]. Quite simply, predators are ubiquitous agents of natural selection. Not surprisingly, prey species have evolved a variety of traits to avoid predation, including traits to avoid detection [4–6], to escape from predators [4,7], to withstand harm from attack [4], to deter predators [4,8], and to confuse or deceive predators [4,8].
    [Show full text]
  • Seventh Grade
    Name: _____________________ Maui Ocean Center Learning Worksheet Seventh Grade Our mission is to foster understanding, wonder and respect for Hawai‘i’s Marine Life. Based on benchmarks SC.6.3.1, SC. 7.3.1, SC. 7.3.2, SC. 7.5.4 Maui Ocean Center SEVENTH GRADE 1 Interdependent Relationships Relationships A food web (or chain) shows how each living thing gets its food. Some animals eat plants and some animals eat other animals. For example, a simple food chain links plants, cows (that eat plants), and humans (that eat cows). Each link in this chain is food for the next link. A food chain always starts with plant life and ends with an animal. Plants are called producers (they are also autotrophs) because they are able to use light energy from the sun to produce food (sugar) from carbon dioxide and water. Animals cannot make their own food so they must eat plants and/or other animals. They are called consumers (they are also heterotrophs). There are three groups of consumers. Animals that eat only plants are called herbivores. Animals that eat other animals are called carnivores. Animals and people who eat both animals and plants are called omnivores. Decomposers (bacteria and fungi) feed on decaying matter. These decomposers speed up the decaying process that releases minerals back into the food chain for absorption by plants as nutrients. Do you know why there are more herbivores than carnivores? In a food chain, energy is passed from one link to another. When a herbivore eats, only a fraction of the energy (that it gets from the plant food) becomes new body mass; the rest of the energy is lost as waste or used up (by the herbivore as it moves).
    [Show full text]
  • Adaptations for Survival: Symbioses, Camouflage & Mimicry
    Adaptations for Survival: Symbioses, Camouflage & Mimicry OCN 201 Biology Lecture 11 http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Symbiosis • Parasitism - negative effect on host • Commensalism - no effect on host • Mutualism - both parties benefit Often involves food but benefits may also include protection from predators, dispersal, or habitat Parasitism Leeches (Segmented Worms) Tongue Louse (Crustacean) Nematodes (Roundworms) Commensalism or Mutualism? Anemone shrimp http://magma.nationalgeographic.com/ Anemone fish http://www.scuba-equipment-usa.com/marine/APR04/ Mutualism Cleaner Shrimp and Eel http://magma.nationalgeographic.com/ Whale Barnacles & Lice What kinds of symbioses are these? Commensal Parasite Camouflage • Often important for predators and prey to avoid being seen • Predators to catch their prey and prey to hide from their predators • Camouflage: Passive or adaptive Passive Camouflage Countershading Sharks Birds Countershading coloration of the Caribbean reef shark © George Ryschkewitsch Fish JONATHAN CHESTER Mammals shiftingbaselines.org/blog/big_tuna.jpg http://www.nmfs.noaa.gov/pr/images/cetaceans/orca_spyhopping-noaa.jpg Passive Camouflage http://www.cspangler.com/images/photos/aquarium/weedy-sea-dragon2.jpg Adaptive Camouflage Camouflage by Accessorizing Decorator crab Friday Harbor Marine Health Observatory http://www.projectnoah.org/ Camouflage by Mimicry http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Mimicry • Animals can gain protection (or even access to prey) by looking
    [Show full text]
  • Food Web Lesson Plan
    NYSDEC Region 1 Freshwater Fisheries I FISH NY Program Food Web Grade Level(s): 3-5 NYS Learning Standards Time: 30-45 minutes Core Curriculum MST Group Size: 10-30 Living Environment: Standard 4 Students will: understand and apply Summary scientific concepts, principles, and theories Students will be introduced to some of the pertaining to the physical setting and organisms in an aquatic ecosystem. The concept living environment and recognize the of food webs and the many roles organisms play historical development of ideas in science. as consumers, producers, and decomposers will • Key Idea 5: Organisms maintain a be introduced. Students will participate in an dynamic equilibrium that sustains activity to learn how humans play a role in the life. aquatic food web as anglers and consumers. • Key Idea 6: Plants and animals depend on each other and their Objectives physical environment. • Students will be able to identify 1-3 fish specific to fishing site • Students will be able to construct an aquatic food web • Students will be able to explain how humans play a role in the aquatic food web • Students will be able to identify species as producers, consumers, or decomposers Materials o Organism Identification Cards o Food Web worksheet o Fish mounts/pictures of fish o Suggested Organism Props for each identification card: . Angler: fishing rod with thick fishing line . Crab: tongs . Plankton: hair band with springs . Sun: sunglasses . Algae: toothpaste or plastic fish tank plant . Bird: noise maker or feathers . Bait: air freshener . Shellfish: fake pearl necklace . Fish: models, pictures, or nose plugs . Skate: elbow & knee pads .
    [Show full text]
  • Antibiosis of Tomato, Solanum Lycopersicum (Solanaceae) Plants to the Asopinae Predator Supputius Cincticeps (Heteroptera: Pentatomidae)
    ISJ 12: 179-187, 2015 ISSN 1824-307X RESEARCH REPORT Antibiosis of tomato, Solanum lycopersicum (Solanaceae) plants to the Asopinae predator Supputius cincticeps (Heteroptera: Pentatomidae) AA de Castro1, W de S Tavares2, J Collatz3, AI de A Pereira4, JE Serrão5, JC Zanuncio6 1Departamento de Entomologia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil 2Departamento de Fitotecnia, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil 3 Agroscope Institute for Sustainability Sciences ISS, Reckenholzstrasse 191, 8046 Zürich, Switzerland 4Instituto Federal Goiano, Campus Urutaí, 75790-000, Urutaí, Goiás State, Brazil 5Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil 6Departamento de Biologia Animal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais State, Brazil Accepted July 6, 2015 Abstract Plant feeding can improve development and reproduction of the stink bug Supputius cincticeps (Heteroptera: Pentatomidae), an important biological control agent in South American agro-forestry ecosystems. However, defensive compounds of plants may negatively impact this predator. The development, reproduction and survival of S. cincticeps fed on mealworm, Tenebrio molitor (Coleoptera: Tenebrionidae) pupae with bean (Fabaceae), cotton (Malvaceae), eucalyptus (Myrtaceae), soybean (Fabaceae), or tomato (Solanaceae) leaves were evaluated. Females and males were heavier and the number of nymphs produced per female, the oviposition period and the longevity of females of this predator were higher when fed on eucalyptus, soybean, bean, and cotton than with tomato leaves. Leaves of those plants improved biological parameters of S. cincticeps, while tomato leaves showed antibiosis with lower reproduction and survival of S. cincticeps, probably due to toxic compounds.
    [Show full text]
  • Adaptations for Survival: Symbioses, Camouflage
    Adaptations for Survival: Symbioses, Camouflage & Mimicry OCN 201 Biology Lecture 11 http://www.oceanfootage.com/stockfootage/Cleaning_Station_Fish/ http://www.berkeley.edu/news/media/releases/2005/03/24_octopus.shtml Symbiosis • Parasitism - negative effect on host • Commensalism - no effect on host • Mutualism - both parties benefit Often involves food but benefits may also include protection from predators, dispersal, or habitat Parasites Leeches (Segmented Worms) Tongue Louse (Crustacean) Nematodes (Roundworms) Whale Barnacles & Lice Commensalism or Parasitism? Commensalism or Mutualism? http://magma.nationalgeographic.com/ http://www.scuba-equipment-usa.com/marine/APR04/ Mutualism Cleaner Shrimp http://magma.nationalgeographic.com/ Anemone Hermit Crab http://www.scuba-equipment-usa.com/marine/APR04/ Camouflage Countershading Sharks Birds Countershading coloration of the Caribbean reef shark © George Ryschkewitsch Fish JONATHAN CHESTER Mammals shiftingbaselines.org/blog/big_tuna.jpg http://www.nmfs.noaa.gov/pr/images/cetaceans/orca_spyhopping-noaa.jpg Adaptive Camouflage Camouflage http://www.cspangler.com/images/photos/aquarium/weedy-sea-dragon2.jpg Camouflage by Mimicry Mimicry • Batesian: an edible species evolves to look similar to an inedible species to avoid predation • Mullerian: two or more inedible species all evolve to look similar maximizing efficiency with which predators learn to avoid them Batesian Mimicry An edible species evolves to resemble an inedible species to avoid predators Pufferfish (poisonous) Filefish (non-poisonous)
    [Show full text]
  • Trichoderma: the “Secrets” of a Multitalented Biocontrol Agent
    plants Review Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent 1, 1, 2 3 Monika Sood y, Dhriti Kapoor y, Vipul Kumar , Mohamed S. Sheteiwy , Muthusamy Ramakrishnan 4 , Marco Landi 5,6,* , Fabrizio Araniti 7 and Anket Sharma 4,* 1 School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; [email protected] (M.S.); [email protected] (D.K.) 2 School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India; [email protected] 3 Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; [email protected] 4 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; [email protected] 5 Department of Agriculture, University of Pisa, I-56124 Pisa, Italy 6 CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy 7 Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected] (M.L.); [email protected] (A.S.) Authors contributed equal. y Received: 25 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens.
    [Show full text]
  • Bio112 Home Work Community Structure
    Name: Date: Bio112 Home Work Community Structure Multiple Choice Identify the choice that best completes the statement or answers the question. ____ 1. All of the populations of different species that occupy and are adapted to a given habitat are referred to by which term? a. biosphere b. community c. ecosystem d. niche e. ecotone ____ 2. Niche refers to the a. home range of an animal. b. preferred habitat for an organism. c. functional role of a species in a community. d. territory occupied by a species. e. locale in which a species lives. ____ 3. A relationship in which benefits flow both ways between the interacting species is a. a neutral relationship. b. commensalism. c. competitive exclusion. d. mutualism. e. parasitism. ____ 4. A one-way relationship in which one species benefits and directly hurts the other is called a. commensalism. b. competitive exclusion. c. parasitism. d. obligate mutualism. e. neutral relationship. ____ 5. The interaction in which one species benefits and the second species is neither harmed nor benefited is a. mutualism. b. parasitism. c. commensalism. d. competition. e. predation. ____ 6. The interaction between two species in which one species benefits and the other species is harmed is a. mutualism. b. commensalism. c. competition. d. predation. e. none of these ____ 7. The relationship between the yucca plant and the yucca moth that pollinates it is best described as a. camouflage. b. commensalism. c. competitive exclusion. d. mutualism. e. all of these Name: Date: ____ 8. Competitive exclusion is the result of a. mutualism. b. commensalism.
    [Show full text]
  • ANIMAL ADAPTATIONS UNIT LESSON PLAN 6Th – 8Th Grade
    ANIMAL ADAPTATIONS UNIT LESSON PLAN 6th – 8th grade Topics Introduction to Adaptations Camouflage Animal Locomotion Animal Senses Food Web Objectives Students will be able to: Provide examples of and explain how the three types of adaptations are utilized by living organisms. Identify the types of adaptations that animals use for protection, locomotion, and finding food. Describe differences in adaptations between aquatic and terrestrial animals. Interpret examples of natural selection and explain why it is important for a species. Create a food web and identify the key elements. Explain how energy moves through trophic levels of a food web. Explain and provide examples of how an animal’s habitat influences its adaptations. Instructional Materials Topic Video Vocabulary Flash Cards Assessment Materials Video Reflection Worksheet Video Quiz Adaptations 1st letter Worksheet Natural Selection worksheet Camouflage worksheet (answer sheet available) Animal Locomotion worksheet Animal Senses worksheet (answer sheet available) Food Web worksheet (answer sheet available) Related Materials Links to videos and reading material that provides additional information on topics. NOAA Resources The National Oceanic and Atmospheric Administration (NOAA) is a partner of SoundWaters. These are additional resources you may use in addition to the other materials included above. Aquatic food webs https://www.noaa.gov/education/resource-collections/marine-life-education- resources/aquatic-food-webs Horseshoe crabs https://www.fisheries.noaa.gov/feature-story/horseshoe-crabs-managing-resource-birds-
    [Show full text]
  • Unsettling Antibiosis: How Might Interdisciplinary Researchers Generate a Feeling for the Microbiome and to What Effect?
    ARTICLE DOI: 10.1057/s41599-018-0196-3 OPEN Unsettling antibiosis: how might interdisciplinary researchers generate a feeling for the microbiome and to what effect? Beth Greenhough1, Andrew Dwyer1, Richard Grenyer1, Timothy Hodgetts2, Carmen McLeod3 & Jamie Lorimer1 ABSTRACT Decades of active public health messaging about the dangers of pathogenic microbes has led to a Western society dominated by an antibiotic worldview; however recent 1234567890():,; scientific and social interest in the microbiome suggests an emerging counter-current of more probiotic sentiments. Such stirrings are supported by cultural curiosity around the ‘hygiene hypothesis’, or the idea it is possible to be ‘too clean’ and a certain amount of microbial exposure is essential for health. These trends resonate with the ways in which scientists too have adopted a more ‘ecological’ perspective on the microbiome. Advances in sequencing technologies and decreasing costs have allowed researchers to more rapidly explore the abundance and diversity of microbial life. This paper seeks to expand on such probiotic tendencies by proposing an interdisciplinary methodology researchers might use to generate more-than-antibiotic relations between lay participants and their domestic micro- biome. The paper draws on findings from an ESRC-funded study, Good Germs, Bad Germs: Mapping microbial life in the kitchen (grant number ES/N006968/1), which sought to: (i) explore human-microbe relations in the domestic kitchen; and (ii) make scientific techniques for visualising the domestic microbiome available to non-expert publics through a form of ‘participatory metagenomics’. We examine how scientific knowledge and techniques are enroled into lay practices of making microbes sensible; how these intersect with, reinforce or disrupt previous feelings for microorganisms; and how new ways of relating with microbial others emerge.
    [Show full text]
  • Screening of Vineyard Ecosystem Fungi for Antimicrobial Activity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital.CSIC 1 2 Antibiosis of vineyard ecosystem fungi against food-borne microorganisms 3 4 Carolina Cuevaa, M.Victoria Moreno-Arribasa*, Begoña Bartoloméa, Óscar Salazarb, 5 M.Francisca Vicentec, Gerald F. Billsc 6 7 8 a Instituto de Investigación Ciencias de la Alimentación (CIAL), CSIC-UAM, C/Nicolás 9 Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain 10 b Genómica S.A.U (Zeltia), Alcarria 7, 28823 Madrid, Spain 11 c Fundación MEDINA, Parque Tecnológico de Ciencias de Salud, Armilla 18100, 12 Granada, Spain 13 14 15 [email protected] 16 [email protected] “*Correspondence and reprints” 17 [email protected] 18 [email protected] 19 [email protected] 20 [email protected] 21 22 23 2 1 Abstract 2 Fermentation extracts from fungi isolated from vineyard ecosystems were tested for 3 antimicrobial activities against a set of test microorganisms, including five food-borne 4 pathogens (Staphylococcus aureus EP167, Acinetobacter baumannii (clinical isolated), 5 Pseudomonas aeruginosa PAO1, Escherichia coli O157:H7 (CECT 5947) and Candida 6 albicans MY1055) and two probiotic bacteria (Lactobacillus plantarum LCH17 and 7 Lactobacillus brevis LCH23). A total of 182 fungi were grown in eight different media, 8 and the fermentation extracts were screened for antimicrobial activity. A total of 71 fungi 9 produced extracts active against at least one pathogenic microorganism, but not against 10 any probiotic bacteria. The Gram-positive bacterium, Staphylococcus aureus EP167, was 11 more susceptible to antimicrobial fungi broths extracts than Gram-negative bacteria and 12 pathogenic fungi.
    [Show full text]