Geothermal Activity Helps Life Survive Glacial Cycles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integrated Tephrochonology Copyedited
U.S. Geological Survey and The National Academies; USGS OFR-2007-xxxx, Extended Abstract.yyy, 1- Integrated tephrochronology of the West Antarctic region- Implications for a potential tephra record in the West Antarctic Ice Sheet (WAIS) Divide Ice Core N.W. Dunbar,1 W.C. McIntosh,1 A.V. Kurbatov,2 and T.I Wilch 3 1NMGB/EES Department, New Mexico Tech, Socorro NM, 87801, USA ( [email protected] , [email protected] ) 2Climate Change Institute 303 Bryand Global Sciences Center, Orono, ME, 04469, USA ([email protected]) 3Department of Geological Sciences, Albion College, Albion MI, 49224, USA ( [email protected] ) Summary Mount Berlin and Mt. Takahe, two West Antarctica volcanic centers have produced a number of explosive, ashfall generating eruptions over the past 500,000 yrs. These eruptions dispersed volcanic ash over large areas of the West Antarctic ice sheet. Evidence of these eruptions is observed at two blue ice sites (Mt. Waesche and Mt. Moulton) as well as in the Siple Dome and Byrd (Palais et al., 1988) ice cores. Geochemical correlations between tephra sampled at the source volcanoes, at blue ice sites, and in the Siple Dome ice core suggest that at least some of the eruptions covered large areas of the ice sheet with a volcanic ash, and 40 Ar/ 39 Ar dating of volcanic material provides precise timing when these events occurred. Volcanic ash from some of these events expected to be found in the WAIS Divide ice core, providing chronology and inter-site correlation. Citation: Dunbar, N.W., McIntosh, W.C., Kurbatov, A., and T.I Wilch (2007), Integrated tephrochronology of the West Antarctic region- Implications for a potential tephra record in the West Antarctic Ice Sheet (WAIS) Divide Ice Core, in Antarctica: A Keystone in a Changing World – Online Proceedings of the 10 th ISAES X, edited by A. -
Multiple Sources for Tephra from AD 1259 Volcanic Signal in Antarctic Ice
Multiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino To cite this version: Biancamaria Narcisi, Jean Robert Petit, Barbara Delmonte, Valentina Batanova, Joel Savarino. Mul- tiple sources for tephra from AD 1259 volcanic signal in Antarctic ice cores. Quaternary Science Reviews, Elsevier, 2019, 210, pp.164-174. 10.1016/j.quascirev.2019.03.005. hal-02350371 HAL Id: hal-02350371 https://hal.archives-ouvertes.fr/hal-02350371 Submitted on 25 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manuscript Details Manuscript number JQSR_2019_21 Title MULTIPLE SOURCES FOR TEPHRA FROM AD 1259 VOLCANIC SIGNAL IN ANTARCTIC ICE CORES Abstract Strong volcanic signals simultaneously recorded in polar ice sheets are commonly assigned to major low-latitude eruptions that dispersed large quantities of aerosols in the global atmosphere with the potential of inducing climate perturbations. Parent eruptions responsible for specific events are typically deduced from matching to a known volcanic eruption having coincidental date. However, more robust source linkage can be achieved only through geochemical characterisation of the airborne volcanic glass products (tephra) sometimes preserved in the polar strata. -
The Geological Society Books
The Geological Society Books Chapter 4.1a Antarctic Peninsula I. Volcanology --Manuscript Draft-- Manuscript Number: GSLBooks18-059 Full Title: Chapter 4.1a Antarctic Peninsula I. Volcanology Article Type: Chapter Corresponding Author: John Laidlaw Smellie University of Leicester Leicester, Leicestershire UNITED KINGDOM Other Authors: Malcolm Hole Section/Category: Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-Up Abstract: The Antarctic Peninsula is distinguished by late Neogene volcanic activity related to a series of northerly-younging ridge crest—trench collisions and the progressive opening of ‘no-slab windows’ in the subjacent mantle. The outcrops were amongst the last to be discovered in the region, with many occurrences not visited until the 1970’s and 1980’s. The volcanism consists of several monogenetic volcanic fields and small isolated centres. It is sodic alkaline to tholeiitic in composition and ranges in age between 7.7 Ma and present. No eruptions have been observed (with the possible, but dubious, exception of Seal Nunataks in 1893), but very young isotopic ages for some outcrops suggest that future eruptions are a possibility. The eruptions were overwhelmingly glaciovolcanic and the outcrops have been a major source of information on glaciovolcano construction. They have also been highly instrumental in advancing our understanding of the configuration of the Plio-Pleistocene Antarctic Peninsula Ice Sheet. However, our knowledge is hindered by a paucity of modern, precise isotopic ages. In particular, there is no obvious relationship between the age of ridge crest—trench collisions and the timing of slab-window volcanism, a puzzle that may only be resolved by new dating. -
Igneous Rocks of Peter I Island Hemisphere Tectonic Reconstructions
LeMasurier, W. E., and F. A. Wade. In press. Volcanic history in Marie Byrd Land: implications with regard to southern Igneous rocks of Peter I Island hemisphere tectonic reconstructions. In: Proceedings of the International Symposium on Andean and Antarctic Vol- canology Problems, Santiago, Chile (0. Gonzalez-Ferran, edi- tor). Rome, International Association of Volcanology and Chemistry of Earths Interior. THOMAS W. BASTIEN Price, R. C., and S. R. Taylor. 1973. The geochemistry of Dune- Ernest E. Lehmann Associates din Volcano, East Otago, New Zealand: rare earth elements. Minneapolis, Minnesota 55403 Contributions to Mineralogy and Petrology, 40: 195-205. Sun, S. S., and G. N. Hanson. 1975. Origin of Ross Island basanitoids and limitations upon the heterogeneity of mantle CAMPBELL CRADDOCK sources of alkali basalts and nephelinites. Contributions to Department of Geology and Geophysics Mineralogy and Petrology, 52: 77-106. The University of Wisconsin, Madison Sun, S. S., and G. N. Hanson. 1976. Rare earth element evi- Madison, Wisconsin 53706 dence for differentiation of McMurdo volcanics, Ross Island, Antarctica. Contributions to Mineralogy and Petrology, 54: 139-155. Peter I Island lies in the southeastern Pacific Ocean at 68°50S. 90°40W. about 240 nautical miles off the Eights Coast of West Antarctica. Ris- ing from the continental rise, it is one of the few truly oceanic islands in the region. Few people have been on the island, and little is known of its geology. Thaddeus von Bellingshausen discovered and named the island in 1821, and it was not seen again until sighted by Pierre Charcot in 1910. A Nor- wegian ship dredged some rocks off the west coast in 1927, and persons from the Norvegia achieved the first landing in 1929. -
What If Antarctica's Volcanoes Erupt
What if Antarctica's dormant, ice-covered volcanoes wake up? John Smellie, Department of Geology, University of Leicester (This article was originally published in The Conversation, on 4 September 2017 [https://theconversation.com/what-if-antarcticas-dormant-ice-covered-volcanoes-wake-up-83450]) Antarctica is a vast icy wasteland covered by the world’s largest ice sheet. This ice sheet contains about 90% of fresh water on the planet. It acts as a massive heat sink and its meltwater drives the world’s oceanic circulation. Its existence is therefore a fundamental part of Earth’s climate. Less well known is that Antarctica is also host to several active volcanoes, part of a huge "volcanic province" which extends for thousands of kilometres along the Western edge of the continent. Although the volcanic province has been known and studied for decades, recently about 100 "new" volcanoes were recently discovered beneath the ice by scientists who used satellite data and ice- penetrating radar to search for hidden peaks. These sub-ice volcanoes may be dormant. But what would happen if Antarctica’s volcanoes awoke? IMAGE: Some of the volcanoes known about before the latest discovery. Source: antarcticglaciers.org (image: JL Smellie) We can get some idea by looking to the past. One of Antarctica’s volcanoes, Mount Takahe, is found close to the remote centre of the West Antarctic Ice Sheet. In a new study, scientists implicate Takahe in a series of eruptions rich in ozone-consuming halogens that occurred about 18,000 years ago. These eruptions, they claim, triggered an ancient ozone hole, warmed the southern hemisphere causing glaciers to melt, and helped bring the last ice age to a close. -
This Document Has Been Archived
This document has been archived. U.S. Antarctic Program, 1998-1999 ......................... iii Biology and medical research .................................. 1 Long-term ecological research.................................14 Environmental research..........................................16 Geology and geophysics ..........................................17 Glaciology .............................................................35 Ocean and climate studies ......................................40 Aeronomy and astrophysics ....................................45 Technical projects..................................................56 U.S. Antarctic Program, 1998-1999 iii U.S. Antarctic Program, 1998-1999 In Antarctica, the U.S. Antarctic Program will · a U.S.–French–Australian collaboration to support 142 research projects during the 1998- study katabatic winds along the coast of 1999 austral summer and the 1999 austral East Antarctica winter at the three U.S. stations (McMurdo, · continued support of the Center for Astro- Amundsen-Scott South Pole, and Palmer), physical Research in Antarctica at the geo- aboard its two research ships (Laurence M. graphic South Pole Gould and Nathaniel B. Palmer) in the Ross Sea and in the Antarctic Peninsula region, at re- · measuring, monitoring, and studying at- mote field camps, and in cooperation with the mospheric trace gases associated with the national antarctic programs of the other Ant- annual depletion of the ozone layer above arctic Treaty nations. Many of the projects Antarctica. that make up the program, which is funded Science teams will also make use of a conti- and managed by the National Science Foun- nent-wide network of automatic weather sta- dation (NSF), are part of the international ef- tions, a network of six automated geophysical fort to understand the Antarctic and its role in observatories, ultraviolet-radiation monitors global processes. NSF also supports research at the three U.S. -
Petrographic and Field Characteristics of Marie Byrd Land Volcanic Rocks Volcanic Rocks of the Ross Island Area
References flows in the basal sequences, but ultramafic nodules Cast, Paul W., G. R. Tilton, and Carl Hedge. 1964. Iso- are much more common in the parasitic cones. Most topic composition of lead and strontium from Ascension of the nodules examined contain about 50 percent and Cough Islands. Science, 145(3637): 1181-1185. olivine, plus variable proportions of orthopvroxene, Halpern, M. 1968. Ages of antarctic and Argentine rocks clinopyroxene, and a brown garnet tentativel y identi- bearing on continental drift. Earth and Planetary Science Letters, 5: 159-167. fied as melanite. Harrington, H. J . 1958. Nomenclature of rock units in the Stratovolcanoes, many exceeding 4,000 m (13,000 Ross Sea region, Antarctica. Nature, 182(4631): 290. feet) in height, make up most of the Flood, Ames, Jones, L. M. and G. Faure. 1968. Origin of the salts in and Executive Committee Ranges, Mount Takahe, Taylor Valley. Antarctic Journal of the U.S., 111(5): Toney Mountain, and the Crary Mountains. They are 177-178. Wade, F. Alton. 1967. Geology of the Marie Byrd Land composed of trachyandesite flows and tuff breccias, coastal sector of West Antarctica. Antarctic Journal of and apparently lesser amounts of trachyte and the U.S., 11(4): 93-94. rhyolite. Mounts Waesche and Hartigan are stratovol- canoes that are exceptional in that each is composed of a large proportion of basalt. The trachyandesites are rich in olivine and soda-iron pyroxene, which may be found in the groundmass or as phenocrysts. Some Petrographic and Field Characteristics of these rocks carry modal nepheline and socialite. of Marie Byrd Land Volcanic Rocks Feldspar phenocrysts in the trachyandesites are most commonly anorthoclase, similar to that described by \VESLEY E. -
Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs Amanda Colleen Lough Washington University in St
Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) Summer 9-1-2014 Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs Amanda Colleen Lough Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Lough, Amanda Colleen, "Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs" (2014). All Theses and Dissertations (ETDs). 1319. https://openscholarship.wustl.edu/etd/1319 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Earth and Planetary Sciences Dissertation Examination Committee: Douglas Wiens, Chair Jill Pasteris Philip Skemer Viatcheslav Solomatov Linda Warren Michael Wysession Studies of Seismic Sources in Antarctica Using an Extensive Deployment of Broadband Seismographs by Amanda Colleen Lough A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2014 St. Louis, Missouri © 2014, Amanda Colleen Lough Table of Contents List of Figures ............................................................................................................................. -
Late Quaternary Volcanic Activity in Marie Byrd Land: Potential 40Ar/39Ar-Dated Time Horizons in West Antarctic Ice and Marine Cores
Late Quaternary volcanic activity in Marie Byrd Land: Potential 40Ar/39Ar-dated time horizons in West Antarctic ice and marine cores T. I. Wilch* Department of Geological Sciences, Albion College, Albion, Michigan 49224 W. C. McIntosh Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, and New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico 87801 N. W. Dunbar New Mexico Bureau of Mines and Mineral Resources, Socorro, New Mexico 87801 ABSTRACT More than 12 40Ar/39Ar-dated tephra lay- ies is to determine the basal age of the ice sheet. ers, exposed in bare ice on the summit ice cap The 1968 Byrd Station ice core in the West Late Quaternary volcanic activity at three of Mount Moulton, 30 km from their inferred Antarctic Ice Sheet has an inferred basal age of major alkaline composite volcanoes in Marie source at Mount Berlin, range in age from 492 only 74 ka (Hammer et al., 1994). The exten- Byrd Land, West Antarctica, is dominated by to 15 ka. These englacial tephra layers provide sive lateral flow of ice from the ice divide area explosive eruptions, many capable of deposit- a minimum age of 492 ka for the oldest iso- to Byrd Station may have removed or disturbed ing ash layers as regional time-stratigraphic topically dated ice in West Antarctica. This much of the basal ice record. Consequently, the horizons in the West Antarctic Ice Sheet and well-dated section of locally derived glacial ice 74 ka date of the Byrd core provides only a in Southern Ocean marine sediments. -
The Antarctic Sun, December 19, 1999
On the Web at http://www.asa.org December 19, 1999 Published during the austral summer at McMurdo Station, Antarctica, for the United States Antarctic Program Ski-plane crashes at AGO-6 By Aaron Spitzer The Antarctic Sun Two pilots escaped injury Sunday when their Twin Otter aircraft crashed during takeoff from an isolated landing site in East Antarctica. The plane, a deHavilland Twin Otter turboprop owned by Kenn Borek Air Ltd. and chartered to the U.S. Antarc- tic Program, was taking off around 3:15 p.m. Sunday when it caught a ski in the snow and tipped sideways. A wing hit the ground and the plane suffered Congratulations, it’s a helicopter! extensive damage. A New Zealand C-130 delivers a Bell 212 helicopter to the ice runway last week. The new The accident occurred on a tempo- arrival took the place of the Royal New Zealand Air Force helo used in the first part of the rary skiway at Automated Geophysical season. Photo by Ed Bowen. Observatory 6, located in Wilkes Land, about 800 miles northwest of McMurdo. The pilots had flown to the site earlier in the day from McMurdo Station to drop Testing tainted waters off two runway groomers, who were preparing the strip for the arrival of an By Josh Landis LC-130 Hercules ski-plane. The Antarctic Sun On Monday afternoon, another Kenn Borek Twin Otter, chartered to the Most scientists come to Antarctica because it gives them a chance to do their Italian Antarctic Program at Terra Nova work in the most pristine conditions on Earth. -
Heat Flow Variations in the Antarctic Continent
International Journal of Terrestrial Heat Flow and Applied Geothermics VOL. 3, NO. 1 (2020); P. 01-10. ISSN: 2595-4180 DOI: https://doi.org/10.31214/ijthfa.v3i1.51 http://ijthfa.com/ Heat flow variations in the Antarctic Continent Suze Nei P. Guimarães, Fábio P. Vieira, Valiya M. Hamza 1 Department of Geophysics, National Observatory, Rio de Janeiro, Brazil. Email address [email protected] (S.N.P. Guimarães) Corresponding author Abstract The present work provides a reappraisal of terrestrial heat flow variations in the Antarctic continent, based on recent advances in data analysis and regional assessments. The data considered include those reported at the website of IHFC and 78 additional sites where measurements have been made using a variety of techniques. These include values Keywords based on the Method of Magmatic Heat Budget (MHB) for 41 localities in areas of recent Terrestrial Heat Flow volcanic activity and estimates that rely on basal temperatures of glaciers in 372 localities Antarctic Continent that are known to host subglacial lakes. The total number of data assembled is 491, which o o has been useful in deriving a 10 x10 grid system of homogenized heat flow values and in deriving a new heat flow map of the Antarctic continent. The results reveal that the Received: December 5, 2019 Antarctic Peninsula and western segment of the Antarctic continent has distinctly high heat flow relative to the eastern regions. The general pattern of differences in heat flow between Accepted: February 10, 2020 eastern and western of Antarctic continent is in striking agreement with results based on seismic velocities. -
Influence of West Antarctic Ice Sheet Collapse on Antarctic Surface
GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1002/, 1 Influence of West Antarctic Ice Sheet collapse on 2 Antarctic surface climate and ice core records 1,2 3 2 2 Eric J. Steig, Kathleen Huybers, Hansi A. Singh, Nathan J. Steiger, Qinghua Ding,4 Dargan M.W. Frierson,2, Trevor Popp5, James W.C. White6 Corresponding author: Eric J. Steig, Department of Earth and Space Sciences, University of Washington, Seattle, Washington 98195, USA. ([email protected]) 1Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA. 2Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA. 3Department of Geosciences, Pacific Lutheran University, Tacoma, WA, USA. 4Polar Science Center, Applied Physics Laboratory, University of Washington, Seattle, WA, USA. 5Centre for Ice and Climate, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark. 6Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, USA. DRAFT March 25, 2015, 10:32am DRAFT X - 2 STEIG ET AL.: CLIMATE RESPONSE TO WAIS COLLAPSE 3 Abstract. Climate-model simulations are used to examine the impact of 4 a collapse of the West Antarctic Ice Sheet (WAIS) on the surface climate of 5 Antarctica. The lowered topography following WAIS collapse produces anomalous 6 cyclonic circulation with increased flow of warm, maritime air towards the 7 South Pole, and cold-air advection from the East Antarctic plateau towards 8 the Ross Sea and Marie Byrd Land, West Antarctica. Relative to the background 9 climate, some areas in the East Antarctic interior warm moderately, while ◦ 10 substantial cooling (several C) occurs over parts of West Antarctica.