2.2 Solar Radiative Forcing

Total Page:16

File Type:pdf, Size:1020Kb

2.2 Solar Radiative Forcing CHAPTER 2.2 SOLAR RADIATIVE FORCING Natalie A. Krivova1 and Ilaria Ermolli2 1 Radiative forcing Radiative forcing (RF) quantifies the impact of various factors on Earth's surface temperature and climate. In equilibrium, the global average temperature of the Earth is determined by a balance between the incoming energy absorbed in the atmosphere and by the surface and the energy of the thermal infrared radiation emitted back into space, so that the net radiative flux (globally and annually averaged) at the top of the atmosphere3 is zero. When the amount of the incoming or outcoming radiation changes, then before a new equilibrium is established the net flux at the top of the atmosphere is not zero. Thus, radiative forcing is the instantaneous change in the value of the net downward radiative flux. Radiative forcing is defined positive when the amount of energy retained by the Earth- atmosphere system increases. This could be due to an increase in the incoming or a decrease in the outcoming energy and leads to an increase in the Earth's temperature. 2 Solar irradiance The dominant energy source to Earth's climate system is the Sun. Solar energy is produced in the Sun's core, where hydrogen atoms fuse to form, via a chain reaction, helium. Photons released in this process travel inside the Sun until, tens or even hundreds of thousands years later, they reach up to the so-called solar visible surface (or the photosphere), above which the solar atmosphere is transparent for the photons. They escape as visible light and part of them reaches the Earth just minutes later. 1 Max-Planck-Institut f¨urSonnensystemforschung, 37077 G¨ottingen,Germany 2 INAF, Osservatorio Astronomico di Roma, Monte Porzio Catone, Italy 3 Radiative forcing can also be defined at the tropopause. c EDP Sciences 2015 DOI: 10.1051/978-2-7598-1733-7.c108 68 Earth's climate response to a changing Sun The total solar electromagnetic energy flux received at the top of the Earth's atmosphere and reduced to the mean distance from the Sun to the Earth (one astronomical unit, AU) is called the total solar irradiance (TSI). This definition takes care to differentiate between changes in the solar radiative output itself and changes in the Earth-Sun distance (see Infobox 2.1) or the interaction between the solar radiation and the Earth's atmosphere. Solar electromagnetic energy is emitted over essentially entire spectrum. Al- most half of this energy originates in the range visible to the human eye (roughly 400 to 800 nm), more than 40% come from the infrared, IR, range (wavelengths above 800 nm), and only less than 10% are contributed by the ultraviolet, UV, radiation (wavelengths below 400 nm). Solar irradiance measured at a certain wavelength or within a wavelength interval (in units of W m−2 per unit wave- length interval, e.g. W m−2nm−1) is called spectral solar irradiance (SSI). Total solar irradiance is one of the more recently discovered variables of the Sun, generally being referred to as the solar constant in the older literature. 3 Measurements of solar irradiance 3.1 TSI Measurements of TSI are done with absolute radiometers. They include a cav- ity with a blackened inner side, operating as a black body to efficiently absorb the incident radiation, which heats the cavity. A built-in electrical calibration heater maintains the heat flux constant by adjusting the supplied heating power. The electrical power required to maintain the equilibrium is proportional to the incoming radiative power absorbed by the cavity. Due to atmospheric extinction, measurements of total solar irradiance sufficiently precise to reveal its variability are only possible from space and have been regularly carried out since 1978 by over a dozen of different radiometers (Figure1). On an absolute scale, results from individual experiments differ significantly. Recent tests and experiments have helped to identify main sources of the offsets. The TSI value of 1360:8 0:5 Wm−2 recorded by SORCE/TIM in 2008 is currently believed to best represent± the solar minimum conditions. The relative TSI changes measured by space-borne radiometers agree quite good with each other on time scales of days to years. Thus, TSI varies on all observable time scales, from minutes to decades. Most prominent are the short- term fluctuations on time scales of days to roughly a week and the modulation in phase with the 11-year solar activity cycle (see Figure1). But there are also differences between the data coming from individual ex- periments, most importantly in the longer-term trends. This is because changes in the sensitivity (i.e., the calibration) of the instruments due to their aging and degradation once they are launched and exposed to the solar light, are quite in- dividual and often tricky to assess. Owing to the offsets in the absolute values, combining the data from individual instruments into a single composite record is non-trivial. Natalie A. Krivova and Ilaria Ermolli: Solar radiative forcing 69 Fig. 1. Space-borne measurements of the total solar irradiance (TSI) covering the pe- riod from 1978 to 2014. Individual records are shown in different colors, as labeled in the plot. The bottom part of the plot shows the monthly mean sunspot number. Courtesy of G. Kopp (http://spot.colorado.edu/koppg/TSI/). Abbreviations: Active Cavity Radiometer Irradiance Monitor (ACRIM) instruments on the Solar Maximum Mission (SMM), Upper Atmosphere Research Satellite (UARS), and ACRIMSat; Earth Radiation Budget (ERB) instrument on Nimbus-7; Earth Radiation Budget Satellite (ERBS), the Earth Radiation Budget Experiment (ERBE) on the Earth Radiation Budget Satellite (ERBS) National Oceanic and Atmospheric Administration (NOAA), Precision Monitor Sensor (PREMOS) on PICARD, Solar Variability Experiment (SOVA) on EUropean Re- trievable Carrier of ESA (EURECA), Solar Variability and Irradiance Monitor (SOVIM) on the International Space Station (ISS), Total Irradiance Monitor (TIM) on Solar Ra- diation and Climate Experiment (SORCE), Variability of Solar Irradiance and Gravity Oscillations (VIRGO) on SoHO. Currently, three different composites exist (see Figure2). The most critical discrepancy concerns their conflicting secular trends, best seen as the difference in the TSI levels during activity minima in 1986, 1996 and 2008. Models of so- lar irradiance (see Section5) return an either downward trend (Figure2), as in the PMOD (Physikalisch-Meteorologisches Observatorium Davos) composite, or in case of most proxy models, no trend. None of the models returns an upward or alterating trend. 70 Earth's climate response to a changing Sun Fig. 2. The ACRIM (red), IRMB (green) and PMOD (blue) TSI composite records smoothed over 181 days. Also plotted is the SATIRE-S model reconstruction of TSI. The vertical dashed lines mark solar minima. From Yeo et al.(2014). 3.2 SSI Measurement of the solar spectral irradiance is more sophisticated. Very low am- plitudes of the variability in the visible and IR ranges, a rapid increase in the variability in combination with significant decrease of the amount of the radia- tion with decreasing wavelength (Figure3) and the need for a meaningful spectral resolution are only some of the complicating factors. Thus in addition to the high radiometric accuracy and precision, a spectrometer has to maintain a suf- ficient wavelength accuracy and account for the wavelength-dependent long-term degradation effects. Regular monitoring of the solar spectrum in the UV (below 400 nm) also started in 1978. Most of our knowledge is based on the results of two experiments, SOLSTICE (Solar Stellar Irradiance Comparison Experiment) and SUSIM (Solar Ultraviolet Spectral Irradiance Monitor), onboard UARS (the Upper Atmosphere Research Satellite), in operation from 1991 to 2001 and 2005, respectively. SSI monitoring over a broad range from the UV to the IR (up to about 2 400 nm) with absolute radiometric calibration has been carried out by SORCE/SIM since 2003. Whereas most of the solar radiant energy is emitted at visible and infrared wavelengths, the variability is significantly stronger in the UV spectral range (Figure3). The amplitude of the variation grows from about 0.1% in the visi- ble and even less in the IR to almost 100% around the Ly-α at 121.6 nm, which is the strongest line in the solar spectrum. The contribution of the UV (below 400 nm) part of the spectrum to the total irradiance variability most probably exceeds 50%, although the exact number is still a matter of debate (Figure4). Thus, the more recent observations by SORCE/SIM suggest stronger variability in the UV than had been measured before SORCE and predicted by the models. This exces- sive variability would need to be partly compensated by a presumably anti-phase (with the solar cycle) variation in the visible (400{700 nm). This pattern of SSI variability is, however, in contradiction not only with other, partly contemporary, observations, but also with the up-to-date models, which are at the same time Natalie A. Krivova and Ilaria Ermolli: Solar radiative forcing 71 Fig. 3. Top: Reference solar spectrum recorded in April 2008 within the Whole Heliosphere Interval (WHI) project. Bottom: Relative SSI variability as observed by UARS/SUSIM (red curve) between the maximum of cycle 23 (March 2000) and the preceding minimum (May 1996), as well as by SORCE/SOLSTICE (light blue) and SORCE/SIM (dark blue) (Harder et al., 2009) between April 2004 and December 2008. Also shown is the variability between 2000 and 1996 predicted by the SATIRE-S model (green). For each period, averages over one month are used. Negative values are indi- cated by dotted segments. Following Solanki et al.(2013). Abbreviations: UARS - Upper Atmosphere Research Satellite; SUSIM - Solar Ultraviolet Spectral Irradiance Monitor; SORCE - Solar Radiation and Climate Experiment; SOLSTICE - Solar Stellar Irradiance Comparison Experiment; SIM - Spectral IrradianceMonitor; SATIRE-S - Spectral and Total Irradiance Reconstruction for the Satellite era.
Recommended publications
  • Measurement of the Earth Radiation Budget at the Top of the Atmosphere—A Review
    Review Measurement of the Earth Radiation Budget at the Top of the Atmosphere—A Review Steven Dewitte * and Nicolas Clerbaux Observations Division, Royal Meteorological Institute of Belgium, 1180 Brussels, Belgium; [email protected] * Correspondence: [email protected]; Tel.: +32-2-3730624 Received: 25 September 2017; Accepted: 1 November 2017; Published: 7 November 2017 Abstract: The Earth Radiation Budget at the top of the atmosphere quantifies how the Earth gains energy from the Sun and loses energy to space. It is of fundamental importance for climate and climate change. In this paper, the current state-of-the-art of the satellite measurements of the Earth Radiation Budget is reviewed. Combining all available measurements, the most likely value of the Total Solar Irradiance at a solar minimum is 1362 W/m2, the most likely Earth albedo is 29.8%, and the most likely annual mean Outgoing Longwave Radiation is 238 W/m2. We highlight the link between long-term changes of the Outgoing Longwave Radiation, the strengthening of El Nino in the period 1985–1997 and the strengthening of La Nina in the period 2000–2009. Keywords: Earth Radiation Budget; Total Solar irradiance; Satellite remote sensing 1. Introduction The Earth Radiation Budget (ERB) at the top of the atmosphere describes how the Earth gains energy from the sun, and loses energy to space through reflection of solar radiation and the emission of thermal radiation. The ERB is of fundamental importance for climate since: (1) The global climate, as quantified e.g., by the global average temperature, is determined by this energy exchange.
    [Show full text]
  • The High Energy Telescope for STEREO
    Space Sci Rev (2008) 136: 391–435 DOI 10.1007/s11214-007-9300-5 The High Energy Telescope for STEREO T.T. von Rosenvinge · D.V. Reames · R. Baker · J. Hawk · J.T. Nolan · L. Ryan · S. Shuman · K.A. Wortman · R.A. Mewaldt · A.C. Cummings · W.R. Cook · A.W. Labrador · R.A. Leske · M.E. Wiedenbeck Received: 1 May 2007 / Accepted: 18 December 2007 / Published online: 14 February 2008 © Springer Science+Business Media B.V. 2008 Abstract The IMPACT investigation for the STEREO Mission includes a complement of Solar Energetic Particle instruments on each of the two STEREO spacecraft. Of these in- struments, the High Energy Telescopes (HETs) provide the highest energy measurements. This paper describes the HETs in detail, including the scientific objectives, the sensors, the overall mechanical and electrical design, and the on-board software. The HETs are designed to measure the abundances and energy spectra of electrons, protons, He, and heavier nuclei up to Fe in interplanetary space. For protons and He that stop in the HET, the kinetic energy range corresponds to ∼13 to 40 MeV/n. Protons that do not stop in the telescope (referred to as penetrating protons) are measured up to ∼100 MeV/n, as are penetrating He. For stop- ping He, the individual isotopes 3He and 4He can be distinguished. Stopping electrons are measured in the energy range ∼0.7–6 MeV. Keywords Space instrumentation · STEREO mission · Energetic particles · Coronal mass ejections · Particle acceleration PACS 96.50.Pw · 96.50.Vg · 96.60.ph Abbreviations 2-D Two dimensional ACE Advanced Composition Explorer ACRs Anomalous Cosmic Rays ADC Analog to Digital Converter T.T.
    [Show full text]
  • IMTEC-89-46FS Space Operations: Listing of NASA Scientific Missions
    C L Listing of NASA Scientific Missions, 1980-2000 -- ‘;AO,~lM’I’kX :-8!)- .^. .I ., ^_. ._ .- __..... ..-... .- .._.-..-.. -_----__-.- _.____-___-- UnIted States General Accounting Office Washington, D.C. 20548 Information Management and Technology Division B-234056 April 7, 1989 The Honorable Bill Nelson Chairman, Subcommittee on Space Science and Applications Committee on Science, Space, and Technology House of Representatives Dear Mr. Chairman: As requested by your office on March 14, 1989, we are providing a list of the National Aeronautics and Space Administration’s (NASA) active and planned scientific missions, 1980-2000.~ We have included missions with the following status: l launches prior to 1980, and those since 1980 that either ended after 1980 or are currently approved by NASA and remain active; and . planned launches that have been approved or proposed by NASA. As agreed, our compilation covers the following four major scientific disciplines: (1) planetary and lunar, (2) earth sciences, (3) space physics, and (4) astrophysics. Appendixes II-V present this information, includ- ing mission names and acronyms, actual or anticipated launch dates, and the actual or expected end-of-mission dates, in tables and figures. As requested, we did not list other types of NASA missions in biology and life sciences, manufacturing sciences, and communication technology. During this period, NASA has or plans to support 84 scientific missions in these four disciplines: Table! 1: Summary of NASA’s Scientific A Ml88iC>nr, 1980-2000 Active Planned January April 1989 - 1980 - March 1989 December 2000 Total Planetary and Lunar 5 7 12 Earth Sciences 3 27 30 /I Space Physics 6 20 26 Astrophysics 2 14 16 Totals 16 68 84 ‘Missions include NASAjoint ventures with other countries, as well as NASAscientific instruments flown on foreign spacecraft.
    [Show full text]
  • Assessment of Options for Extending the Life of the Hubble Space Telescope
    PREPUBLICATION COPY Subject to Further Editorial Correction Assessment of Options for Extending the Life of the Hubble Space Telescope Final Report Committee on the Assessment of Options for Extending the Life of the Hubble Space Telescope Space Studies Board Aeronautics and Space Engineering Board Division on Engineering and Physical Sciences THE NATIONAL ACADEMIES PRESS Washington, D.C. www.nap.edu THE NATIONAL ACADEMIES PRESS 500 Fifth Street, N.W. Washington, DC 20001 NOTICE: The project that is the subject of this report was approved by the Governing Board of the National Research Council, whose members are drawn from the councils of the National Academy of Sciences, the National Academy of Engineering, and the Institute of Medicine. The members of the committee responsible for the report were chosen for their special competences and with regard for appropriate balance. Support for this project was provided by Contract NASW 01001 between the National Academy of Sciences and the National Aeronautics and Space Administration. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the sponsors. Cover: International Standard Book Number 0-309-XXXXX-0 (Book) International Standard Book Number 0-309-XXXXX-0 (PDF) Copies of this report are available free of charge from Space Studies Board National Research Council The Keck Center of the National Academies 500 Fifth Street, N.W. Washington, DC 20001 Additional copies of this report are available from the National Academies Press, 500 Fifth Street, N.W., Lockbox 285, Washington, DC 20055; (800) 624-6242 or (202) 334-3313 (in the Washington metropolitan area); Internet, http://www.nap.edu.
    [Show full text]
  • NASA News National Aeronautics and Space Administration Washington, D.C
    NASA News National Aeronautics and Space Administration Washington, D.C. 20546 AC 202 755-8370 CN r* IT! w to r^ For Release IMMEDIATE I i-f r~ o o =r CD c «- O O Press Kit PrOJGCt Solar Maximum Mission RELEASE NO: 80-16 CM O i-H IH (C «~. H O O W-H -H W +> -P (C (d •* S5 (j «! W SB pq-H EH C Contents M -H e VO r- I 0 as 0) General Release 1-7 cc o I Mission Objectives 8-9 (P K O. W PS tn The Spacecraft 9 (0 < CM jj 1^3 Mission Operations 9-10 i—i fe C Scientific Investigations 10-13 ^ (0 P3 B5 The Sun 13-15 1 rt w Sun-Earth Relationship 16 w ^ u > O -H Launch Vehicle 16-17 Q; co •*-> Launch Operations 17 l a: to Launch Support 17 «c U es in a o Major Launch Events. 18 rt » U }3^ f4 CU Solar Maximum Mission Team 19-20 — i-? rt Contractors 21 February 6, 1980 WNSANews National Aeronautics and Space Administration Washington, D.C. 20546 AC 202 755-8370 Nicholas Panagakos For Release: Headquarters, Washington, D.C. IMMEDIATE (Phone: 202/755-3680) James Lacy Goddard Space Flight Center, Greenbelt, Md. (Phone: 301/344-5565) RELEASE NO: 80-16 NASA SET TO LAUNCH SOLAR FLARE SATELLITE NASA is preparing to place in Earth orbit the first spacecraft designed specifically for the study of solar flares. The mission represents a major step toward a better understanding of the violent nature of the Sun and its effects on Earth.
    [Show full text]
  • N O T I C E This Document Has Been Reproduced From
    N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE ---------:------------~---------- -- -- ------~--- NI\S/\ Technical Memorandum 80675 (H1Sl-TK-80675) THE GODDARD PROGRAM OF N80-2623J GAfUU RAY TRANSIENT AS'IRONOMY (NASA) 30 P HC AOJ/KF &01 CSCL 03! uncla~ G3/89 22946 THE GOODARD PROGRAM OF GAMMA RAY TRANSIENT ASTRONOMY T. L. Cline, u. D. Desai and B. J. Teegarden I MARCH 1980 i National Aeronautics and Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 .., 'lbe Goddard Program of G_ Ray Transient AstronolllY* T. L. Cline, U. D'. Desai and B.J. Teegarden Laboratory for High Energy Astrophysics NASA/Goddard Space Flilht Center Greenbelt, MD 20771, USA Abstract. The Goddard program of gamma ray burst studies is briefly reviewed. The past results, present status and future expectations are outlined regarding our endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, He1ios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to , which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5. 1. Introduction Gamma ray burst observations. after sp.ven years of necessary delay since their discovery (Kleb£sade1 et al •• 1973), have proceeded from accidental detection to detailed phenomenOLogy. We at Goddard have been fortunate to have been involved in certain of the various high-resolution spectral, temporal and directional studies, outlined herein, that are finally contributing to a clearer picture of gamma ray transients.
    [Show full text]
  • Renewing Solar Science. the Solar Maximum Repair Mission. INSTITUTION National Aeronautics and Space Administration, Greenbelt, Md
    DOCUMENT RESUME ED 312 347 SE 050 917 AUTHOR Neal, Valerie TITLE Renewing Solar Science. The Solar Maximum Repair Mission. INSTITUTION National Aeronautics and Space Administration, Greenbelt, Md. Glddard Space Flight Center. REPORT NO NASA-EP-206 PUB DATE 89 NOTE 22p.; Colored drawings may not reproduce well. PUB TYPE Reports - Descriptive (141) EDRS PRICE MFO1 /PCO1 Plus Postage. DESCRIPTORS *Aerospace Technology; *Satellites (Aerospace); Science Materials; Science Programs; *Scientific Research; *Solar Energy; Space Exploration; *Space Sciences IDENTIFIERS *Astrophysics; National Aeronautics and Space Administration; *Sun ABSTRACT This publication describes the Solar Maximum Repair Mission for restoring the operational capability of the solar observatory in space by using the Space Shuttle. Major sections include:(1) "The Solar Maximum Mission" (describing the duties of the mission); (2) "Studying Solar Flares" (summarizing the major scientific accomplishments of the mission including the flare puzzle, flare signatures, flare maps, the subtle sun, solar maximum year, Sun-Earth links, the sun as a star, and flares and fusion); and (3) "Solar Maximum Repair Mission." An illustration showing an exploded view of the Solar Maximum Mission Observatory and a list of principal investigators are appended. (YP) * Reproductions supplied by EDRS are the best that can be made * * from the original document. * U S DEPARTMENT OF EDUCATION ()Noce of Educational Research and Improvement EDUCATIONAL RESOURCES INFORMATION CENTER (ERIC/ document has been
    [Show full text]
  • Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment
    NASA Reference Publication 1390 Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment K.L. Bedingfield, R.D. Leach, and M.B. Alexander, Editor Neutral ThermosphereNeutral Thermal Environment Solar EnvironmentSolar ll SSppaacc Plasma rraa ee uu EE tt nn v aa v Ionizing i Ionizing i r Meteoroid/ N N r Radiation o Orbital Debris o Radiation e e n n h h m m T T e e n n t t s s Geomagnetic Field Gravitational Field August 1996 NASA Reference Publication 1390 Spacecraft System Failures and Anomalies Attributed to the Natural Space Environment K.L. Bedingfield Universities Space Research Association • Huntsville, Alabama R.D. Leach Computer Sciences Corporation • Huntsville, Alabama M.B. Alexander, Editor Marshall Space Flight Center • MSFC, Alabama National Aeronautics and Space Administration Marshall Space Flight Center • MSFC, Alabama 35812 August 1996 i PREFACE The effects of the natural space environment on spacecraft design, development, and operation are the topic of a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center. This primer provides an overview of seven major areas of the natural space environment including brief definitions, related programmatic issues, and effects on various spacecraft subsystems. The primary focus is to present more than 100 case histories of spacecraft failures and anomalies documented from 1974 through 1994 attributed to the natural space environment. A better understanding of the natural space environment and its effects will enable spacecraft designers and managers to more effectively minimize program risks and costs, optimize design quality, and achieve mission objectives.
    [Show full text]
  • AR MAXIMUM REPAIR H'lnnl^"
    AR MAXIMUM REPAIR h'lnnl^" - SOLAB flBXIBUl4 PEPBXB HISSIQH (IbSA) 20 p ~HCao?/sr no1 ; also asailable fxom SOD CSCL 22A Uaelas REPAR MISSION - National Aeronautics and Space Administration Goddard Space Flight Center by Valerie Neal for the Office of Space Science and Applications, Multimission Modular SpacecrafVFlight Support System Project Office. ACKNOWLEDGMENTS With appreciation for their contributions to this publication: Frank Cepollina, James Elliot, Harper Pryor, and Bruce Woodgate of Goddard Space Flight Center; Ron McCullar. David Bohlin, and Charles Redmond of NASA Headquarters; EinarTandberg-Hanssen,Ernest Hildner. Ronald Moore, Jesse Smith, and Douglas Rabin of Marshall Space Flight For Sale by the Superintendent of Documents, Center; the Solar Maximum Mission Principal Investigators and , U.S. Government Printing Office, Washington, D.C. 20402 Co-Investigators; Elaine McGarry, and Brien O'Brien. igh above the clouds and filtering atmosphere, ideally Hlocated to watch the sun, an elaborate solar observatory moves idly through space, operating at a mere fraction of its full capability. Once the source of a wealth of information about energetic events on the sun, the satellite is a victim not of age but of a technical problem. Of the seven advanced scientific instruments on board, only three continue to function. The others require very precise pointing and stability, which the spacecraft no longer can provide. Such is the plight of the Solar Maximum Mission, commonly known as Solar Max. Just nine months after launch in February 1980, fuses in the attitude control system failed and the satellite lost its ability to point with fine precision at the sun. To the dismay of solar sci- entists around the world, a spectacular mission abruptly faltered.
    [Show full text]
  • NCAR National Center for Atmospheric Research
    National Center for Atmospheric Research NCAR P.O. Box 3000 Boulder, CO 80307 1984-4 For Release: April 6, 1984 ASTRONAUTS AIM FIRST SPACE REPAIR MISSION ON SOLAR MAX SATELLITE BOULDER— When Space Shuttle flight number STS-41C lifts off from Kennedy Space Center this Friday, NASA astronauts will gear up for the first satellite repair mission ever in space. The target: the Solar Maximum Mission observatory, a 2.5-ton spacecraft which became partially disabled in the fall of 1980 when the attitude control system failed. One of its payload of seven instruments for investigating solar flares also quit--a unique solar telescope known as the coronagraph/polarimeter. The instrument, conceived and designed by scientists with the National Center for Atmospheric Research (NCAR) in Boulder, Colorado, with funding from NASA, took more than 30,000 images of the sun's outer atmosphere before its video camera system stopped. "Reactivation of the telescope would mean that solar physicists could continue the mission's original purpose, to study the inner workings of the solar atmosphere," says Robert MacOueen, director of NCAR's High Altitude Observatory. The NCAR telescope, constructed by Ball Aerospace in Boulder, was launched aboard the satellite in February 1980 to study the corona, or outer surface of the sun, during the most active part of the sun's 11-year cycle. The corona is a manifestation of processes governed by the solar magnetic field, which stretches from deep in the interior of the sun out past the earth and into the interplanetary medium. Flares and other disturbances on the sun generate a stream of electron and proton particles— the solar wind— which flows along the magnetic field lines and interacts with the earth's magnetic field, causing geomagnetic storms.
    [Show full text]
  • NASA Is Not Archiving All Potentially Valuable Data
    ‘“L, United States General Acchunting Office \ Report to the Chairman, Committee on Science, Space and Technology, House of Representatives November 1990 SPACE OPERATIONS NASA Is Not Archiving All Potentially Valuable Data GAO/IMTEC-91-3 Information Management and Technology Division B-240427 November 2,199O The Honorable Robert A. Roe Chairman, Committee on Science, Space, and Technology House of Representatives Dear Mr. Chairman: On March 2, 1990, we reported on how well the National Aeronautics and Space Administration (NASA) managed, stored, and archived space science data from past missions. This present report, as agreed with your office, discusses other data management issues, including (1) whether NASA is archiving its most valuable data, and (2) the extent to which a mechanism exists for obtaining input from the scientific community on what types of space science data should be archived. As arranged with your office, unless you publicly announce the contents of this report earlier, we plan no further distribution until 30 days from the date of this letter. We will then give copies to appropriate congressional committees, the Administrator of NASA, and other interested parties upon request. This work was performed under the direction of Samuel W. Howlin, Director for Defense and Security Information Systems, who can be reached at (202) 275-4649. Other major contributors are listed in appendix IX. Sincerely yours, Ralph V. Carlone Assistant Comptroller General Executive Summary The National Aeronautics and Space Administration (NASA) is respon- Purpose sible for space exploration and for managing, archiving, and dissemi- nating space science data. Since 1958, NASA has spent billions on its space science programs and successfully launched over 260 scientific missions.
    [Show full text]
  • NASA Stratospheric Balloons Science at the Edge of Space
    National Aeronautics and Space Administration NASA Stratospheric Balloons Science at the edge of Space REPORT OF THE SCIENTIFIC BALLOONING ASSESSMENT GROUP The Scientific Ballooning Assessment Group Martin Israel Washington University in St. Louis, Chair Steven Boggs University of California, Berkeley Michael Cherry Louisiana State University Mark Devlin University of Pennsylvania Jonathan Grindlay Harvard University Bruce Lites National Center for Astrophysics Research James Margitan Jet Propulsion Laboratory Jonathan Ormes University of Denver Carol Raymond Jet Propulsion Laboratory Eun-Suk Seo University of Maryland, College Park Eliot Young Southwest Research Institute, Boulder Vernon Jones NASA Headquarters, Executive Secretary Ex Officio: Vladimir Papitashvili NSF, Office of Polar Programs David Pierce NASA, GSFC/WFF Balloon Program Office, Chief Debora Fairbrother NASA, GSFC/WFF Balloon Program Office, Technologist Jack Tueller NASA GSFC, Balloon Program Project Scientist John Mitchell NASA GSFC, Balloon Program Deputy Project Scientist Cover Photo: The Balloon-borne Experiment with Superconducting Spectrometer, BESS Polar II at Williams Field, McMurdo, Antarctica. Facing Page Photo: The International ocusingF Optics Collaboration for micro-Crab Sensitivity (InFOCmS), a hard x-ray telescope with CdZnTe pixel detector as a focal plane imager. NASA Stratospheric Balloons Science at the edge of Space Report of the Scientific Ballooning Assessment Group January 2010 Table of Contents Executive Summary 3 Scientific Ballooning has Made Important Contributions to NASA’s Program 9 Balloon-borne Instruments Will Continue to Contribute to NASA’s Objectives 15 Many Scientists with Leading Roles in NASA were Trained in the Balloon Program 35 The Balloon Program has Substantial Capability for Achieving Quality Science 37 Findings 41 Acronyms 46 References 49 The Cosmic Ray Energetics And Mass instrument (CREAM) hangs on the launch vehicle at Williams Field near McMurdo base Antarctica.
    [Show full text]