Poisson Limits for Pairwise and Area Interaction Point Processes Author(S): S

Total Page:16

File Type:pdf, Size:1020Kb

Poisson Limits for Pairwise and Area Interaction Point Processes Author(S): S Poisson Limits for Pairwise and Area Interaction Point Processes Author(s): S. Rao Jammalamadaka and Mathew D. Penrose Source: Advances in Applied Probability, Vol. 32, No. 1 (Mar., 2000), pp. 75-85 Published by: Applied Probability Trust Stable URL: http://www.jstor.org/stable/1428227 Accessed: 03/05/2009 10:27 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=apt. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. Applied Probability Trust is collaborating with JSTOR to digitize, preserve and extend access to Advances in Applied Probability. http://www.jstor.org Adv.Appl. Prob. (SGSA)32, 75-85 (2000) Printed in NorthernIreland ? AppliedProbability Trust 2000 POISSON LIMITS FOR PAIRWISE AND AREA INTERACTION POINT PROCESSES S. RAO JAMMALAMADAKA,*University of California MATHEWD. PENROSE,** Universityof Durham Abstract Suppose n particles xi in a region of the plane (possibly representing biological individuals such as trees or smaller organisms) have a joint density proportionalto - exp{- 2i<j 4(n(xi xj))}, with q a specified function of compact support. We obtain a Poisson process limit for the collection of rescaled interparticledistances as n becomes large. We give correspondingresults for the case of severaltypes of particles, representingdifferent species, and also for the area-interaction(Widom-Rowlinson) point process of interpenetratingspheres. Keywords: Area-interactionprocess; Gibbs distribution; limit laws; point process; spatial statistics;U-statistics AMS 1991 SubjectClassification: Primary 60G55 Secondary60F05; 60D05 1. Introduction Suppose the locations of n particles in d-dimensional space (such as biological individuals in a region of the plane or molecules in a region of space) are represented by points xi in Id, with d > 1. A simple stochastic model for their positions has them independently distributed with common probability density function f (for example, f could be a measure of the richness of the soil at a given point on the ground). We call this the null distribution. A more complex model is the pairwise interaction point process, also known as a form of Gibbs distribution. An energy function /)n : d -- I is specified and the null density is weighted multiplicatively, by exp(-n (xi - xj)) for each pair of distinct particles xi, xj, giving a joint density function of the form f ()(X ... Xn) = Z eXp- n(Xi - j) f(i[ ) (1.1) i<j<n i=1 with Zn a normalizing constant. For a discussion and bibliography on distributions of this form, see Diggle et al. [5], or Stoyan et al. [15, Section 5.5]. Here we consider only distributions which are conditioned to have n points. We consider the case where n(X) takes the form 0 (n2 x d), with ( a specified function of compact support. This means that as n becomes large the range of interaction becomes small in Received 27 July 1998; revision received 8 January1999. * Postal address:Department of Statisticsand Applied Probability,University of California,Santa Barbara, CA 93106, USA. Email address:[email protected]. ** Postal address:Department of MathematicalSciences, Universityof Durham,South Road, DurhamDH1 3LE, UK. Email address:[email protected]. 75 76 - SGSA S. R. JAMMALAMADAKAAND M. D. PENROSE such a way thatthe expectednumber of pairsof particleswhich interact,under the null distribu- tion, tends to a finitelimit. This correspondsto the 'sparseness'regime consideredby Saunders et al. in [12, 13], who obtained limit distributionsfor the numberof interactingpairs in the special case of a uniformnull distributionand with certainspecific step functionforms for 4. In this note we obtainlimiting distributionsfor the set of small interparticledistances, for a large class of null distributionsand functions 0 (Theorems3.1 and 3.2). We also considerthe case where there are severaltypes of particles(representing, for example, differentbiological species) with a different energy function for each pair of types of particles (see Theorem 4.1). Our proofs use Laplace functional methods and general results in the literatureon U- statistics. Proposition2.1 on generalizedGibbs distributionsand Proposition4.1 on multitype U-statistics are key steps in our proofs, and are also of some interestin their own right. In Section 5 we apply the same methodsto the area-interactionpoint process, conditioned to have n points. For our purposes,this is definedby a joint density of the form n f (n(xl, ...,n) c (exp-ynVrn(xl,x2,..., Xn)}) f(xi), (1.2) i=l where Vr(xl, ...., Xn)denotes the volume of the union of balls of radiusr centredat x ..., Xn, and Yn and rn are parameters. This form of density (for d = 2, hence the nomenclature) was proposed by Baddeley and van Lieshout [2] in the context of spatial statistics, having previously appearedin the physics literature[17]. We investigate a limiting regime for the parameters(Yn, rn) which is analogous to that consideredfor pairwise interactionprocesses; there turns out to be an asymptotic equivalence with a pairwise interactionprocess with a specific non-step functionform for 0. Both for pairwise and area interactions,the 'sparse' limits consideredare not particularly naturalfrom the statisticalphysics perspective,but are quite reasonablein the representation of the locations, for example, of a rareplant or nesting sites of a rarebird. 2. A general result We start by looking at generalized Gibbs distributions,by which we mean distributions for which some tractablenull measure,tn is weighted by a Radon-Nikodym derivativepro- portional to e-U, where U is the value of an 'energy function' summed over the points of an induced point process. More formally, a generalized Gibbs distributionis a probability measure ,' definedby (2.1) below. We shall give a simple result (Proposition2.1) about gen- eralized Gibbs distributionswhich may by applicablein other settings than those considered here. See for example [16] for a varietyof possible applicationsof models of this form. Let S be a complete separablemetric space, and let B denote the Borel a-field on S. Let A be the space of locally finite countingmeasures on (S, B). For M E MAand g: S -> R we use the inner productnotation (M, g) for the integralfs g dM. Clearly M is identifiedwith a set of points and (M, g) is the sum of the values of g at those points. A pointprocess on S is a randomelement 4 of M. If X is a locally finite measureon (S, SB), a Poisson process with mean measure X is a point process for which the random variables ( , IAi ) are independent Poisson variables with respective means X(Ai) for any finite collection of disjoint sets Ai E S with X(Ai) < oo. In terms of Laplace functionals,Poisson processes are characterizedas follows (see [11, Proposition3.6]): Lemma 2.1. Let 4 be a pointprocess on S and let Xbe a locallyfinite measureon (S, S). Then t is a Poissonprocess with meanmeasure X, if and only iffor all measurableg: S -- (-oo, oo] boundedbelow and of compactsupport, Poissonlimits for pointprocesses SGSA? 77 Eexp(- (, g)) = exp (e-(x) - l)(dx). Here and throughoutthis paper,we use the conventionexp(-oo) = 0. Our general result is in the following setting. For n E N, let (On, 7n, /n) be probability spaces and let n : Qn -X AMbe measurablefor n = 1, 2, 3,.... Suppose :? S - (-oo, oo] is a measurable 'energy function' of compact support. The associated generalized Gibbs measuresare probabilitymeasures /1 on (On, 7n) definedby /4(dw) = Zn1exp(-(n()(w), 0)),dn(dw), (2.1) with zn a normalizingconstant. We write AOfor the set of discontinuitypoints of 4. We are interestedin the asymptoticdistributions of tthe unrunderhe measures/n and 'n. For A C S write AA for the boundaryof A. If 4 and 4n (n E N) are point processes on S, we say the sequence 4n converges weakly to 4, and write n =i 4, if the finite-dimensional distributionsconverge, i.e. if for any finite collection of bounded Borel sets Ai satisfying 4(oAi) = 0 almost surely,the joint distributionsof n(Ai) convergeweakly to those of 4(Ai). This is equivalentto other definitions of weak convergence;see e.g. [4, Section 9.1]. Weak convergenceof point processes is characterizedin terms of Laplacefunctionals as follows [11, Proposition3.19]: Lemma 2.2. Let4 and 4n (n = 1, 2, 3, ...) be point processes on S. Then n => 4 if and only if E exp(- (n, g)) -> Eexp(- (, g)) for all measurableg : S -> [0, oo] of compactsupport with (4, lAg) = 0 almost surely. The mainresult of this section says thatif underiLn the point processes4n are asymptotically Poisson, then under the generalized Gibbs distribution1/4 given by (2.1), they are again asymptoticallyPoisson, with mean measureinflated locally by exp(-0(x)): Proposition 2.1. Suppose p is non-negative. Suppose that under An the sequence of point processes 4nconverges weakly to a Poisson process with locally finite mean measureX satis- fying X\(A() = 0.
Recommended publications
  • Applied Mathematics 1
    Applied Mathematics 1 MATH 0180 Intermediate Calculus 1 Applied Mathematics MATH 0520 Linear Algebra 2 1 APMA 0350 Applied Ordinary Differential Equations 2 & APMA 0360 and Applied Partial Differential Equations Chair I 3 4 Bjorn Sandstede Select one course on programming from the following: 1 APMA 0090 Introduction to Mathematical Modeling Associate Chair APMA 0160 Introduction to Computing Sciences Kavita Ramanan CSCI 0040 Introduction to Scientific Computing and The Division of Applied Mathematics at Brown University is one of Problem Solving the most prominent departments at Brown, and is also one of the CSCI 0111 Computing Foundations: Data oldest and strongest of its type in the country. The Division of Applied CSCI 0150 Introduction to Object-Oriented Mathematics is a world renowned center of research activity in a Programming and Computer Science wide spectrum of traditional and modern mathematics. It explores the connections between mathematics and its applications at both CSCI 0170 Computer Science: An Integrated the research and educational levels. The principal areas of research Introduction activities are ordinary, functional, and partial differential equations: Five additional courses, of which four should be chosen from 5 stochastic control theory; applied probability, statistics and stochastic the 1000-level courses taught by the Division of Applied systems theory; neuroscience and computational molecular biology; Mathematics. APMA 1910 cannot be used as an elective. numerical analysis and scientific computation; and the mechanics of Total Credits 10 solids, materials science and fluids. The effort in virtually all research 1 ranges from applied and algorithmic problems to the study of fundamental Substitution of alternate courses for the specific requirements is mathematical questions.
    [Show full text]
  • Alireza Sheikh-Zadeh, Ph.D
    Alireza Sheikh-Zadeh, Ph.D. Assistant Professor of Practice in Data Science Rawls College of Business, Texas Tech University Area of Information Systems and Quantitative Sciences (ISQS) 703 Flint Ave, Lubbock, TX 79409 (806) 834-8569, [email protected] EDUCATION Ph.D. in Industrial Engineering, 2017 Industrial Engineering Department at the University of Arkansas, Fayetteville, AR Dissertation: “Developing New Inventory Segmentation Methods for Large-Scale Multi-Echelon In- ventory Systems” (Advisor: Manuel D. Rossetti) M.Sc. in Industrial Engineering (with concentration in Systems Management), 2008 Industrial Engineering & Systems Management Department at Tehran Polytechnic, Tehran, Iran Thesis: “System Dynamics Modeling for Study and Design of Science and Technology Parks for The Development of Deprived Regions” (Advisor: Reza Ramazani) AREA of INTEREST Data Science & Machine Learning Supply Chain Analytics Applied Operations Research System Dynamics Simulation and Stochastic Modeling Logistic Contracting PUBLICATIONS Journal Papers (including under review papers) • Sheikhzadeh, A., & Farhangi, H., & Rossetti, M. D. (under review), ”Inventory Grouping and Sensitivity Analysis in Large-Scale Spare Part Systems”, submitted work. • Sheikhzadeh, A., Rossetti, M. D., & Scott, M. (2nd review), ”Clustering, Aggregation, and Size-Reduction for Large-Scale Multi-Echelon Spare-Part Replenishment Systems,” Omega: The International Journal of Management Science. • Sheikhzadeh, A., & Rossetti, M. D. (4th review), ”Classification Methods for Problem Size Reduction in Spare Part Provisioning,” International Journal of Production Economics. • Al-Rifai, M. H., Rossetti, M. D., & Sheikhzadeh, A. (2016), ”A Heuristic Optimization Algorithm for Two- Echelon (r; Q) Inventory Systems with Non-Identical Retailers,” International Journal of Inventory Re- search. • Karimi-Nasab, M., Bahalke, U., Feili, H. R., Sheikhzadeh, A., & Dolatkhahi, K.
    [Show full text]
  • Math 550-700 Applied Probability and Statistics, Summer 2019
    Math 550-700 Applied Probability and Statistics, Summer 2019 MTWTh, 9:00am to 11:45am, synchronous online (via Zoom) In Person, June 10th through June 13th, in Ross 3275 Student Hours: MTWTh 1:00pm to 5:00pm in Ross 2250D Instructor: Neil Hatfield Email: [email protected] Office Number: Ross 2250D Course Website: Canvas https://unco.instructure.com All Course Materials, homework assignments, and tests will be posted to the course website. Catalog Description: Methods related to descriptive and inferential statistics and the concept of probability are investigated in depth. Course Description: This course addresses the statistical processes of formulating questions, collecting and analyzing data, and interpreting results. Methods related to descriptive and inferential statistics and the concept of probability are investigated in depth. This course will act as a first course in the concepts and methods of statistics, with emphasis on data visualizations, the distribution conception, descriptive statistics, and statistical inference. Inference topics include parametric and non-parametric point and interval estimation, hypothesis testing, and measures of effect size. Prerequisites and Placement: Graduates only. Textbook and Reading Materials: • Required Textbook: None. • Required Readings: There will be several required readings; PDFs of these readings will be made available to you at no cost through the course website. These readings fall under Educational Fair Use guidelines. • Recommended Readings: A list of additional readings, sometimes including PDFS, will be posted to the course website. These readings will be optional (strongly recommended) and are meant to help enrich your experience in the course. These readings fall under Educational Fair Use guidelines. If you have a suggestion for the list, please share the details with the instructor.
    [Show full text]
  • A Tutorial on Palm Distributions for Spatial Point Processes Jean-François Coeurjolly, Jesper Møller, Rasmus Waagepetersen
    A tutorial on Palm distributions for spatial point processes Jean-François Coeurjolly, Jesper Møller, Rasmus Waagepetersen To cite this version: Jean-François Coeurjolly, Jesper Møller, Rasmus Waagepetersen. A tutorial on Palm distribu- tions for spatial point processes. International Statistical Review, Wiley, 2017, 83 (5), pp.404-420 10.1111/insr.12205. hal-01241277v3 HAL Id: hal-01241277 https://hal.archives-ouvertes.fr/hal-01241277v3 Submitted on 17 Jun 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A tutorial on Palm distributions for spatial point processes Jean-Fran¸cois Coeurjolly1, Jesper Møller2 and Rasmus Waagepetersen2 1Laboratory Jean Kuntzmann, Statistics Department, Grenoble Alpes University, 51 Rue des Math´ematiques, Campus de Saint Martin d’H`eres, BP 53 - 38041 Grenoble cedex 09, France, email: [email protected]. 1Department of Mathematical Sciences, Aalborg University, Fredrik Bajersvej 7E, DK-9220 Aalborg, email: [email protected], [email protected], June 17, 2016 Abstract This tutorial provides an introduction to Palm distributions for spatial point processes. Initially, in the context of finite point pro- cesses, we give an explicit definition of Palm distributions in terms of their density functions.
    [Show full text]
  • Applied Probability and Stochastic Processes
    EECE 7204 - Applied Probability and Stochastic Processes Northeastern University Department of Electrical and Computer Engineering Fall 2018 Instructor: Prof. Pau Closas Place: West Village H 108 Email: [email protected] Time: Mon/Wed Office: 529 ISEC 2:50pm - 4:30pm Sept. 5 { Dec. 5 TA: Berkan Kadıo˘glu Email: [email protected] Office Hours Prof. Closas: After class on Monday/Wednesday (4:30pm to 5:30pm), or by appointment. If emails are sent, please always include [EECE7204] in subject line for filtering. Office Hours TA Kadıo˘glu: Wednesday (9:30am to 11:30am) in 562-A5 ISEC. If emails are sent, please always include [EECE7204] in subject line for filtering. Prerequisites: Knowledge of signals, linear systems and transformations; sets, algebra, calculus. Course Catalog Description: Covers fundamentals of probability and stochastic processes with appli- cations to estimation and queuing theory. Includes basic laws of probability, conditioning, and Bayes rule. Topics include random variables and their functions; PDF, PMF, and CDF notions; statistical averages; moments and characteristic functions; multiple random variables; joint and conditional PDF and PMF; multiple functions of random variables; correlation and covariance; mean squared estimation of random variables; Markov, Chebychev, and Chernov inequalities; various notions of convergence of random variable sequences; laws of large numbers; central limit theorem; and large deviation theory. As time permits, dis- cusses basic notions of estimation and properties of estimators, unbiased and minimum variance estimation, CRLB, sufficient statistics, consistency of estimators, basic notions of discrete and continuous-time random processes, mean and autocorrelation function, WSS and cyclo-stationary processes, ergodicity of random processes, and other topics.
    [Show full text]
  • Stochastic Modelling and Applied Probability
    Stochastic Mechanics Stochastic Modelling Random Media Signal Processing and Applied Probability and Image Synthesis (Formerly: Mathematical Economics and Finance Applications of Mathematics) Stochastic Optimization Stochastic Control Stochastic Models in Life Sciences 33 Edited by B. Rozovski˘ı P.W. Glynn Advisory Board M. Hairer I. Karatzas F.P. Kelly A. Kyprianou Y. Le Jan B. Øksendal G. Papanicolaou E. Pardoux E. Perkins H.M. Soner For further volumes: http://www.springer.com/series/602 Paul Embrechts Claudia Klüppelberg Thomas Mikosch Modelling Extremal Events for Insurance and Finance Paul Embrechts Thomas Mikosch Department of Mathematics Department of Mathematics ETH Zurich University of Copenhagen Zurich, Switzerland Copenhagen, Denmark Claudia Klüppelberg Zentrum Mathematik Technische Universität München Garching, Germany Managing Editors Boris Rozovski˘ı Peter W. Glynn Division of Applied Mathematics Institute of Computational Brown University and Mathematical Engineering Providence, RI, USA Stanford University Stanford, CA, USA ISSN 0172-4568 Stochastic Modelling and Applied Probability ISBN 978-3-642-08242-9 ISBN 978-3-642-33483-2 (eBook) DOI 10.1007/978-3-642-33483-2 Springer Heidelberg New York Dordrecht London © Springer-Verlag Berlin Heidelberg 1997, 4th corrected printing and 9th printing 2012 Softcover reprint of the hardcover 1st edition 1997 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
    [Show full text]
  • Curriculum Vitae
    Jack Hanson City College of NY [email protected] Dept. of Mathematics 1 (212) 650 - 5174 NAC 6/292 Appointments • Assistant Professor, City College of NY Dept. of Mathematics, 01/2016{present • Visiting Assistant Professor, GA Tech Dept. of Mathematics, 8/2015{01/2016 • Zorn Postdoctoral Fellow, Indiana University Dept. of Mathematics. 8/2013{7/2015 Education • Ph.D., Physics, Princeton University, June 2013. Advisor: Michael Aizenman • M.A., Physics, Princeton University, 2010. • B.S. Summa cum Laude, Physics, Rutgers University, 2008. Double major, Physics and Mathematics. Funding • NSF Grant DMS-1612921, \Correlations and Scaling in Disordered and Critical Stochastic Models", 2016 { 2019. $100,000. • (Funded but declined in favor of NSF) NSA Young Investigator Grant, 2016 { 2018. $40,000. • AMS-Simons travel grant, 2015 { 2016. • NSF Graduate Research Fellow, 2008 - 2013. Talks • Upcoming, untitled { Conference on Random Walks, Random Graphs and Random Media at LMU, Munich, 9 / 2019 • \Universality of the time constant for critical first-passage percolation on the triangular lat- tice" { MIT Probability Seminar, 3/2019 1 { CUNY Probability Seminar, 3/2019 { Ohio State U. Probability Seminar, 4/2019 • \Geodesics in First-Passage Percolation" { Montr´ealsummer workshop on challenges in probability and mathematical physics, 7/2018. • \Half-space critical exponents in high-dimensional percolation." { Conference on Recent Trends in Continuous and Discrete Probability, GA Tech, 6/2018. { U. of Rochester Probability Seminar, 9/2018 { Columbia U. Probability Seminar, 2/2019 { NYU Probability Seminar, 2/2019 • \The boundary in first-passage percolation" { Cornell Probability Seminar, 11/2017 • \Strict inequality for the chemical distance exponent in 2d percolation." { Stockholm University Probability/Statistics seminar, 8/2017 { CUNY Probability seminar, 9/2017 • \Geodesics and Busemann functions in first-passage percolation" { AMS short course, Atlanta, 1/2017.
    [Show full text]
  • Applied Probability
    Applied Probability Kenneth Lange Springer Springer Texts in Statistics Advisors: George Casella Stephen Fienberg Ingram Olkin Springer New York Berlin Heidelberg Hong Kong London Milan Paris Tokyo Springer Texts in Statistics Alfrd: Elements of Statistics for the Life and Social Sciences Berger: An Introduction to Probability and Stochastic Processes Bilodeau and Brenner: Theory of Multivariate Statistics Blom: Probability and Statistics: Theory and Applications Brockwell and Davis: Introduction to Times Series and Forecasting, Second Edition Chow and Teicher: Probability Theory: Independence, Interchangeability, Martingales, Third Edition Chrisfensen: Advanced Linear Modeliig: Multivariate, Time Series, and Spatial Data-Nonparamekic Regression and Response Surface Maximization, Second Edition Chrisfensen: Log-Linear Models and Lagistic Regression, Second Edition Chrisfensen: Plane Answers to Complex Questions: The Theory of Linear Models, Third Edition Creighfon:A First Course in Probability Models and Statistical Inference Davis.' Statistical Methods for the Analysis of Repeated Measurements Dean and Vow Design and Analysis of Experiments du Toif,Sfqn, and Stump$ Graphical Exploratory Data Analysis Durreft:Essentials of Stochastic Processes Edwarak Introduction to Graphical Modelling, Second Edition Finkelstein and Levin: Statistics for Lawyers Flury: A First Course in Multivariate Statistics Jobson: Applied Multivariate Data Analysis, Volume I Regression and Experimental Design Jobson: Applied Multivariate Data Analysis, Volume 11:
    [Show full text]
  • Notes on the Poisson Point Process
    Notes on the Poisson point process Paul Keeler January 5, 2016 This work is licensed under a “CC BY-SA 3.0” license. Abstract The Poisson point process is a type of random object known as a point pro- cess that has been the focus of much study and application. This survey aims to give an accessible but detailed account of the Poisson point process by covering its history, mathematical definitions in a number of settings, and key properties as well detailing various terminology and applications of the process, with rec- ommendations for further reading. 1 Introduction In probability, statistics and related fields, a Poisson point process or a Poisson process or a Poisson point field is a type of random object known as a point pro- cess or point field that consists of randomly positioned points located on some underlying mathematical space [68]. The process has convenient mathematical properties [39], which has led to it being frequently defined in Euclidean space and used as a mathematical model for seemingly random processes in numer- ous disciplines such as astronomy [5], biology [53], ecology [70], geology [16], physics [61], image processing [12], and telecommunications [7][28]. The Poisson point process is often defined on the real line playing an impor- tant role in the field of queueing theory [40] where it is used to model certain random events happening in time such as the arrival of customers at a store or phone calls at an exchange. In the plane, the point process, also known as a spa- tial Poisson process [9], may represent scattered objects such as users in a wireless network [2, 6, 7, 27], particles colliding into a detector, or trees in a forest [68].
    [Show full text]
  • Generalized Inverses and Their Application to Applied Probability Problems*
    Generalized Inverses and Their Application to Applied Probability Problems* Jeffrey J. Hunter Department of Mathematics University of Auckland Auckland, New Zealand Submitted by Carl Meyer ABSTRACT The main aim of this paper is to examine the applicability of generalized inverses to a wide variety of problems in applied probability where a Markov chain is present either directly or indirectly through some form of imbedding. By characterizing all generalized inverses of I - P, where P is the transition matrix of a finite irreducible discrete time Markov chain, we are able to obtain general procedures for finding stationary distributions, moments of the first passage time distributions, and asymp totic forms for the moments of the occupation-time random variables. It is shown that all known explicit methods for examining these problems can be expressed in this generalized inverse framework. More generally, in the context of a Markov renewal process setting the aforementioned problems are also examined using generalized inverses of I - P. As a special case, Markov chains in continuous time are considered, and we show that the generalized inverse technique can be applied directly to the infinitesimal generator of the process, instead of to I - P, where P is the transition matrix of the discrete time jump Markov chain. 1. INTRODUCTION In many stochastic modeling situations a Markov chain in discrete time is often present, either directly or indirectly through some form of imbedding. The most general framework that has been devised for handling such situa- tions is the concept of a Markov renewal process together with its associated semi-Markov process.
    [Show full text]
  • St 315: Applied Probability & Statistics
    ST 315: APPLIED PROBABILITY & STATISTICS FALL SEMESTER 2012 Section 102: Tue-Thu, 9:30 am – 10:45 am, ILB 370 Instructor: Dr. Madhuri Mulekar, Professor ILB 304 (inside ILB 325) Phone: 251-460-6264 e-mail: [email protected] Office Hours: Tue-Thu 8:00 am - 9:30 am, 3:30-4:30 pm, and Wed 10:00 11:00 am or by appointment Textbook: Probability and Statistics for Engineers, fifth edition, by Scheaffer, Mulekar, and McClave. Published by Brooks/Cole Cengage Learning, ISBN-13: 9780534403027 Note: Dr. Mulekar is a co-author of textbook and receives royalty from its sale. ST315 web Policies, supplemental course materials, announcements, and assignments will page: be posted at www.southalabama.edu/mathstat/personal_pages/mulekar/st315 Students are responsible for information posted on this page. They are encouraged to check this page daily. Final Exam: Section 102: Thu, Dec. 13, 10:30 am - 12:30 pm Coverage: All or parts of Chapters 1-6, 8-12 of the textbook mentioned above. Refer to tentative class schedule for topics. Bulletin Concepts of probability theory, discrete and continuous probability description: distributions including gamma, beta, exponential and Weibull, descriptive statistics, sampling estimation, confidence intervals, testing of hypothesis, ANOVA and multiple comparisons, linear and multiple regression, correlation, non parametric analysis, contingency table analysis, computer assisted data analysis using appropriate statistical software. Prerequisite: MA125 Learning The purpose of this course is to provide students in engineering, mathematics objectives: and the physical sciences an introduction to the basic concepts of probability, discrete and continuous distributions, descriptive and inferential statistics, ANOVA and regression analysis.
    [Show full text]
  • Probability Theory As a Physical Theory Points to Superdeterminism. Louis
    Probability theory as a physical theory points to superdeterminism. Louis Vervoort, PhD School of Advanced Studies, University of Tyumen, Russian Federation 06.08.2019 Abstract. Probability theory as a physical theory is, in a sense, the most general physics theory available, more encompassing than relativity theory and quantum mechanics, which comply with probability theory. Taking this simple fact seriously, I argue that probability theory points towards superdeterminism, a principle that underlies, notably, ‘t Hooft’s Cellular Automaton Interpretation of quantum mechanics. Specifically, I argue that superdeterminism offers a solution for 1) Kolmogorov’s problem of probabilistic dependence; 2) the interpretation of the Central Limit Theorem; and 3) Bell’s theorem. Superdeterminism’s competitor, indeterminism (‘no hidden variables’), remains entirely silent regarding 1) and 2), and leaves 3) as an obstacle rather than a solution for the unification of quantum mechanics and general relativity. This suggests that, if one wishes to stick to the standard position in physics and adopt the principles with the highest explanatory power, one should adopt superdeterminism and reject indeterminism. Throughout the article precise questions to mathematicians are formulated to advance this research. 1. Introduction. In this article I will explore what can be learnt from considering probability theory a physical theory, besides a mathematical one. I will start from a few straightforward hypotheses on probability as a physical property, and study some of their consequences. The main goal is to show that a coherent interpretation of probability offers an interesting lens to study several foundational problems. More specifically, I will argue that such an interpretation points towards determinism (the assumption that all events have causes1 by which they follow with necessity) or more precisely superdeterminism (in short, the assumption that all events have causes tracing back to the Big- 1 Such causes are mathematically represented by (hidden) variables.
    [Show full text]