Apnea and Surfing Survival Training

Total Page:16

File Type:pdf, Size:1020Kb

Apnea and Surfing Survival Training APNEA AND SURFING! SURVIVAL TRAINING! ! ! APNEA AND SURFING SURVIVAL TRAINING! ! Introduction ! Have you ever been held underwater for a very long time, driven to the deep, dark depths, and the turbulence and the force of the water wouldn't let you come up to breathe? Have you ever free dove to the bottom of the ocean and tried to stay there as long as possible, waiting to shoot a fish or photograph marine life, and your instincts start telling you that you need to breathe? What did you feel in these situations? Were you scared? Did you think you were going to pass out or drown? Any watermen will experience these situations one day, when the urge to breathe overtakes the ability to remain calm. The question is, are you ready for that? This is the purpose of the Apnea and Surfing Survival Training. ! Objective ! The objective of this training is to provide enough information and practice so that you can train your body and mind to do the most important thing when you reach your survival instinct: to remain calm. ! How to remain calm in those situations is what we emphasize in our training. This course is essential for all surfers, divers, and watermen in general who are always willing to push their limits underwater. The goal of this training is to teach proper techniques and exercises to increase your breath holding ability and to be familiar with all the symptoms and signs that tells us when our bodies are being close to shutting down. ! ! Hawaii Eco Divers www.hawaiiecodivers.com 1 808 499 9177 – [email protected] APNEA AND SURFING! SURVIVAL TRAINING! ! Apnea ! Apnea is a term for suspension of external breathing or holding breath. During Apnea there is no movement of inhalation, and the volume of the lungs initially remains unchanged. Apnea can be voluntarily achieved, drug-induced by medication, or mechanically induced by strangulation or choking. Also, in people who suffer from sleep apnea, this event will occur 20-30 times per hour. Voluntary apnea can be achieved by closing the vocal cords, simultaneously keeping the mouth closed and blocking the nose, and constantly activating respiratory muscles. In the sport of free diving, voluntary apnea is well practiced and it can be improved through many exercises. Breath holding above water in a safe environment is not dangerous. In fact, even holding breath to the point of losing consciousness does not cause the body any harm. Because ventilation is controlled by the nervous system, normal breathing resumes the moment that consciousness is lost. Brain damage does not occur unless ventilation is somehow prohibited for approximately 4 minutes beyond the loss of consciousness. Breath holding exercise increases the amount of time the body can sustain apnea by improving ventilation, increasing psychological fortitude, and lengthening the maximum duration for which the body can maintain an anaerobic exercise. ! Static Apnea ! Static apnea is simply a timed breath-hold exercise usually performed while floating on the surface without any movement. Static Apnea is a great training exercise for free divers and surfers. After all, time spent underwater involves holding your breath. The most important rule in apnea training underwater is to NEVER train alone. Apnea training must be accompanied by a training partner. Time signals are commonly used in all apnea training to provide safety and communication between buddies. Usually a tap on the shoulder and an “OK” is the standard signal for communication. ! Hawaii Eco Divers www.hawaiiecodivers.com 1 808 499 9177 – [email protected] APNEA AND SURFING! SURVIVAL TRAINING! ! The 1st tap is usually at the first minute. The following taps come after every 30 seconds until the target time is reached. After the targeted time, a buddy check is mandatory every 15 seconds. Once the Static Apnea exercise is completed, six full recovery breaths are mandatory followed by the “OK” signal. ! Dynamic Apnea ! Dynamic Apnea is defined as an exercise where breath is held in movement underwater. During dynamic apnea, the diver creates higher C02 level quicker than static apnea, therefore breath holding time is usually less than static. When training dynamic apnea, the buddy/diver must always be 6 feet in front of the person performing the exercise. When the diver surfaces the buddy must emphasize safety by being within arms reach of the diver in case of loss of motor control. After six recovery breathes followed by the “OK” sign, only then can the buddy can relax and stop paying attention to the diver. The most important rule in apnea training underwater is to NEVER train alone. Apnea training must be accompanied by a training partner. ! Improving Ventilation / Breathing! Ventilation can be improved by practicing deep breathing (both inhaling and exhaling) regularly. Like any other muscle, the diaphragm can be strengthened with regular exercise. A strong, healthy diaphragm can help to fully expand the lungs and more effectively collapse them, improving the volume of a fresh breath as well as ensuring that used air can be thoroughly purged. Improving ventilation can increase oxygen levels in the blood and raise the amount of oxygen rich air that can be stored in the lungs, thus increasing dive time. ! ! ! Hawaii Eco Divers www.hawaiiecodivers.com 1 808 499 9177 – [email protected] APNEA AND SURFING! SURVIVAL TRAINING! ! Exercises to improve ventilation! Use the following simple exercises to improve ventilation. These can be done standing with feet shoulder length apart. Broaden your shoulders during inhalation to increases lung volume; shrug them together towards your solar plexus during exhalation to decrease lung volume. Repeat these exercises several times a week on a regular basis. In addition to any muscle strengthening and development achieved, practice will improve muscle memory, making it easier and more natural to ventilate properly before going underwater. ! Increase strength & capacity: Take a slow, deep breath while broadening the shoulders, then continue attempting the inhalation — flexing the diaphragm — for a four-second hold. Exhale slowly and completely. Repeat in sets of eight. ! Improve total exhalation: Exhale completely to the point of mild discomfort, then continue exhaling by compressing the upper abdominal muscles and collapsing the shoulders towards the solar plexus. When further exhalation becomes impossible, hold for four-seconds and then inhale. Repeat in sets of eight. ! When deprived of proper ventilation, the body responds with an urgent sense of needing to breathe. That feeling, generally characterized by a mounting sense of panic, is caused not by oxygen deprivation but by carbon dioxide (CO2) buildup in the bloodstream. Oxygen levels are actually normal far beyond the time that the initial urge to breath is experienced. ! Breath holding practice, in time, will develop a tolerance to the urge to breath which is felt by all free divers. The goal of developing this tolerance is to allow a diver to approach actual depletion of oxygen storage and withhold from reacting to the uncomfortable sensation caused by carbon dioxide buildup. While the urge to breathe will always exist, practice can improve your abilities, allowing for longer dives and time spent underwater. ! Hawaii Eco Divers www.hawaiiecodivers.com 1 808 499 9177 – [email protected] APNEA AND SURFING! SURVIVAL TRAINING! ! Many divers experience involuntary diaphragm contractions at some point during their breath hold. These uncomfortable muscle spasms are a symptom of the autonomic nervous system attempting to regain control of respiration. Diaphragm contractions do not signal danger; in fact, some divers report that anywhere from one quarter to even a half of their breath hold remains after contractions begin. The best way to fight contractions is to relax and enjoy it. ! Developing a tolerance to the urge to breathe takes time. Fortunately, breath holding practice requires only a stop watch and can be done just about anywhere. Use the following steps to time a breath hold. Daily practice and an ambition to beat previous records can improve a breath hold dramatically. Often, when several breath holds are performed sequentially, times improve remarkably with each hold. Remember, however, that each hold must be preceded by a generous breathe-up interval. ! 1) Lay somewhere comfortably that allows easy, natural breathing, and allow your body to reach a state of relaxation. 2) Begin slow, deep breathing, filling your lungs to capacity and emptying them completely ten times. 3) After the desired time, completely empty your lungs and then fill them to capacity. Broaden your shoulders and use muscular force to ensure the maximum volume of air is achieved. 4)Start your timer and hold your breath for as long as you can. ! The above exercise describes a generic routine that can be used to test your breath hold. It can, of course, be modified to fit to whatever is most comfortable for each individual. Below are some tips to improve your hold: -Don’t move at all: any movement burns oxygen. In a real diving environment, of course, you'll be swimming. This exercise, however, focuses on tolerating the urge to breathe and learning about your personal carbon dioxide tolerance. ! Hawaii Eco Divers www.hawaiiecodivers.com 1 808 499 9177 – [email protected] APNEA AND SURFING! SURVIVAL TRAINING! ! -Try not to think. Thinking also uses oxygen. Picture a blank white sheet, focus on a sound or listen to soothing music. ! -Get comfortable with your body's responses. Learn when you can expect involuntary diaphragm contractions, how many contractions you can tolerate, and what different stages of the breath- hold feel like. This knowledge can be applied while diving to better gauge your oxygen stores. ! -Expect mild muscular cramps. Whether in your thighs, shoulders or hands, often the increasing acidity of the blood that results from breath holding will cause muscles to stiffen and contract.
Recommended publications
  • APNEA TRAINING and PHYSICAL CHARACTERISTICS: ENHANCEMENT of the DIVE RESPONSE, APNEIC TIME, and RECOVERY by Nathanael Stanford A
    APNEA TRAINING AND PHYSICAL CHARACTERISTICS: ENHANCEMENT OF THE DIVE RESPONSE, APNEIC TIME, AND RECOVERY by Nathanael Stanford A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Kinesiology Boise State University May 2019 © 2019 Nathanael Stanford ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Nathanael Stanford Thesis Title: Apnea Training and Physical Characteristics: Enhancement of The Dive Response, Apneic Time, and Recovery Date of Final Oral Examination: 08 March 2019 The following individuals read and discussed the thesis submitted by student Nathanael Stanford, and they evaluated his presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Shawn R. Simonson, Ed.D. Chair, Supervisory Committee Timothy R. Kempf, Ph.D. Member, Supervisory Committee Jeffrey M. Anderson, MA Member, Supervisory Committee The final reading approval of the thesis was granted by Shawn R. Simonson, Ed.D., Chair of the Supervisory Committee. The thesis was approved by the Graduate College. ACKNOWLEDGEMENTS I would first like to thank my thesis advisor, Shawn Simonson for his continual assistance and guidance throughout this master thesis. He fostered an environment that encouraged me to think critically about the scientific process. The mentorship he offered directed me on a path of independent thinking and learning. I would like to thank my research technician, Sarah Bennett for the hundreds of hours she assisted me during data collection. This thesis would not have been possible without her help. To my committee member Tim Kempf, I want to express my gratitude for his assistance with study design and the scientific writing process.
    [Show full text]
  • Fort Riley Military Munitions Response Program Camp Forsyth Landfill Area 2 Munitions Response Site Operable Unit 09, FTRI-003-R-01 Geary County, Kansas U.S
    Final Record of Decision June 2020 Fort Riley Military Munitions Response Program Camp Forsyth Landfill Area 2 Munitions Response Site Operable Unit 09, FTRI-003-R-01 Geary County, Kansas U.S. Army Corps of Engineers Omaha District FORT RILEY Final Contract No.: W912DQ-17-D-3023 Delivery Order No.: W9128F-17-F-0233 Record of Decision MILITARY MUNITIONS RESPONSE PROGRAM FORT RILEY CAMP FORSYTH LANDFILL AREA 2 MUNITIONS RESPONSE SITE OPERABLE UNIT 09, FTRI-003-R-01 GEARY COUNTY, KANSAS Prepared for and Prepared by U.S. ARMY CORPS OF ENGINEERS Omaha District June 2020 Revision 01 Record of Decision Camp Forsyth Landfill Area 2 MRS, Fort Riley, Kansas Table of Contents 1.0 DECLARATION .......................................................................................................... 1-1 1.1 Site Name and Location.................................................................................................... 1-1 1.2 Statement of Basis and Purpose...................................................................................... 1-1 1.3 Assessment of Site ............................................................................................................ 1-1 1.4 Description of Selected Remedy ...................................................................................... 1-1 1.5 Statutory Determinations .................................................................................................. 1-1 1.5.1 Part 1: Statutory Requirements ................................................................................
    [Show full text]
  • Cardiac Hypoxic Resistance and Decreasing Lactate During Maximum
    www.nature.com/scientificreports OPEN Cardiac hypoxic resistance and decreasing lactate during maximum apnea in elite breath hold divers Thomas Kjeld1*, Jakob Møller 1, Kristian Fogh1, Egon Godthaab Hansen2, Henrik Christian Arendrup3, Anders Brenøe Isbrand4, Bo Zerahn4, Jens Højberg5, Ellen Ostenfeld6, Henrik Thomsen1, Lars Christian Gormsen 7 & Marcus Carlsson6 Breath-hold divers (BHD) enduring apnea for more than 4 min are characterized by resistance to release of reactive oxygen species, reduced sensitivity to hypoxia, and low mitochondrial oxygen consumption in their skeletal muscles similar to northern elephant seals. The muscles and myocardium of harbor seals also exhibit metabolic adaptations including increased cardiac lactate-dehydrogenase- activity, exceeding their hypoxic limit. We hypothesized that the myocardium of BHD possesses 15 similar adaptive mechanisms. During maximum apnea O-H2O-PET/CT (n = 6) revealed no myocardial perfusion defcits but increased myocardial blood fow (MBF). Cardiac MRI determined blood oxygen level dependence oxygenation (n = 8) after 4 min of apnea was unaltered compared to rest, whereas cine-MRI demonstrated increased left ventricular wall thickness (LVWT). Arterial blood gases were collected after warm-up and maximum apnea in a pool. At the end of the maximum pool apnea (5 min), arterial saturation decreased to 52%, and lactate decreased 20%. Our fndings contrast with previous MR studies of BHD, that reported elevated cardiac troponins and decreased myocardial 15 perfusion after 4 min of apnea. In conclusion, we demonstrated for the frst time with O-H2O-PET/CT and MRI in elite BHD during maximum apnea, that MBF and LVWT increases while lactate decreases, indicating anaerobic/fat-based cardiac-metabolism similar to diving mammals.
    [Show full text]
  • ACTA BIOMEDICA SUPPLEMENT Atenei Parmensis | Founded 1887
    Acta Biomed. - Vol. 91 - Suppl. 1 - February 2020 | ISSN 0392 - 4203 ACTA BIOMEDICA SUPPLEMENT ATENEI PARMENSIS | FOUNDED 1887 Official Journal of the Society of Medicine and Natural Sciences of Parma Acta Biomed. - Vol. 91 - Suppl.1 February 2020 Acta Biomed. - Vol. and Centre on health systems’ organization, quality and sustainability, Parma, Italy The Acta Biomedica is indexed by Index Medicus / Medline Excerpta Medica (EMBASE), the Elsevier BioBASE, Scopus (Elsevier). and Bibliovigilance New insights on upper airway diseases Guest Editors: Giorgio Ciprandi, Desiderio Passali Free on-line www.actabiomedica.it Mattioli 1885 1, comma DCB Parma - Finito di stampare February 2020 46) art. Pubblicazione trimestrale - Poste Italiane s.p.a. - Sped. in A.P. - D.L. 353/2003 (conv. in L. 27/02/2004 n. - D.L. 353/2003 (conv. Pubblicazione trimestrale - Poste Italiane s.p.a. Sped. in A.P. ACTA BIO MEDICA Atenei parmensis founded 1887 OFFICIAL JOURNAL OF THE SOCIETY OF MEDICINE AND NATURAL SCIENCES OF PARMA AND CENTRE ON HEALTH SYSTEM’S ORGANIZATION, QUALITY AND SUSTAINABILITY, PARMA, ITALY free on-line: www.actabiomedica.it EDITOR IN CHIEF ASSOCIATE EDITORS Maurizio Vanelli - Parma, Italy Carlo Signorelli - Parma, Italy Vincenzo Violi - Parma, Italy Marco Vitale - Parma, Italy SECTION EDITORS DEPUTY EDITOR FOR HEALTH DEPUTY EDITOR FOR SERTOT Gianfranco Cervellin- Parma, Italy PROFESSIONS EDITION EDITION Domenico Cucinotta - Bologna, Italy Leopoldo Sarli - Parma, Italy Francesco Pogliacomi - Parma, Italy Vincenzo De Sanctis- Ferrara, Italy Paolo
    [Show full text]
  • Hold Your Breath Underwater for 3 Minutes
    HOLD YOUR BREATH UNDERWATER FOR 3 MINUTES. [basic] NERVE RUSH MISSION Nerve Rush deconstructs the world of extreme sports and adventure travel through a titillating array of adrenaline-packed content. We support folks and brands who test their physical and mental limits, who push for adventure and who empower others to live a more gut-wrenching life. YOUR ADRENALINE GUIDES In an effort to push the Nerve Rush community to test both physical and mental limits, we developed a series of adrenaline guides, broken down into different achievement levels. Use our guides to inject more gut-wrenching adventure into your life. WHY HOLD YOUR BREATH UNDERWATER? From surfing and snorkeling to a full day at the beach, learning to hold your breath can help you to feel more comfortable underwater – a critical component to battling huge waves or hunting for colorful coral. Static Apnea is a discipline in which Static Apnea World Record a person holds their breath (apnea) underwater for as long as possible, To date, the world record for holding one’s and need not swim any distance. Static Apnea is defined by the breath underwater without the use of International Association for oxygen in preparation is held by Stéphane Development of Apnea (AIDA International) and is distinguished Mifsud, with a whopping 11 minutes 35 from the Guinness World Record for seconds. breath holding underwater, which allows the use of oxygen in preparation. Beat Harry Houdini’s Life Record We’re not saying you can beat Mifsud, but shoot to beat Harry Houdini. His personal record was 3 minutes 30 seconds! HOW TO HOLD YOUR BREATH FOR 3 MINUTES The following method is adapted from this Tim Ferriss blog post.
    [Show full text]
  • WSF Freediver - Management
    WSF Freediver - Management World Series Freediving™ www.freedivingRAID.com MANAGEMENT WSF Freediver - Management THE 4 FREEDIVING ELEMENTS ....................................................................... 2 EQUALISATION .................................................................................................. 2 BREATHING FOR FREEDIVING ...................................................................... 7 RECOVERY BREATHING ................................................................................... 8 FREEDIVING TECHNIQUES ............................................................................. 9 FREEDIVING BUDDY SYSTEM ........................................................................ 12 PROPER BUOYANCY FOR DEPTH FREEDIVING ........................................... 14 ADVENTURE FREEDIVING & COMPETITION ................................................ 18 FREEDIVING ....................................................................................................... 18 TRAINING FOR FREEDIVING ........................................................................... 22 Section 4 - Page 1 RAID WSF FREEDIVER www.freedivingRAID.com THE 4 FREEDIVING ELEMENTS 1. Conserving Oxygen O2 2. Equalisation EQ 3. Flexibility FLX 4. Safety SFE The 5th Element that is key to success is you, the freediver! EQUALISATION EQ Objectives: 1. State 2 processes of equalisation for the eustachian tubes 2. Demonstrate the 5 steps of the Frenzel manoeuvre 3. State the main difference between the Valsalva and Frenzel manoeuvres
    [Show full text]
  • Second Quarter 2016 • Volume 24 • Number 87
    The Journal of Diving History, Volume 24, Issue 2 (Number 87), 2016 Item Type monograph Publisher Historical Diving Society U.S.A. Download date 10/10/2021 17:42:22 Link to Item http://hdl.handle.net/1834/35936 Second Quarter 2016 • Volume 24 • Number 87 After Boutan, Underwater Photography in Science | U.S. Divers Prototype Helmet for SEALAB III, DSSP Vintage Australian Demand Valves | Fred Devine and the SALVAGE CHIEF | Cousteau and CONSHELF 2016 Historical Diving Society USA Raffle Get your tickets now! The predecessor of the USN Mark V Helmet #3 of 10 manufactured by DESCO to the specifications and recommendations in Chief Gunner George Stillson’s 1915 REPORT ON DEEP DIVING TESTS Tickets are $5 each or five for $20 Tickets can be ordered by contacting [email protected] or by mailing a check or money order payable to HDS USA Fund raiser, PO Box 453, Fox River Grove, IL 60021-0453. The drawing will take place at the Santa Barbara Maritime Museum, Santa Barbara, CA on August 27, 2016. Other prizes include HDS apparel, books, and DVDs. The winner need not be present to win. All proceeds benefit the Historical Diving Society USA. Prize Winners are responsible for shipping and all applicable taxes. No purchase necessary. To obtain a non-purchase ticket send a self addressed stamped envelope to the above address. Void where prohibited by law. Grand Prize is an $8,000 Value Second Quarter 2016, Volume 24, Number 87 The Journal of Diving History 1 THE JOURNAL OF DIVING HISTORY SECOND QUARTER 2016 • VOLUME 24 • NUMBER 87 ISSN 1094-4516 FEATURES Civil War Diving and Salvage Vintage Australian Demand Valves By James Vorosmarti, MD By Bob Campbell 10 Like much of American diving during the 19th century, the printed 22 As noted by historian Ivor Howitt, and here by author Bob Campbell, record of diving during the Civil War is scarce.
    [Show full text]
  • Hypnosis and Deep Relaxation in Static Apnea
    Hypnosis & Deep Relaxation in Static Apnea A guideline for possible applications Matthias Zaugg AIDA Instructor Course • Special Presentation • 5. September 2012 Matthias Zaugg • AIDA IC • Hypnosis & Deep Relaxation in Static Apnea 1 Published September 2012 during an AIDA instructor course in Phuket, Thailand with www.wefreedive.org Matthias Zaugg • AIDA IC • Hypnosis & Deep Relaxation in Static Apnea 1 Table of contents Introduction! 3 Hypnosis! 4 History & Definition 4 Rapport - How to get in sync 5 Suggestions 6 Dehypnosis 7 Induction techniques 8 Hypnosis and anesthesia 9 Possible applications for Static Apnea! 10 Deep relaxation hypnosis as preparation 10 Useful tools for a static coach/instructor 11 A complete approach - Static Apnea while being in trance 12 Conclusions! 14 Bibliography! 15 Matthias Zaugg • AIDA IC • Hypnosis & Deep Relaxation in Static Apnea 2 INTRODUCTION Hypnosis and deep relaxation have fascinated me for a long time. I have experienced the relaxing effects of a guided ,deep relaxation‘ - which is basically a hypnosis session without therapeutical inputs - multiple times on my own. I have always been amazed about how fast I could get into a deep relaxed, sleep-like state through this. Ever since I started freediving, the thought that hypnosis could actually be very beneficial for apnea accompanied me, which led me to have a slightly more in depth look at the topic for my AIDA instructor course now. This paper is by no means a how-to guide on how to use hypnosis for static apnea. It is more an introduction to a toolset known from hypnosis, which usage could be beneficial for apnea in my opinion.
    [Show full text]
  • Breath Hold Diving As a Brain Survival Response
    Review Article • DOI: 10.2478/s13380-013-0130-5 • Translational Neuroscience • 4(3) • 2013 • 302-313 Translational Neuroscience Zeljko Dujic*, BREATHHOLD DIVING Toni Breskovic, Darija Bakovic AS A BRAIN SURVIVAL RESPONSE Department of Integrative Physiology, Abstract University of Split School of Medicine, Elite breath-hold divers are unique athletes challenged with compression induced by hydrostatic pressure and Split, Croatia extreme hypoxia/hypercapnia during maximal field dives. The current world records for men are 214 meters for depth (Herbert Nitsch, No-Limits Apnea discipline), 11:35 minutes for duration (Stephane Mifsud, Static Apnea discipline), and 281 meters for distance (Goran Čolak, Dynamic Apnea with Fins discipline). The major physi- ological adaptations that allow breath-hold divers to achieve such depths and duration are called the “diving response” that is comprised of peripheral vasoconstriction and increased blood pressure, bradycardia, decreased cardiac output, increased cerebral and myocardial blood flow, splenic contraction, and preserved 2O delivery to the brain and heart. This complex of physiological adaptations is not unique to humans, but can be found in all diving mammals. Despite these profound physiological adaptations, divers may frequently show hypoxic loss of consciousness. The breath-hold starts with an easy-going phase in which respiratory muscles are inactive, whereas during the second so-called “struggle” phase, involuntary breathing movements start. These contrac- tions increase cerebral blood flow by facilitating left stroke volume, cardiac output, and arterial pressure. The analysis of the compensatory mechanisms involved in maximal breath-holds can improve brain survival during conditions involving profound brain hypoperfusion and deoxygenation. Keywords • Apnea • Breath-hold diving • Brain perfusion • Brain oxygenation Received 13 July 2013 accepted 25 July 2013 © Versita Sp.
    [Show full text]
  • Breath-Hold Training of Humans Reduces Oxidative Stress and Blood Acidosis After Static and Dynamic Apnea
    Respiratory Physiology & Neurobiology 137 (2003) 19Á/27 www.elsevier.com/locate/resphysiol Breath-hold training of humans reduces oxidative stress and blood acidosis after static and dynamic apnea Fabrice Joulia c, Jean Guillaume Steinberg a,b, Marion Faucher a,b, Thibault Jamin c, Christophe Ulmer a,b, Nathalie Kipson a,b,Yves Jammes a,b,* a Laboratoire de Physiopathologie Respiratoire (UPRES EA 2201), Institut Jean Roche, Faculte´deMe´decine, Universite´dela Me´diterrane´e, Blvd. Pierre Dramard, 13916 cedex 20, Marseille, France b Service des Explorations Fonctionnelles Respiratoires, Hoˆpital Nord, Assistance Publique-Hoˆpitaux de Marseille, Marseille, France c Laboratoire d’Ergonomie Sportive et Performance (EA 20548), U.F.R. STAPS, Universite´ de Toulon et du Var, 83130 La Garde cedex, France Accepted 19 April 2003 Abstract Repeated epochs of breath-holding were superimposed to the regular training cycling program of triathletes to reproduce the adaptative responses to hypoxia, already described in elite breath-hold divers [Respir. Physiol. Neurobiol. 133 (2002) 121]. Before and after a 3-month breath-hold training program, we tested the response to static apnea and to a 1-min dynamic forearm exercise executed during apnea (dynamic apnea). The breath-hold training program did not modify the maximal performances measured during an incremental cycling exercise. After training, the duration of static apnea significantly lengthened and the associated bradycardia was accentuated; we also noted a reduction of the post-apnea decrease in venous blood pH and increase in lactic acid concentration, and the suppression of the post-apnea oxidative stress (increased concentration of thiobarbituric acid reactive substances). After dynamic apnea, the blood acidosis was reduced and the oxidative stress no more occurred.
    [Show full text]
  • Research and Discoveries the Revolution of Science Through Scuba
    Smithsonian Institution Scholarly Press smithsonian contributions to the marine sciences • number 39 Smithsonian Institution Scholarly Press Research and Discoveries The Revolution of Science through Scuba Edited by Michael A. Lang, Roberta L. Marinelli, Susan J. Roberts, and Phillip R. Taylor SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of “diffusing knowledge” was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: “It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge.” This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, com- mencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Botany Smithsonian Contributions to History and Technology Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Museum Conservation Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoology In these series, the Institution publishes small papers and full-scale monographs that report on the research and collections of its various museums and bureaus. The Smithsonian Contributions Series are distributed via mailing lists to libraries, universities, and similar institu- tions throughout the world. Manuscripts submitted for series publication are received by the Smithsonian Institution Scholarly Press from authors with direct affilia- tion with the various Smithsonian museums or bureaus and are subject to peer review and review for compliance with manuscript preparation guidelines.
    [Show full text]
  • Claire Paris
    USA Freediving Contact: John Hullverson President, USA Freediving [email protected] 415-203-5191 www.usafreediving.com November 1, 2019 FOR IMMEDIATE RELEASE CLAIRE BEATRIX PARIS BREAKS TWO USA NATIONAL FREEDIVING RECORDS Miami, Florida. Claire Beatrix Paris broke two USA Women’s National Freediving Records at the 5th Annual South Florida Apnea Challenge event held this past weekend at the Florida International University Aquatic Center in Miami. On Saturday, October 26, Claire set a record in the discipline of Dynamic Apnea with Bi-Fins (DYNB) swimming a distance of 142 meters/ 465 feet underwater on a single breath of air, using two swim fins. The following day, Sunday, October 27, Claire broke another national record in the discipline of Dynamic Apnea (DYN) swimming with a mono-fin a distance of 187 meters/ 613 feet. In the competition freediving discipline of Dynamic Apnea (DYN), as recognized by Association Internationale pour le Développement de l'Apnée (AIDA), the sport’s international governing body, an athlete takes a single breath on the surface and then swims for distance underwater, using a dolphin kick with a monofin. The discipline of Dynamic Apnea with Bi-Fins is done using a flutter kick using two fins. The records are Paris’ third and fourth USA national records. She has also held the USA national record in the pool discipline of Dynamic No Fins (DNF), in which an athlete swims underwater for distance in a pool on a single breath of air without the aid of a fin or fins. Paris set that record of 128 meters/420 feet at the South California Apnea Challenge freediving competition held in Los Angeles in 2015.
    [Show full text]