2020.03.10.984922V1.Full.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

2020.03.10.984922V1.Full.Pdf bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984922; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Molecular basis of ubiquitination catalyzed by the bacterial transglutaminase MavC 2 1,2* 3* 1,2* 1,2* 3 1,2 3 Hongxin Guan , Jiaqi Fu , Ting Yu , Zhao-Xi Wang , Ninghai Gan , Yini Huang , 1 1,2 3† 1,2† 4 Vanja Perčulija , Yu Li , Zhao-Qing Luo and Songying Ouyang 5 1 6 The Key Laboratory of Innate Immune Biology of Fujian Province, Provincial University 7 Key Laboratory of Cellular Stress Response and Metabolic Regulation, Biomedical 8 Research Center of South China, Key Laboratory of OptoElectronic Science and 9 Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian 10 Normal University, Fuzhou, China 2 11 Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine 12 Science and Technology (Qingdao), Qingdao, China 3 13 Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of 14 Biological Sciences, Purdue University, West Lafayette, IN, USA 15 16 *These authors contributed equally to this work. 17 †Corresponding authors: [email protected] (ZQL); [email protected] (SO) 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984922; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 19 Summary 20 The Legionella pneumophila effector MavC is a transglutaminase that carries out atypical 21 ubiquitination of the ubiquitin (Ub) E2 conjugation enzyme UBE2N by catalyzing the 22 formation of an isopeptide bond between Gln40 of Ub and Lys92 (or to a less extent, Lys94) 23 of UBE2N, which results in inhibition of UBE2N signaling in the NF-κB pathway. In the 24 absence of UBE2N, MavC deamidates Ub at Gln40 or catalyzes self-ubiquitination. 25 However, the mechanisms underlying these enzymatic activities of MavC are not fully 26 understood at molecular level. In this study, we obtained the structure of the 27 MavC-UBE2N-Ub ternary complex that represents a snapshot of covalent cross-linking of 28 UBE2N and Ub catalyzed by MavC. The structure reveals the unique way by which the 29 cross-linked catalytic product UBE2N-Ub binds mainly to the Insertion and the Tail 30 domains of MavC prior to its release. Based on our structural, biochemical and mutational 31 analyses, we proposed the catalytic mechanism for both the deamidase and the 32 transglutaminase activities of MavC. Finally, by comparing the structures of MavC and 33 MvcA, the homologous protein that reverses MavC-induced UBE2N ubiquitination, we 34 identified several key regions of the two proteins responsible for their opposite enzymatic 35 activity. Our results provide insights into the mechanisms for substrate recognition and 36 ubiquitination mediated by MavC as well as explanations for the opposite activity of MavC 37 and MvcA. 38 39 Keywords 40 Legionella pneumophila; effectors; transglutaminase; ubiquitination; deamidase 41 2 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984922; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 42 Introduction 43 Signal transduction in cells is often mediated by posttranslational modifications 44 (PTMs), which impact the activity of existing proteins to allow rapid responses to upstream 1,2 45 cues. Among more than 200 different types of PTMs identified so far , ubiquitination is 46 one of the most widely used. Canonical ubiquitination requires the activities of the E1, E2 47 and E3 enzymes that respectively activate, conjugate and ligate the 76-residue ubiquitin 3 48 (Ub) to modify proteins . Ubiquitination itself is further regulated by ubiquitination and other 49 types of PTMs such as phosphorylation, acetylation and ADP-ribosylation that target Ub, 4 50 components of the ubiquitination machinery, or both . This complex crosstalk among 51 various PTMs allows cells to achieve better fine-tuning of their response to various stimuli, 4,5 52 particularly under disease conditions . 53 Pathogens have evolved diverse mechanisms to co-opt host functions to promote their 54 fitness. One such mechanism is the acquisition of virulence factors capable of effective 6 55 modulation of cellular processes by various PTMs . Legionella pneumophila, the causative 56 agent of Legionnaires’ disease, is one such example. The intracellular life cycle of this 57 bacterium utilizes the Dot/Icm type IV secretion system that injects hundreds of virulence 7,8 58 factors known as effectors into host cells . These effectors extensively modulate cell 59 signaling hubs such as small GTPases and the Ub network to create a niche permissive for 9 60 intracellular replication of the L. pneumophila . 61 Co-option of the host Ub network by L. pneumophila appears to be of particular 62 importance for modulating host cellular immune process to facilitate its intracellular 63 replication. More than 10 effectors with E3 Ub ligase activity have been identified. Although 64 their target proteins remain elusive in most cases, theseeffectors cooperate with E1 and E2 10 65 enzymes in host cells to form active ubiquitination machineries (Fig. S1A). A paradigm 66 shift discovery was made by the study of the SidE effector family (SidEs) that includes + 67 effectors such as SdeA, which catalyze a NAD -dependent ubiquitination. This mechanism 68 involves Ub activation via ADP-ribosylation and phosphodiesterase (PDE)-mediated 69 ligation of phosphoribosylated ubiquitin (PR-Ub) onto serine residues of substrate proteins 3 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984922; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 11-13 70 (Fig. S1B). Interestingly, two research groups recently reported that DupA and DupB, 71 the two highly homologous PDE domain-containing deubiquitinases from L. pneumophila, 14 72 similarly reverse phosphoribosyl serine ubiquitination on their substrates (Fig. S1B). 73 Moreover, the activity of SidEs is regulated by SidJ, another effector which inhibits the 15-17 74 mono-ADP-ribosyltransferase activity by calmodulin-dependent glutamylation (Fig. 75 S1B). 76 The modification of the E2 enzyme UBE2N by MavC represents another atypical 77 ubiquitination mechanism. In this reaction, UBE2N, which exists in cell primarily as a 18,19 78 UBE2N~Ub conjugate linked by a thioester bond , is ligated to Ub via an isopeptide 79 bond formed between Gln40 of Ub and Lys92 (i.e. γ-glutamyl-ε-Lys bond between UbGln40 20 80 and UBE2NLys92) or, to a lesser extent, Lys94 of UBE2N . This ligation is mediated by 21 81 transglutamination, a reaction that does not require exogenous energy (Fig. S1C-D). 82 Analogously to other transglutaminases that function as deamidases in the absence of 22 83 their target substrates , MavC uses catalytic Cys74 that is crucial for both enzymatic 23 84 activities (Fig. S1E). Ubiquitination at Lys92 abolishes the activity of UBE2N, which in 85 turn curbs the formation of K63-type polyubiquitin chains through canonical ubiquitination 20 86 otherwise mediated by UBE2N, E1 and UVE1, thereby inhibiting NF-κB activation (Fig. 87 S1A). 23 88 MavC and its homolog MvcA are structurally similar to the canonical ubiquitin 89 deamidase cycle inhibiting factor (Cif) effectors from enteropathogenic Escherichia coli and 24,25 90 its homolog in Burkholderia pseudomallei (CHBP) (Fig. 1). Both MavC and MvcA have 91 ubiquitin deamidase activity but only MavC is able to induce monoubiquitination of UBE2N. 92 Furthermore, we recently found that MvcA counteracts the trangslutamination activity of 21 93 MavC by removing ubiquitin from UBE2N-Ub . However, although the structures of MavC 23 94 and its homolog MvcA have been solved (Fig. 1C), the mechanism underlying 95 transglutaminase-induced UBE2N ubiquitination by MavC and the molecular basis for their 96 opposite catalytic activities both remain elusive. Here, by solving the structure of the 97 MavC-UBE2N-Ub ternary complex and comparing it to other available structures of MavC 98 and MvcA, we illustrate the structural basis for substrate recognition by MavC and the 4 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.10.984922; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 99 mechanism that mediates the formation of the isopeptide bond between Lys92 in UBE2N 100 and Gln40 in Ub. In addition, structural comparison of the MavC and MvcA in their apo form 101 and in ternary complex has allowed us to gain insights into the basis of the opposite 102 biochemical activity exhibited by these two highly similar proteins in terms of regulation of 103 UBE2N ubiquitination. 104 105 Results 106 The Insertion domain of MavC is essential for UBE2N ubiquitination but not for 107 self-ubiquitination and ubiquitin deamidation activities of MavC 108 Purified MavC from E. coli exists primarily as a mixture of monomers and dimers in 109 solution, both of which interact with UBE2N in size-exclusion chromatography (SEC) (Fig.
Recommended publications
  • A Drosophila Ortholog of the Human Cylindromatosis Tumor Suppressor
    RESEARCH ARTICLE 2605 Development 134, 2605-2614 (2007) doi:10.1242/dev.02859 A Drosophila ortholog of the human cylindromatosis tumor suppressor gene regulates triglyceride content and antibacterial defense Theodore Tsichritzis1, Peer C. Gaentzsch3, Stylianos Kosmidis2, Anthony E. Brown3, Efthimios M. Skoulakis2, Petros Ligoxygakis3,* and George Mosialos1,4,* The cylindromatosis (CYLD) gene is mutated in human tumors of skin appendages. It encodes a deubiquitylating enzyme (CYLD) that is a negative regulator of the NF-␬B and JNK signaling pathways, in vitro. However, the tissue-specific function and regulation of CYLD in vivo are poorly understood. We established a genetically tractable animal model to initiate a systematic investigation of these issues by characterizing an ortholog of CYLD in Drosophila. Drosophila CYLD is broadly expressed during development and, in adult animals, is localized in the fat body, ovaries, testes, digestive tract and specific areas of the nervous system. We demonstrate that the protein product of Drosophila CYLD (CYLD), like its mammalian counterpart, is a deubiquitylating enzyme. Impairment of CYLD expression is associated with altered fat body morphology in adult flies, increased triglyceride levels and increased survival under starvation conditions. Furthermore, flies with compromised CYLD expression exhibited reduced resistance to bacterial infections. All mutant phenotypes described were reversible upon conditional expression of CYLD transgenes. Our results implicate CYLD in a broad range of functions associated with fat homeostasis and host defence in Drosophila. KEY WORDS: Cylindromatosis, Drosophila, Fat body, Host defense, NF-kappaB INTRODUCTION disease and it is required for the proper development of T Familial cylindromatosis is an autosomal-dominant predisposition lymphocytes in mice (Costello et al., 2005; Reiley et al., 2006).
    [Show full text]
  • Identification of Potential Key Genes and Pathway Linked with Sporadic Creutzfeldt-Jakob Disease Based on Integrated Bioinformatics Analyses
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Identification of potential key genes and pathway linked with sporadic Creutzfeldt-Jakob disease based on integrated bioinformatics analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 , Iranna Kotturshetti 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. 3. Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, Karnataka 562209, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.12.21.20248688; this version posted December 24, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Abstract Sporadic Creutzfeldt-Jakob disease (sCJD) is neurodegenerative disease also called prion disease linked with poor prognosis. The aim of the current study was to illuminate the underlying molecular mechanisms of sCJD. The mRNA microarray dataset GSE124571 was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened.
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • Proteomic Analysis of Exosome-Like Vesicles Derived from Breast Cancer Cells
    ANTICANCER RESEARCH 32: 847-860 (2012) Proteomic Analysis of Exosome-like Vesicles Derived from Breast Cancer Cells GEMMA PALAZZOLO1, NADIA NINFA ALBANESE2,3, GIANLUCA DI CARA3, DANIEL GYGAX4, MARIA LETIZIA VITTORELLI3 and IDA PUCCI-MINAFRA3 1Institute for Biomedical Engineering, Laboratory of Biosensors and Bioelectronics, ETH Zurich, Switzerland; 2Department of Physics, University of Palermo, Palermo, Italy; 3Centro di Oncobiologia Sperimentale (C.OB.S.), Oncology Department La Maddalena, Palermo, Italy; 4Institute of Chemistry and Bioanalytics, University of Applied Sciences Northwestern Switzerland FHNW, Muttenz, Switzerland Abstract. Background/Aim: The phenomenon of membrane that vesicle production allows neoplastic cells to exert different vesicle-release by neoplastic cells is a growing field of interest effects, according to the possible acceptor targets. For instance, in cancer research, due to their potential role in carrying a vesicles could potentiate the malignant properties of adjacent large array of tumor antigens when secreted into the neoplastic cells or activate non-tumoral cells. Moreover, vesicles extracellular medium. In particular, experimental evidence show could convey signals to immune cells and surrounding stroma that at least some of the tumor markers detected in the blood cells. The present study may significantly contribute to the circulation of mammary carcinoma patients are carried by knowledge of the vesiculation phenomenon, which is a critical membrane-bound vesicles. Thus, biomarker research in breast device for trans cellular communication in cancer. cancer can gain great benefits from vesicle characterization. Materials and Methods: Conditioned medium was collected The phenomenon of membrane release in the extracellular from serum starved MDA-MB-231 sub-confluent cell cultures medium has long been known and was firstly described by and exosome-like vesicles (ELVs) were isolated by Paul H.
    [Show full text]
  • Ubiquitin Modifications
    npg Cell Research (2016) 26:399-422. REVIEW www.nature.com/cr Ubiquitin modifications Kirby N Swatek1, David Komander1 1Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modi- fications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the ‘ubiquitin code’. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiq- uitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation. Keywords: ubiquitin; proteasomal degradation; phosphorylation; post-translational modification; Parkin Cell Research (2016) 26:399-422.
    [Show full text]
  • S41467-019-12388-Y.Pdf
    ARTICLE https://doi.org/10.1038/s41467-019-12388-y OPEN A tri-ionic anchor mechanism drives Ube2N-specific recruitment and K63-chain ubiquitination in TRIM ligases Leo Kiss1,4, Jingwei Zeng 1,4, Claire F. Dickson1,2, Donna L. Mallery1, Ji-Chun Yang 1, Stephen H. McLaughlin 1, Andreas Boland1,3, David Neuhaus1,5 & Leo C. James1,5* 1234567890():,; The cytosolic antibody receptor TRIM21 possesses unique ubiquitination activity that drives broad-spectrum anti-pathogen targeting and underpins the protein depletion technology Trim-Away. This activity is dependent on formation of self-anchored, K63-linked ubiquitin chains by the heterodimeric E2 enzyme Ube2N/Ube2V2. Here we reveal how TRIM21 facilitates ubiquitin transfer and differentiates this E2 from other closely related enzymes. A tri-ionic motif provides optimally distributed anchor points that allow TRIM21 to wrap an Ube2N~Ub complex around its RING domain, locking the closed conformation and promoting ubiquitin discharge. Mutation of these anchor points inhibits ubiquitination with Ube2N/ Ube2V2, viral neutralization and immune signalling. We show that the same mechanism is employed by the anti-HIV restriction factor TRIM5 and identify spatially conserved ionic anchor points in other Ube2N-recruiting RING E3s. The tri-ionic motif is exclusively required for Ube2N but not Ube2D1 activity and provides a generic E2-specific catalysis mechanism for RING E3s. 1 Medical Research Council Laboratory of Molecular Biology, Cambridge, UK. 2Present address: University of New South Wales, Sydney, NSW, Australia. 3Present address: Department of Molecular Biology, Science III, University of Geneva, Geneva, Switzerland. 4These authors contributed equally: Leo Kiss, Jingwei Zeng. 5These authors jointly supervised: David Neuhaus, Leo C.
    [Show full text]
  • Comparative Analysis of the Ubiquitin-Proteasome System in Homo Sapiens and Saccharomyces Cerevisiae
    Comparative Analysis of the Ubiquitin-proteasome system in Homo sapiens and Saccharomyces cerevisiae Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Universität zu Köln vorgelegt von Hartmut Scheel aus Rheinbach Köln, 2005 Berichterstatter: Prof. Dr. R. Jürgen Dohmen Prof. Dr. Thomas Langer Dr. Kay Hofmann Tag der mündlichen Prüfung: 18.07.2005 Zusammenfassung I Zusammenfassung Das Ubiquitin-Proteasom System (UPS) stellt den wichtigsten Abbauweg für intrazelluläre Proteine in eukaryotischen Zellen dar. Das abzubauende Protein wird zunächst über eine Enzym-Kaskade mit einer kovalent gebundenen Ubiquitinkette markiert. Anschließend wird das konjugierte Substrat vom Proteasom erkannt und proteolytisch gespalten. Ubiquitin besitzt eine Reihe von Homologen, die ebenfalls posttranslational an Proteine gekoppelt werden können, wie z.B. SUMO und NEDD8. Die hierbei verwendeten Aktivierungs- und Konjugations-Kaskaden sind vollständig analog zu der des Ubiquitin- Systems. Es ist charakteristisch für das UPS, daß sich die Vielzahl der daran beteiligten Proteine aus nur wenigen Proteinfamilien rekrutiert, die durch gemeinsame, funktionale Homologiedomänen gekennzeichnet sind. Einige dieser funktionalen Domänen sind auch in den Modifikations-Systemen der Ubiquitin-Homologen zu finden, jedoch verfügen diese Systeme zusätzlich über spezifische Domänentypen. Homologiedomänen lassen sich als mathematische Modelle in Form von Domänen- deskriptoren (Profile) beschreiben. Diese Deskriptoren können wiederum dazu verwendet werden, mit Hilfe geeigneter Verfahren eine gegebene Proteinsequenz auf das Vorliegen von entsprechenden Homologiedomänen zu untersuchen. Da die im UPS involvierten Homologie- domänen fast ausschließlich auf dieses System und seine Analoga beschränkt sind, können domänen-spezifische Profile zur Katalogisierung der UPS-relevanten Proteine einer Spezies verwendet werden. Auf dieser Basis können dann die entsprechenden UPS-Repertoires verschiedener Spezies miteinander verglichen werden.
    [Show full text]
  • Protein Folding and Quality Control in the ER
    Downloaded from http://cshperspectives.cshlp.org/ on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Protein Folding and Quality Control in the ER Kazutaka Araki and Kazuhiro Nagata Laboratory of Molecular and Cellular Biology, Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Kita-ku, Kyoto 803-8555, Japan Correspondence: [email protected] The endoplasmic reticulum (ER) uses an elaborate surveillance system called the ER quality control (ERQC) system. The ERQC facilitates folding and modification of secretory and mem- brane proteins and eliminates terminally misfolded polypeptides through ER-associated degradation (ERAD) or autophagic degradation. This mechanism of ER protein surveillance is closely linked to redox and calcium homeostasis in the ER, whose balance is presumed to be regulated by a specific cellular compartment. The potential to modulate proteostasis and metabolism with chemical compounds or targeted siRNAs may offer an ideal option for the treatment of disease. he endoplasmic reticulum (ER) serves as a complex in the ER membrane (Johnson and Tprotein-folding factory where elaborate Van Waes 1999; Saraogi and Shan 2011). After quality and quantity control systems monitor arriving at the translocon, translation resumes an efficient and accurate production of secretory in a process called cotranslational translocation and membrane proteins, and constantly main- (Hegde and Kang 2008; Zimmermann et al. tain proper physiological homeostasis in the 2010). Numerous ER-resident chaperones and ER including redox state and calcium balance. enzymes aid in structural and conformational In this article, we present an overview the recent maturation necessary for proper protein fold- progress on the ER quality control system, ing, including signal-peptide cleavage, N-linked mainly focusing on the mammalian system.
    [Show full text]
  • The Human Gene Connectome As a Map of Short Cuts for Morbid Allele Discovery
    The human gene connectome as a map of short cuts for morbid allele discovery Yuval Itana,1, Shen-Ying Zhanga,b, Guillaume Vogta,b, Avinash Abhyankara, Melina Hermana, Patrick Nitschkec, Dror Friedd, Lluis Quintana-Murcie, Laurent Abela,b, and Jean-Laurent Casanovaa,b,f aSt. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065; bLaboratory of Human Genetics of Infectious Diseases, Necker Branch, Paris Descartes University, Institut National de la Santé et de la Recherche Médicale U980, Necker Medical School, 75015 Paris, France; cPlateforme Bioinformatique, Université Paris Descartes, 75116 Paris, France; dDepartment of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; eUnit of Human Evolutionary Genetics, Centre National de la Recherche Scientifique, Unité de Recherche Associée 3012, Institut Pasteur, F-75015 Paris, France; and fPediatric Immunology-Hematology Unit, Necker Hospital for Sick Children, 75015 Paris, France Edited* by Bruce Beutler, University of Texas Southwestern Medical Center, Dallas, TX, and approved February 15, 2013 (received for review October 19, 2012) High-throughput genomic data reveal thousands of gene variants to detect a single mutated gene, with the other polymorphic genes per patient, and it is often difficult to determine which of these being of less interest. This goes some way to explaining why, variants underlies disease in a given individual. However, at the despite the abundance of NGS data, the discovery of disease- population level, there may be some degree of phenotypic homo- causing alleles from such data remains somewhat limited. geneity, with alterations of specific physiological pathways under- We developed the human gene connectome (HGC) to over- come this problem.
    [Show full text]
  • Genome-Wide Profiling of Druggable Active Tumor Defense Mechanisms to Enhance Cancer Immunotherapy
    bioRxiv preprint doi: https://doi.org/10.1101/843185; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Genome-wide profiling of druggable active tumor defense mechanisms to enhance cancer immunotherapy Rigel J. Kishton1,2,*,#, Shashank J. Patel1,2,†,*, Suman K. Vodnala1,2, Amy E. Decker3, Yogin Patel1,2, Madhusudhanan Sukumar1,2, Tori N. Yamamoto1,2,4, Zhiya Yu1,2, Michelle Ji1,2, Amanda N. Henning1,2, Devikala Gurusamy1,2, Douglas C. Palmer1,2, Winifred Lo1, Anna Pasetto1, Parisa Malekzadeh1, Drew C. Deniger1, Kris C. Wood3, Neville E. Sanjana5,6, Nicholas P. Restifo1,2, #, § 1Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA 2Center for Cell-Based Therapy, National Cancer Institute, Bethesda, MD 20892, USA 3Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC, USA 4Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA 19104, USA 5New York Genome Center, New York, NY 10013 USA 6Department of Biology, New York University, New York, NY 10003, USA *These authors contributed equally to this work. †Present address: NextCure Inc., Beltsville, MD 20705, USA §Present address: Lyell Immunopharma, South San Francisco, CA 94080, USA #Corresponding authors. NPR: [email protected]. RJK: [email protected]. bioRxiv preprint doi: https://doi.org/10.1101/843185; this version posted November 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.
    [Show full text]
  • An Update on the Role of Ubiquitination in Melanoma Development and Therapies
    Journal of Clinical Medicine Review An Update on the Role of Ubiquitination in Melanoma Development and Therapies Frédéric Soysouvanh 1,†, Serena Giuliano 1,† , Nadia Habel 1,†, Najla El-Hachem 2 ,Céline Pisibon 1, Corine Bertolotto 1,3,‡ and Robert Ballotti 1,4,*,‡ 1 Inserm U1065, C3M, Team 1, Biology, and Pathologies of Melanocytes, University of Nice Côte d’Azur, 06200 Nice, France; [email protected] (F.S.); [email protected] (S.G.); [email protected] (N.H.); [email protected] (C.P.); [email protected] (C.B.) 2 Laboratory of Cancer Signaling, University of Liège, 4020 Liège, Belgium; [email protected] 3 Equipe labellisée Fondation ARC 2019, 06200 Nice, France 4 Equipe labellisée Ligue Contre le Cancer 2020, 06200 Nice, France * Correspondence: [email protected]; Tel.: +33-4-89-06-43-32 † Equal contribution. ‡ Equal contribution. Abstract: The ubiquitination system plays a critical role in regulation of large array of biological processes and its alteration has been involved in the pathogenesis of cancers, among them cuta- neous melanoma, which is responsible for the most deaths from skin cancers. Over the last decades, targeted therapies and immunotherapies became the standard therapeutic strategies for advanced melanomas. However, despite these breakthroughs, the prognosis of metastatic melanoma patients remains unoptimistic, mainly due to intrinsic or acquired resistances. Many avenues of research Citation: Soysouvanh, F.; Giuliano, have been investigated to find new therapeutic targets for improving patient outcomes. Because of S.; Habel, N.; El-Hachem, N.; Pisibon, the pleiotropic functions of ubiquitination, and because each step of ubiquitination is amenable to C.; Bertolotto, C.; Ballotti, R.
    [Show full text]
  • The Importance of Regulatory Ubiquitination in Cancer and Metastasis
    CELL CYCLE 2017, VOL. 16, NO. 7, 634–648 http://dx.doi.org/10.1080/15384101.2017.1288326 REVIEW The importance of regulatory ubiquitination in cancer and metastasis L. H. Galloa,J.Koa, and D. J. Donoghuea,b aDepartment of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA; bMoores UCSD Cancer Center, University of California San Diego, La Jolla, CA, USA ABSTRACT ARTICLE HISTORY Ubiquitination serves as a degradation mechanism of proteins, but is involved in additional cellular Received 9 December 2016 processes such as activation of NFkBinflammatory response and DNA damage repair. We highlight the E2 Revised 20 January 2017 ubiquitin conjugating enzymes, E3 ubiquitin ligases and Deubiquitinases that support the metastasis of a Accepted 24 January 2017 plethora of cancers. E3 ubiquitin ligases also modulate pluripotent cancer stem cells attributed to KEYWORDS chemotherapy resistance. We further describe mutations in E3 ubiquitin ligases that support tumor deubiquitinase; ligase; proliferation and adaptation to hypoxia. Thus, this review describes how tumors exploit members of the metastasis; ubiquitination vast ubiquitin signaling pathways to support aberrant oncogenic signaling for survival and metastasis. Ubiquitination signaling overview The challenging route to metastasis Ubiquitin (Ub), a highly conserved 76-amino acid protein Cancer progression eventually may lead to metastasis, which is expressed in all cell types, has 7 lysine residues (K6, K11, the final stage responsible for more than 90% of all terminal K27, K29, K33, K48, K63) that can be polymerized into var- cancer deaths. Various genomic abnormalities must be present ious linkages. The resulting linkage of Ub chains creates a to allow cells of a primary tumor to ignore apoptotic signals, certain topology that can be sampled by interacting proteins proliferate and survive.
    [Show full text]