Cycle 11 Exposure Catalog (Based on Phase I Submissions) Generated On: Mon Dec 10 08:39:48 EST 2001 Flags Are: CPAR -- Coordinat

Total Page:16

File Type:pdf, Size:1020Kb

Cycle 11 Exposure Catalog (Based on Phase I Submissions) Generated On: Mon Dec 10 08:39:48 EST 2001 Flags Are: CPAR -- Coordinat Cycle 11 Exposure catalog (based on Phase I submissions) Generated on: Mon Dec 10 08:39:48 EST 2001 Flags are: CPAR -- Coordinated parallel PPAR -- Pure parallel CVZ -- Continuous Viewing Zone TOO -- Target of Oppurtunity SHD -- Shadow LOW -- Low Sky targname--------|ra---------|dec--------|config--------|mode-------|filters---------------|orbs-- |flags------|prop| JUPITER-RINGS ACS/WFC IMAGING F606W, F814W 4 9426 JUPITER-RINGS ACS/HRC IMAGING F475W, F606W, F814W 8 9426 9491 GALSNE+ASAP STIS SPECTRA G230LB,G230MB,G430L,G4 3 TOO 9429 30M,G750M GALSNE+ASAP ACS/WFC IMAGING F330W,F435W,F555W,F625 3 TOO 9429 W,F814W,FN656N,FR931N, FR388N GALSNE+ASAP ACS/HRC IMAGING F330W,F435W,F555W,F625 1 TOO 9429 W,F814W,FN656N,FR931N, FR388N GALSNE+2NDVISIT STIS SPECTRA G230LB,G230MB,G430L,G4 3 TOO 9429 30M GALSNE+1WEEK STIS SPECTRA G140L,E140M,G230L,G230 6 TOO 9429 LB,G230LB,G430L,G430M GALSNE+1WEEK ACS/WFC IMAGING F439W,F555W,F675W 1 TOO 9429 GALSNE+1MONTH ACS/WFC IMAGING F439W,F555W,F675W 1 TOO 9429 GALSNE+1MONTH STIS SPECTRA G140L,E140M,G230L,G230 4 TOO 9429 LB,G430L,G430M GALSNE+6MONTHS WFPC2 ACS/WFC F439W,F555W,F675W 1 TOO 9429 GALSNE+6MONTHS STIS SPECTRA G140L,E140M,G230L,G230 4 TOO 9429 LB,G430L,G430M GALSNE+1YEAR ACS/WFC IMAGING F439W,F555W,F675W 1 TOO 9429 GALSNE+1YEAR STIS SPECTRA G140L,E140M,G230L,G230 4 TOO 9429 LB,G430L,G430M 9368 FUTURE SN ACS IMAGING AS REQUIRED 6 TOO 9353 9369 COMET STIS/FUV SPECTRA G140L 3 TOO 9496 COMET STIS/NUV SPECTRA G230L 3 TOO 9496 COMET STIS/CCD SPECTRA G230LB 2 TOO 9496 COMET STIS/CCD SPECTRA G430M 1 TOO 9496 COMET STIS/CCD IMAGING F28X50LP 0 TOO 9496 9406 9468 SATURN ACS/HRC IMAGING F220M, F250W, F330W, 1 9354 F435W, F550M, F658N, F892N SATURN WFPC2 IMAGING F255W, F336W, F410M, 1 9354 F467M, F588N, F673N, F953N, FQCH4N, FQCH4N15, FQCH4P15 SATURN NIC1,NIC2 IMAGING F095N, F108N, F113N, 1 9354 F165M, F171M, F180M, F187W, F190N, F204M, F212N, F215N, F237M JUPITER NIC1, NIC2, IMAGING F108N, F113N, F164N, 1 9355 F166N, F187N, F190N, F212N, F215N FIELD-KBO-1 ACS/WFC IMAGING F606W 19 9433 FIELD-KBO-2 ACS/WFC IMAGING F606W 19 9433 FIELD-KBO-3 ACS/WFC IMAGING F606W 19 9433 FIELD-KBO-4 ACS/WFC IMAGING F606W 19 9433 FIELD-KBO-5 ACS/WFC IMAGING F606W 19 9433 FIELD-KBO-6 ACS/WFC IMAGING F606W 19 9433 STAR-CLUS-KBO- ACS/WFC IMAGING F606W 2 9433 9500 9356 9407 9474 9379 9504 9360 MARS-ACS-LS120 ACS/HRC IMAGING F220W,F250W,F330W,F435 1 9384 W,F344N,F502N,F660N,F8 92N MARS-STIS-LS120 STIS/CCD ACCUM G230LB(1685- 1 9384 3085),52X0.2 MARS-ACS-LS150 ACS/HRC IMAGE 1 9384 F220W,F250W,F330W,F435 W,F344N,F502N,F660N,F8 92N MARS-STIS-LS150 STIS/CCD ACCUM G230LB(1685- 1 9384 3085),52X0.2 MARS-ACS-LS180 ACS/HRC IMAGE 1 9384 F220W,F250W,F330W,F435 W,F344N,F502N,F660N,F8 92N MARS-STIS-LS180 STIS/CCD ACCUM G230LB(1685- 1 9384 3085),52X0.2 MARS-ACS-LS210 ACS/HRC IMAGE 1 9384 F220W,F250W,F330W,F435 W,F344N,F502N,F660N,F8 92N MARS-STIS-LS210 STIS/CCD ACCUM G230LB(1685- 1 9384 3085),52X0.2 MARS-ACS-LS240 ACS/HRC IMAGE 1 9384 F220W,F250W,F330W,F435 W,F344N,F502N,F660N,F8 92N MARS-STIS-LS240 STIS/CCD ACCUM G230LB(1685- 1 9384 3085),52X0.2 MARS-ACS-LS270 ACS/HRC IMAGE 1 9384 F220W,F250W,F330W,F435 W,F344N,F502N,F660N,F8 92N MARS-STIS-LS270 STIS/CCD ACCUM G230LB(1685- 1 9384 3085),52X0.2 MARS-ACS-LS300 ACS/HRC IMAGE 1 9384 F220W,F250W,F330W,F435 W,F344N,F502N,F660N,F8 92N MARS-STIS-LS300 STIS/CCD ACCUM G230LB(1685- 1 9384 3085),52X0.2 MARS-ACS-LS330 ACS/HRC IMAGE 1 9384 F220W,F250W,F330W,F435 W,F344N,F502N,F660N,F8 92N MARS-STIS-LS330 STIS/CCD ACCUM G230LB(1685- 1 9384 3085),52X0.2 MARS-ACS-LS360 ACS/HRC IMAGE 1 9384 F220W,F250W,F330W,F435 W,F344N,F502N,F660N,F8 92N MARS-STIS-LS360 STIS/CCD ACCUM G230LB(1685- 1 9384 3085),52X0.2 9481 TITAN-ANY ACS/HRC IMAGING F220W+POL0UV,F220W+POL 12 9385 60UV,F220W+POL120UV, F250W+POL0UV,F250W+POL 60UV,F250W+POL120UV, F330W+POL0UV,F330W+POL 60UV,F330W+POL120UV, F435W+POL0UV,F435W+POL 60UV,F435W+POL120UV, F502N,F550M,F555W,F892 N, F625W+POL0V,F625W+POL6 0V,F625W+POL120V, F658N+POL0V,F658N+POL6 0V,F658N+POL120V, F775W+POL0V,F775W+POL6 0V,F775W+POL120V TITAN-ANY NIC1, NIC2 IMAGING F095N,F097N,F164N,POL0 2 9385 S,POL120S,POL240S, F187N,F190N,F212N,F215 N,F216N, POL0L,POL120L,POL240L TITAN-BRIGHT STIS/CCD SPECTRA G750L(7751) 2 9385 TITAN-DARK STIS/CCD SPECTRA G750L(7751) 2 9385 TITAN-ANY WFPC2 IMAGING F336W,F439W,F547M,F588 2 9385 N,F673N, FQCH4N15,FQCH4P15 1997 QJ_4 NICMOS MULTIACCUM F110W, F160W 1 9386 9387 PLUTO ACS/HRC IMAGING F435W, F555W 30 9391 IO-160 ACS/HRC IMAGING F220M,F250W,F330W,F435 4 9440 W,F550M,F775W IO-PELE STIS/CCD SPECTRA G230LB 4 9440 1998\_WW31 STIS/CCD IMAGING F555W F675W F814W 16 9508 NEPTUNE WFPC2 IMAGING F255W, F336W, F410M, 14 9393 F467M, F547M, F588N, F631N, F673N, F791W, F850LP, F935N, FQCH4N-B, FQCH4N-D 9511 9511 ULTRA-RAPID-TOO- STIS/NUV,STIS/ SPECTRA,IMA PRISM,25MAMA,50CCD,50L 47 TOO 9405 P,G430L,G750L,F250W,F6 06W,F814W,POL0V,POL60V ,POL120V,F110W,F160W RAPID-TOO-1 STIS/NUV,STIS/ SPECTRA,IMA PRISM,25MAMA,50CCD,50L 10 TOO 9405 P,G430L,G750L,F250W,F6 06W,F814W,F110W,F160W RAPID-TOO-2 ACS/HRC,AC/WFC IMAGING,IMA F250W,F606W,F814W,F110 7 TOO 9405 W,F160W RAPID-TOO-3 AC/WFC,NIC3 IMAGING,IMA F606W,F814W,F110W,F160 7 TOO 9405 W LT-FOLLOW-UP- ACS/HRC,AC/WFC IMAGING,IMA PRISM,25MAMA,50CCD,50L 12 TOO 9405 P,G430L,G750L,F250W,F6 06W,F814W,F110W,F160W LT-FOLLOW-UP- ACS/HRC,AC/WFC IMAGING,IMA PRISM,25MAMA,50CCD,50L 12 TOO 9405 P,G430L,G750L,F250W,F6 06W,F814W,F110W,F160W LT-FOLLOW-UP- ACS/HRC,AC/WFC IMAGING,IMA PRISM,25MAMA,50CCD,50L 12 TOO 9405 P,G430L,G750L,F250W,F6 06W,F814W,F110W,F160W LT-FOLLOW-UP- ACS/HRC,AC/WFC IMAGING,IMA PRISM,25MAMA,50CCD,50L 12 TOO 9405 P,G430L,G750L,F250W,F6 06W,F814W,F110W,F160W UNDERLYING- STIS/CCD SPECTRA,IMA G750L,50CCD 8 TOO 9405 UNDERLYING- STIS/CCD SPECTRA,IMA G750L,50CCD 8 TOO 9405 HI-LAT ACS/WFC ACCUM F775W 1 PPAR 9488 HI-LAT ACS/WFC ACCUM F850LP 1 PPAR 9488 ... ... 00 00 ... 00 00 ACS/HRC IMAGING F606W,F814W 0 9462 ... ... 00 00 ... 00 00 ACS/HRC IMAGING F606W,F814W 0 9462 SN2002TOO 00 00 00 00 00 00 STIS/FUV,STIS/ SPECTRA G140L(1425),G230L(2375 18 TOO 9428 ),G430L(4300) SN2002TOO 00 00 00 00 00 00 ACS/HRC IMAGING F435W,F555W,F625W,F814 1 9428 W SN2002KAIT1 00 00 00 00 00 00 STIS/FUV,STIS/ SPECTRA G140L(1425),G230L(2375 8 TOO 9428 ),G430L(4300) SN2002KAIT2 00 00 00 00 00 00 STIS/FUV,STIS/ SPECTRA G140L(1425),G230L(2375 8 TOO 9428 ),G430L(4300) SN-CYCLE10-TOO 00 00 00 00 00 00 SITS/FUV,STIS/ SPECTRA G140L(1425),G230L(2375 5 9428 ),G430L(4300) SN.HIZ.Z1.2A 00 00 00 00 00 00 ACS/WFC IMAGING F775W,F850LP 10 TOO 9352 SN.HIZ.Z1.2A 00 00 00 00 00 00 NIC2 IMAGING F110W 3 TOO 9352 SN.HIZ.Z1.2B 00 00 00 00 00 00 ACS/WFC IMAGING F775W,F850LP 10 TOO 9352 SN.HIZ.Z1.2B 00 00 00 00 00 00 NIC2 IMAGING F110W 3 TOO 9352 SN.HIZ.Z1.4A 00 00 00 00 00 00 ACS/WFC IMAGING F850LP 11 TOO 9352 SN.HIZ.Z1.4A 00 00 00 00 00 00 NIC2 IMAGING F110W,F160W 14 TOO 9352 SN.HIZ.Z1.4B 00 00 00 00 00 00 ACS/WFC IMAGING F850LP 11 TOO 9352 SN.HIZ.Z1.4B 00 00 00 00 00 00 NIC2 IMAGING F110W,F160W 14 TOO 9352 SN.HIZ.Z1.6A 00 00 00 00 00 00 ACS/WFC IMAGING F850LP 10 TOO 9352 SN.HIZ.Z1.6A 00 00 00 00 00 00 NIC2 IMAGING F110W,F160W 19 TOO 9352 SN.HIZ.Z1.6B 00 00 00 00 00 00 ACS/WFC IMAGING F850LP 10 TOO 9352 SN.HIZ.Z1.6B 00 00 00 00 00 00 NIC2 IMAGING F110W,F160W 19 TOO 9352 0 00 00 00 00 00 00 ACS/WFC IMAGING,SPE F775W,F850LP,G800L 3 PPAR 9482 0 00 00 00 00 00 00 ACS/WFC IMAGING,SPE F775W,F850LP,G800L 4 PPAR 9482 0 00 00 00 00 00 00 ACS/WFC IMAGING,SPE F475W,F625W,F775W,F850 5 PPAR 9482 LP,G800L PAR-FIELD 00 00 00 00 00 00 NICMOS/NIC3 IMAGING F160W 150 PPAR 9484 PAR-FIELD 00 00 00 00 00 00 NICMOS/NIC3 IMAGING F110W 150 PPAR 9484 PAR-FIELD 00 00 00 00 00 00 NICMOS/NIC3 SPECTROSCOP G141 200 PPAR 9484 HD256 00 07 00 -17 23 00 STIS/FUV, SPECTRA E140H (1380,1562), 3 9431 E230H (1763,2013,2263,2713) HD1461 00 18 -08 03 STIS/NUV SPECTRA E230H 3 9455 GJ 2005 00 24 00 -27 08 00 FGS POS,TRANS F583W 6 9408 NGC104 00 24 00 -72 05 00 ACS/WFC,ACS/HR IMAGING F435W,F475W,F555W,F606 4 9443 W,F814W NGC104 00 24 00 -72 05 00 ACS/WFC IMAGING F606W,F814W 9 9444 NGC104 00 24 05.19 -72 04 49.9 ACS/WFC IMAGING F606W, F814W 1 9453 CGCG 0027.9+0536 00 30 28.6 05 51 41 ACS/WFC IMAGING F606W,F814W 4 9403 GL 22 00 32 00 67 14 00 FGS POS,TRANS F583W 3 CVZ, 9408 NGC224-G1 00 32 46.84 39 34 STIS/CCD SPECTRA G230LB 5 9455 M31-DISK-2 00 36 00 39 46 00 ACS/WFC IMAGING F606W,F814W 10 9458 M31-DISK-2 00 36 00 39 46 00 WFPC2 IMAGING F606W,F814W 10 CPAR 9458 ESO350-IG038 00 37 00 -33 33 00 ACS/SBC IMAGING F122M,F140LP 5 SHD 9470 M31-DISK-1 00 37 00 40 00 00 ACS/WFC IMAGING F606W,F814W 10 9458 M31-DISK-1 00 37 00 40 00 00 WFPC2 IMAGING F606W,F814W 10 CPAR 9458 M31-HVC 00 37 00 42 24 00 ACS/WFC IMAGING F606W,F814W 3 9458 M31-HVC 00 37 00 42 24 00 WFPC2 IMAGING F606W,F814W 3 CPAR 9458 NGC205 00 37 38.21 41 24 39.4 STIS/CCD SPECTRA G750M 11 9448 NGC205 00 37 38.21 41 24 39.4 ACS/HRC IMAGING F555W,F814W 2 9448 NGC205 00 37 38.21 41 24 39.4 NIC1 IMAGING F160W 1 9448 M31-HALO-1-P1 00 39 00 39 20 00 ACS/WFC IMAGING F606W,F814W 3 9458 M31-HALO-1-P1 00 39 00 39 20 00 WFPC2 IMAGING F606W,F814W 3 CPAR 9458 M31-HALO-1-P2 00 39 00 39 20 00 ACS/WFC IMAGING F606W,F814W 3 9458 M31-HALO-1-P2 00 39 00 39 20 00 WFPC2 IMAGING F606W,F814W 3 CPAR 9458 NGC224-G170 00 42 32.22 41 10 STIS/CCD SPECTRA G230LB 10 9455 NGC224-G174 00 42 33.26 41 17 STIS/CCD SPECTRA G230LB 10 9455 NGC224-G177 00 42 34.45 41 14 STIS/CCD SPECTRA G230LB 10 9455 M32-OUTERFIELD 00 42 56.53 40 51 00.5 ACS/WFC IMAGING F606W,F814W 18 9392 M32-OUTERFIELD- 00 42 56.53 40 51 00.5 WFPC2 IMAGING F606W,F814W 18 ,PPAR 9392 M32-CONTROLFIELD 00 43 25.19 41 03 40.7 ACS/WFC IMAGING F606W,F814W 18
Recommended publications
  • Arxiv:1612.03165V3 [Astro-Ph.HE] 12 Sep 2017 – 2 –
    The second catalog of flaring gamma-ray sources from the Fermi All-sky Variability Analysis S. Abdollahi1, M. Ackermann2, M. Ajello3;4, A. Albert5, L. Baldini6, J. Ballet7, G. Barbiellini8;9, D. Bastieri10;11, J. Becerra Gonzalez12;13, R. Bellazzini14, E. Bissaldi15, R. D. Blandford16, E. D. Bloom16, R. Bonino17;18, E. Bottacini16, J. Bregeon19, P. Bruel20, R. Buehler2;21, S. Buson12;22, R. A. Cameron16, M. Caragiulo23;15, P. A. Caraveo24, E. Cavazzuti25, C. Cecchi26;27, A. Chekhtman28, C. C. Cheung29, G. Chiaro11, S. Ciprini25;26, J. Conrad30;31;32, D. Costantin11, F. Costanza15, S. Cutini25;26, F. D'Ammando33;34, F. de Palma15;35, A. Desai3, R. Desiante17;36, S. W. Digel16, N. Di Lalla6, M. Di Mauro16, L. Di Venere23;15, B. Donaggio10, P. S. Drell16, C. Favuzzi23;15, S. J. Fegan20, E. C. Ferrara12, W. B. Focke16, A. Franckowiak2, Y. Fukazawa1, S. Funk37, P. Fusco23;15, F. Gargano15, D. Gasparrini25;26, N. Giglietto23;15, M. Giomi2;59, F. Giordano23;15, M. Giroletti33, T. Glanzman16, D. Green13;12, I. A. Grenier7, J. E. Grove29, L. Guillemot38;39, S. Guiriec12;22, E. Hays12, D. Horan20, T. Jogler40, G. J´ohannesson41, A. S. Johnson16, D. Kocevski12;42, M. Kuss14, G. La Mura11, S. Larsson43;31, L. Latronico17, J. Li44, F. Longo8;9, F. Loparco23;15, M. N. Lovellette29, P. Lubrano26, J. D. Magill13, S. Maldera17, A. Manfreda6, M. Mayer2, M. N. Mazziotta15, P. F. Michelson16, W. Mitthumsiri45, T. Mizuno46, M. E. Monzani16, A. Morselli47, I. V. Moskalenko16, M. Negro17;18, E. Nuss19, T. Ohsugi46, N. Omodei16, M. Orienti33, E.
    [Show full text]
  • Arxiv:2009.04090V2 [Astro-Ph.GA] 14 Sep 2020
    Research in Astronomy and Astrophysics manuscript no. (LATEX: tikhonov˙Dorado.tex; printed on September 15, 2020; 1:01) Distance to the Dorado galaxy group N.A. Tikhonov1, O.A. Galazutdinova1 Special Astrophysical Observatory, Nizhnij Arkhyz, Karachai-Cherkessian Republic, Russia 369167; [email protected] Abstract Based on the archival images of the Hubble Space Telescope, stellar photometry of the brightest galaxies of the Dorado group:NGC 1433, NGC1533,NGC1566and NGC1672 was carried out. Red giants were found on the obtained CM diagrams and distances to the galaxies were measured using the TRGB method. The obtained values: 14.2±1.2, 15.1±0.9, 14.9 ± 1.0 and 15.9 ± 0.9 Mpc, show that all the named galaxies are located approximately at the same distances and form a scattered group with an average distance D = 15.0 Mpc. It was found that blue and red supergiants are visible in the hydrogen arm between the galaxies NGC1533 and IC2038, and form a ring structure in the lenticular galaxy NGC1533, at a distance of 3.6 kpc from the center. The high metallicity of these stars (Z = 0.02) indicates their origin from NGC1533 gas. Key words: groups of galaxies, Dorado group, stellar photometry of galaxies: TRGB- method, distances to galaxies, galaxies NGC1433, NGC 1533, NGC1566, NGC1672 1 INTRODUCTION arXiv:2009.04090v2 [astro-ph.GA] 14 Sep 2020 A concentration of galaxies of different types and luminosities can be observed in the southern constella- tion Dorado. Among them, Shobbrook (1966) identified 11 galaxies, which, in his opinion, constituted one group, which he called “Dorado”.
    [Show full text]
  • Dorado and Its Member Galaxies II: a UVIT Picture of the NGC 1533 Substructure
    J. Astrophys. Astr. (2021) 42:31 Ó Indian Academy of Sciences https://doi.org/10.1007/s12036-021-09690-xSadhana(0123456789().,-volV)FT3](0123456789().,-volV) SCIENCE RESULTS Dorado and its member galaxies II: A UVIT picture of the NGC 1533 substructure R. RAMPAZZO1,2,* , P. MAZZEI2, A. MARINO2, L. BIANCHI3, S. CIROI4, E. V. HELD2, E. IODICE5, J. POSTMA6, E. RYAN-WEBER7, M. SPAVONE5 and M. USLENGHI8 1INAF Osservatorio Astrofisico di Asiago, Via Osservatorio 8, 36012 Asiago, Italy. 2INAF Osservatorio Astronomico di Padova, Vicolo dell’Osservatorio 5, 35122 Padua, Italy. 3Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA. 4Department of Physics and Astronomy, University of Padova, Vicolo dell’Osservatorio 3, 35122 Padua, Italy. 5INAF-Osservatorio Astronomico di Capodimonte, Salita Moiariello 16, 80131 Naples, Italy. 6University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada. 7Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122, Australia. 8INAF-IASF, Via A. Curti, 12, 20133 Milan, Italy. *Corresponding Author. E-mail: [email protected] MS received 30 October 2020; accepted 17 December 2020 Abstract. Dorado is a nearby (17.69 Mpc) strongly evolving galaxy group in the Southern Hemisphere. We are investigating the star formation in this group. This paper provides a FUV imaging of NGC 1533, IC 2038 and IC 2039, which form a substructure, south west of the Dorado group barycentre. FUV CaF2-1 UVIT-Astrosat images enrich our knowledge of the system provided by GALEX. In conjunction with deep optical wide-field, narrow-band Ha and 21-cm radio images we search for signatures of the interaction mechanisms looking in the FUV morphologies and derive the star formation rate.
    [Show full text]
  • Fermi Large Area Telescope Fourth Source Catalog ABSTRACT We Distribute a New Release of the Fourth Fermi Large Area Telescope
    1 Draft version May 15, 2019 2 Typeset using LATEX preprint style in AASTeX62 3 Fermi Large Area Telescope Fourth Source Catalog 4 The Fermi-LAT collaboration 5 ABSTRACT 6 We distribute a new release of the fourth Fermi Large Area Telescope source catalog 7 (4FGL) containing spectral energy distributions averaged over 8 years and light curves a) 8 with 1-year intervals. This supersedes the FL8Y source list distributed in 2018 . 9 Based on the first eight years of science data from the Fermi Gamma-ray Space 10 Telescope mission in the energy range from 50 MeV to 1 TeV, it is the deepest yet 11 in this energy range. Relative to the 3FGL catalog, the 4FGL catalog has twice as 12 much exposure as well as a number of analysis improvements, including an updated 13 model for the Galactic diffuse γ-ray emission. The 4FGL catalog includes 5065 14 sources above 4σ significance, for which we provide localization and spectral properties. 15 Seventy-five sources are modeled explicitly as spatially extended, and overall 355 16 sources are considered as identified based on angular extent, periodicity or correlated 17 variability observed at other wavelengths. For 1323 sources we have not found plausible 18 counterparts at other wavelengths. More than 3130 of the identified or associated 19 sources are active galaxies of the blazar class, and 239 are pulsars. 20 Keywords: Gamma rays: general — surveys — catalogs 21 1. INTRODUCTION 22 This document presents the fourth catalog of high-energy γ-ray sources (4FGL) detected in the 23 first eight years of the Fermi Gamma-ray Space Telescope mission by the Large Area Telescope 24 (LAT).
    [Show full text]
  • ALABAMA University Libraries
    THE UNIVERSITY OF ALABAMA University Libraries O VI In Elliptical Galaxies: Indicators of Cooling Flows Joel N. Bregman – University of Michigan Eric D. Miller – MIT Alex E. Athey – Carnegie Institution of Washington Jimmy A. Irwin – University of Michigan Deposited 09/13/2018 Citation of published version: Bregman, J., Miller, E., Athey, A., Irwin, J. (2005): O VI In Elliptical Galaxies: Indicators of Cooling Flows The Astrophysical Journal, 635(2). DOI: 10.1086/497421 © 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. The Astrophysical Journal, 635:1031–1043, 2005 December 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. O vi IN ELLIPTICAL GALAXIES: INDICATORS OF COOLING FLOWS Joel N. Bregman Department of Astronomy, University of Michigan, Ann Arbor, MI 48109; [email protected] Eric D. Miller Kavli Institute for Astrophysics and Space Science, MIT, Cambridge, MA 02139; [email protected] Alex E. Athey The Observatories, Carnegie Institution of Washington, Pasadena, CA 91101; [email protected] and Jimmy A. Irwin Department of Astronomy, University of Michigan, Ann Arbor, MI 48109; [email protected] Received 2005 April 25; accepted 2005 August 23 ABSTRACT Early-type galaxies often contain a hot X-ray–emitting interstellar medium [(3 8) ; 106 K] with an apparent radiative cooling time much less than a Hubble time. If unopposed by a heating mechanism, the gas will radiatively 4 À1 cool to temperatures P10 K at a rate proportional to LX /TX , typically 0.03–1 M yr . We can test whether gas is cooling through the 3 ; 105 K range by observing the O vi doublet, whose luminosity is proportional to the cooling rate.
    [Show full text]
  • The VLT-FLAMES Tarantula Survey
    Astronomy & Astrophysics manuscript no. msOrevfinalcorr c ESO 2019 May 8, 2019 The VLT-FLAMES Tarantula Survey XIV. The O-Type Stellar Content of 30 Doradus N. R. Walborn1, H. Sana1,2, S. Sim´on-D´ıaz3,4, J. Ma´ız Apell´aniz5, W. D. Taylor6,7, C. J. Evans7, N. Markova8, D. J. Lennon9, and A. de Koter2,10 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands 3 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 4 Departamento de Astrof´ısica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain 5 Instituto de Astrof´ısica de Andaluc´ıa-CSIC, Glorieta de la Astronom´ıa s/n, E-18008 Granada, Spain 6 Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK 7 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 8 Institute of Astronomy, National Astronomical Observatory, Bulgarian Academy of Sciences, PO Box 136, 4700 Smoljan, Bulgaria 9 European Space Agency, European Space Astronomy Centre, Camino Bajo del Castillo s/n, Urbanizaci´on Villafranca del Castillo, E-28691 Villanueva de la Ca˜nada, Madrid, Spain 10 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium ABSTRACT Detailed spectral classifications are presented for 352 O–B0 stars in the VLT-FLAMES Tarantula Survey ESO Large Programme, of which 213 O-type are judged of sufficiently high quality for further morphological analysis.
    [Show full text]
  • The Reflector Newsletter of the Peterborough Astronomical Association
    Volume 14 • Issue 5 May 2015 ISSN 1712-4425 peterboroughastronomy.com twitter.com/PtbAstronomical The Reflector Newsletter of the Peterborough Astronomical Association Is the Most Massive Star Still Alive? Images credit: ESO/IDA/Danish 1.5 m/R. Gendler, C. C. Thöne, C. Féron, and J.-E. Ovaldsen (L), of the giant star-forming Tarantula Nebula in the Large Magellanic Cloud; NASA, ESA, and E. Sabbi (ESA/STScI), with acknowledgment to R. O’Connell (University of Virginia) and the Wide Field Camera 3 Science Oversight Committee (R), of the central merging star cluster NGC 2070, containing the enormous R136a1 at the centre. ETHAN SEIGEL he brilliant specks of through their fuel the fastest, in satellite galaxy (and fourth-largest light twinkling in the night only a few million years instead of in the local group) located 170,000 sky, with more and more roughly ten billion like our sun. light years distant. Tvisible under darker skies and Because of this, it’s only the Despite containing only one with larger telescope apertures, youngest of all star clusters that percent of the mass of our galaxy, each have their own story to tell. contain the hottest, bluest stars, the lmc contains the Tarantula In general, a star’s colour corre- and so if we want to find the most Nebula (30 Doradus), a star-form- lates very well with its mass and massive stars in the universe, we ing nebula approximately 1,000 its total lifetime, with the bluest have to look to the largest regions light years in size, or roughly seven stars representing the hottest, of space that are actively forming percent of the galaxy itself.
    [Show full text]
  • Arxiv:1802.01597V1 [Astro-Ph.GA] 5 Feb 2018 Born 1991)
    Astronomy & Astrophysics manuscript no. AA_2017_32084 c ESO 2018 February 7, 2018 Mapping the core of the Tarantula Nebula with VLT-MUSE? I. Spectral and nebular content around R136 N. Castro1, P. A. Crowther2, C. J. Evans3, J. Mackey4, N. Castro-Rodriguez5; 6; 7, J. S. Vink8, J. Melnick9 and F. Selman9 1 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA e-mail: [email protected] 2 Department of Physics & Astronomy, University of Sheffield, Hounsfield Road, Sheffield, S3 7RH, UK 3 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh, EH9 3HJ, UK 4 Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin, Ireland 5 GRANTECAN S. A., E-38712, Breña Baja, La Palma, Spain 6 Instituto de Astrofísica de Canarias, E-38205 La Laguna, Spain 7 Departamento de Astrofísica, Universidad de La Laguna, E-38205 La Laguna, Spain 8 Armagh Observatory and Planetarium, College Hill, Armagh BT61 9DG, Northern Ireland, UK 9 European Southern Observatory, Alonso de Cordova 3107, Santiago, Chile February 7, 2018 ABSTRACT We introduce VLT-MUSE observations of the central 20 × 20 (30 × 30 pc) of the Tarantula Nebula in the Large Magellanic Cloud. The observations provide an unprecedented spectroscopic census of the massive stars and ionised gas in the vicinity of R136, the young, dense star cluster located in NGC 2070, at the heart of the richest star-forming region in the Local Group. Spectrophotometry and radial-velocity estimates of the nebular gas (superimposed on the stellar spectra) are provided for 2255 point sources extracted from the MUSE datacubes, and we present estimates of stellar radial velocities for 270 early-type stars (finding an average systemic velocity of 271 ± 41 km s−1).
    [Show full text]
  • Type II Supernovae As Probes of Environment Metallicity: Observations of Host H II Regions J
    A&A 589, A110 (2016) Astronomy DOI: 10.1051/0004-6361/201527691 & c ESO 2016 Astrophysics Type II supernovae as probes of environment metallicity: observations of host H II regions J. P. Anderson1, C. P. Gutiérrez1; 2; 3, L. Dessart4, M. Hamuy3; 2, L. Galbany2; 3, N. I. Morrell5, M. D. Stritzinger6, M. M. Phillips5, G. Folatelli7, H. M. J. Boffin1, T. de Jaeger2; 3, H. Kuncarayakti2; 3, and J. L. Prieto8; 2 1 European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago, Chile e-mail: [email protected] 2 Millennium Institute of Astrophysics, Casilla 36-D, Santiago, Chile 3 Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 4 Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Boulevard de l’Observatoire, CS 34229, 06304 Nice Cedex 4, France 5 Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile 6 Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C, Denmark 7 Instituto de Astrofísica de La Plata, Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata, CONICET, Paseo del Bosque S/N, B1900FWA, La Plata, Argentina 8 Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago, Chile Received 3 November 2015 / Accepted 28 January 2016 ABSTRACT Context. Spectral modelling of type II supernova atmospheres indicates a clear dependence of metal line strengths on progenitor metallicity. This dependence motivates further work to evaluate the accuracy with which these supernovae can be used as environment metallicity indicators. Aims.
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE FULL NAME: George Petros EFSTATHIOU NATIONALITY: British DATE OF BIRTH: 2nd Sept 1955 QUALIFICATIONS Dates Academic Institution Degree 10/73 to 7/76 Keble College, Oxford. B.A. in Physics 10/76 to 9/79 Department of Physics, Ph.D. in Astronomy Durham University EMPLOYMENT Dates Academic Institution Position 10/79 to 9/80 Astronomy Department, Postdoctoral Research Assistant University of California, Berkeley, U.S.A. 10/80 to 9/84 Institute of Astronomy, Postdoctoral Research Assistant Cambridge. 10/84 to 9/87 Institute of Astronomy, Senior Assistant in Research Cambridge. 10/87 to 9/88 Institute of Astronomy, Assistant Director of Research Cambridge. 10/88 to 9/97 Department of Physics, Savilian Professor of Astronomy Oxford. 10/88 to 9/94 Department of Physics, Head of Astrophysics Oxford. 10/97 to present Institute of Astronomy, Professor of Astrophysics (1909) Cambridge. 10/04 to 9/08 Institute of Astronomy, Director Cambridge. 10/08 to present Kavli Institute for Cosmology, Director Cambridge. PROFESSIONAL SOCIETIES Fellow of the Royal Society since 1994 Fellow of the Instite of Physics since 1995 Fellow of the Royal Astronomical Society 1983-2010 Member of the International Astronomical Union since 1986 Associate of the Canadian Institute of Advanced Research since 1986 1 AWARDS/Fellowships/Major Lectures 1973 Exhibition Keble College Oxford. 1975 Johnson Memorial Prize University of Oxford. 1977 McGraw-Hill Research Prize University of Durham. 1980 Junior Research Fellowship King’s College, Cambridge. 1984 Senior Research Fellowship King’s College, Cambridge. 1990 Maxwell Medal & Prize Institute of Physics. 1990 Vainu Bappu Prize Astronomical Society of India.
    [Show full text]
  • Type II Supernovae As Probes of Environment Metallicity
    Astronomy & Astrophysics manuscript no. SNII_Z_EWs_refv_proof c ESO 2018 June 25, 2018 Type II supernovae as probes of environment metallicity: observations of host H ii regions J. P. Anderson1, C. P. Gutiérrez1,2,3, L. Dessart4, M. Hamuy3,2, L. Galbany2,3, N. I. Morrell5, M. D. Stritzinger6, M. M. Phillips5, G. Folatelli7,8,H.M.J.Boffin1, T. de Jaeger2,3, H. Kuncarayakti2,3, and J. L. Prieto9,2 1European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago, Chile. e-mail: [email protected] 2Millennium Institute of Astrophysics, Casilla 36-D, Santiago, Chile 3Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile 4Laboratoire Lagrange, Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Boulevard de l’Observatoire, CS 34229, 06304 Nice cedex 4, France. 5Carnegie Observatories, Las Campanas Observatory, Casilla 601, La Serena, Chile 6Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark 7Facultad de Ciencias Astronómicas y Geofísicas, Universidad Nacional de La Plata (UNLP), Paseo del Bosque S/N, B1900FWA, La Plata, Argentina; Instituto de Astrofísica de La Plata, IALP, CCT-CONICET-UNLP, Argentina 8Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan 9Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441 Santiago, Chile ABSTRACT Context. Spectral modelling of type II supernova atmospheres indicates a clear dependence of metal line strengths on progenitor metallicity. This dependence motivates further work to evaluate the accuracy with which these supernovae can be used as environment metallicity indicators.
    [Show full text]