Chaos-Embedded Particle Swarm Optimization Approach for Protein

Total Page:16

File Type:pdf, Size:1020Kb

Chaos-Embedded Particle Swarm Optimization Approach for Protein Tai et al. J Cheminform (2018) 10:62 https://doi.org/10.1186/s13321-018-0320-9 Journal of Cheminformatics METHODOLOGY Open Access Chaos‑embedded particle swarm optimization approach for protein‑ligand docking and virtual screening Hio Kuan Tai1, Siti Azma Jusoh2 and Shirley W. I. Siu1* Abstract Background: Protein-ligand docking programs are routinely used in structure-based drug design to fnd the optimal binding pose of a ligand in the protein’s active site. These programs are also used to identify potential drug candidates by ranking large sets of compounds. As more accurate and efcient docking programs are always desirable, constant eforts focus on developing better docking algorithms or improving the scoring function. Recently, chaotic maps have emerged as a promising approach to improve the search behavior of optimization algorithms in terms of search diversity and convergence speed. However, their efectiveness on docking applications has not been explored. Herein, we integrated fve popular chaotic maps—logistic, Singer, sinusoidal, tent, and Zaslavskii maps—into PSOVina2LS , a recent variant of the popular AutoDock Vina program with enhanced global and local search capabilities, and evalu- ated their performances in ligand pose prediction and virtual screening using four docking benchmark datasets and two virtual screening datasets. Results: Pose prediction experiments indicate that chaos-embedded algorithms outperform AutoDock Vina and PSOVina in ligand pose RMSD, success rate, and run time. In virtual screening experiments, Singer map-embedded PSOVina2LS achieved a very signifcant fve- to sixfold speedup with comparable screening performances to AutoDock Vina in terms of area under the receiver operating characteristic curve and enrichment factor. Therefore, our results suggest that chaos-embedded PSOVina methods might be a better option than AutoDock Vina for docking and virtual screening tasks. The success of chaotic maps in protein-ligand docking reveals their potential for improving optimization algorithms in other search problems, such as protein structure prediction and folding. The Singer map- embedded PSOVina2LS which is named PSOVina-2.0 and all testing datasets are publicly available on https​://cbbio​.cis. umac.mo/softw​are/psovi​na. Keywords: Docking, Virtual screening, PSOVina, Autodock Vina, Chaotic maps, Singer map, Sinusoidal map Introduction protein-ligand docking [1]. Given the three-dimensional Small-molecule drugs exert their pharmacological efects structures of a target protein and a ligand, the main goal through binding to their biological targets and subse- of protein-ligand docking is to dock the ligand at the quently modulating the activities that are associated with active site of the protein and to score the diferent bind- diseases to be treated. To rationally design new drugs ing poses of the ligand. Ten, through a virtual screening for a target protein, specifc interactions of the binding process, a large library of ligands can be docked, ranked partners must be correctly predicted. Tis prediction and fltered according to their docking scores, enabling can be achieved with a computational approach called the rapid identifcation of lead candidates. Terefore, accurate and efcient docking tools are indispensable for reducing the cost and time in the drug discovery process. *Correspondence: [email protected] 1 Department of Computer and Information Science, University of Macau, From an algorithmic point of view, the docking prob- Avenida da Universidade, Taipa, Macau, China lem is a conformational search problem, which is to fnd Full list of author information is available at the end of the article the combination of parameters that yields the optimal © The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat​iveco​mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat​iveco​mmons​.org/ publi​cdoma​in/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Tai et al. J Cheminform (2018) 10:62 Page 2 of 13 ligand binding pose. Assuming fxed topologies of the in an attempt to further enhance the search capability protein and ligand, then the conformational parameters of the algorithm. A chaotic map is a function to mimic of the complex include the position and orientation of the dynamics of some nonlinear systems. Previous stud- the ligand with respect to the protein and the angles of ies [13–15] indicated that using chaotic variables rather all rotatable bonds of the ligand (and even the protein than the conventional random number generators might if fexibility of the protein is considered). Assessment of improve the search behavior of evolutionary algorithms a ligand binding pose is done by a scoring function of in terms of search diversity and convergence speed. To interaction types and distances of the atoms between evaluate the efectiveness of chaotic functions in dock- the protein and ligand, which can be force feld-based, ing applications, we implemented fve chaotic functions 2LS empirical-based or knowledge-based [2]. in PSOVina and analyzed their performances on four Various optimization strategies have been proposed to benchmark docking datasets and two virtual screening solve the protein-ligand docking problem. For example, a datasets. In our experiments, chaos-embedded methods Monte Carlo (MC)-based approach was implemented in outperformed AutoDock Vina and our previous PSOVina AutoDock Vina [3], and a genetic algorithm (GA)-based in both the success rate of ligand pose prediction and the approach was implemented in GOLD [4] and Auto- speed of virtual screening. Dock [5]. Recently, swarm-intelligence-based approaches using particle swarm optimization (PSO) and other Methods nature-inspired methods, such as artifcial bee colony PSOVina and PSOVina2LS (ABC) and ant colony optimization (ACO), have become PSOVina is a metaheuristic molecular docking program very popular for solving nonlinear and complex optimi- based on the AutoDock Vina software [3]. In PSOVina, zation problems. Te advantages of these metaheuris- the fast converging PSO algorithm was used as the global tic algorithms are that they tend to fnd good solutions optimizer integrated with the Broyden–Fletcher–Gold- quickly, they are easy to implement, and there are many farb–Shanno (BFGS) local search algorithm and the scor- variants to allow easy customization of the algorithm ft- ing function of Vina. PSO is a population-based search ting the domain of interest. Some metaheuristic docking method that is inspired by the social learning behaviors methods have been implemented, such as SODOCK [6], of bird focking and fsh schooling when searching for PSO@AutoDock [7], FIPSDock [8], PSOVina [9] based food [16]. Te population, called swarm, consists of N on the PSO algorithm and variants, PLANTS [10] based members, called particles. Each individual particle repre- on ACO and FlABCps [11] based on ABC. All of these sents a potential solution and moves in a D-dimensional docking methods have been shown to improve the pose search space based on its current position and velocity. prediction accuracy and docking efciency compared to During the search process, each particle adjusts its posi- traditional optimization methods. In these implementa- tion according to its own experience and the swarm’s tions, the metaheuristic algorithms were utilized as the experience. Te former is the best position that the global optimizer to quickly locate promising regions in particle has ever visited, called pbest, and the latter is the conformational search space. Some of these methods the best position that the swarm has ever visited, called included a local search algorithm to refne the solution gbest. Te velocity Vi and position Xi of the particle i are from the global search to the closest local minimum. updated iteratively over time t according to the following In this paper, we present an improvement of the equations: PSOVina docking method that was previously developed V (t + 1) = wV (t) + c r (pbest (t) − X (t)) in our group [9]. Te frst version of PSOVina imple- i i 1 1 i i (1) mented the canonical PSO algorithm with a convergence + c2r2(gbest(t) − Xi(t)), detection strategy to efectively reduce the execution time of AutoDock Vina docking by 51–60% [9]. Te sec- Xi(t + 1) = Xi(t) + Vi(t + 1), 2LS (2) ond version of PSOVina, named PSOVina [12], further where Vi =[vi1, ..., viD] and Xi =[xi1, ..., xiD] . w is a enhanced the docking performance by incorporating a constant parameter called the inertia weight, and it deter- novel two-stage local search (2LS) algorithm to quickly mines the contribution of the current velocity of the examine the potential of the global search solutions. particle to its new velocity. A large w encourages explora- Only promising solutions will be refned by the expen- tion of the entire search space, and a small w facilitates sive full-length local search. Our experimental results local exploitation and convergence. Terefore, a suitable showed that the 2LS achieved an approximate threefold value of w (typically between 0.8 and 1.2) will help main- acceleration in fnding optimal docking solutions rela- tain a proper balance between the global and local search tive to the conventional one-stage local search. In this capabilities of the swarm. Rather than using a predefned work, we investigate the use of chaotic maps in PSOVina constant value, many studies have proposed strategies to Tai et al. J Cheminform (2018) 10:62 Page 3 of 13 dynamically adjust w during the search process [17]. Two distribution) or to adaptively modify parameters in other coefcients c1 and c2 are the cognitive and social the metaheuristic optimization algorithm while the parameters, respectively. Te former controls the parti- search evolves.
Recommended publications
  • Pyplif HIPPOS-Assisted Prediction of Molecular Determinants of Ligand Binding to Receptors
    molecules Article PyPLIF HIPPOS-Assisted Prediction of Molecular Determinants of Ligand Binding to Receptors Enade P. Istyastono 1,* , Nunung Yuniarti 2, Vivitri D. Prasasty 3 and Sudi Mungkasi 4 1 Faculty of Pharmacy, Sanata Dharma University, Yogyakarta 55282, Indonesia 2 Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia; [email protected] 3 Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia; [email protected] 4 Department of Mathematics, Faculty of Science and Technology, Sanata Dharma University, Yogyakarta 55282, Indonesia; [email protected] * Correspondence: [email protected]; Tel.: +62-274883037 Abstract: Identification of molecular determinants of receptor-ligand binding could significantly increase the quality of structure-based virtual screening protocols. In turn, drug design process, especially the fragment-based approaches, could benefit from the knowledge. Retrospective virtual screening campaigns by employing AutoDock Vina followed by protein-ligand interaction finger- printing (PLIF) identification by using recently published PyPLIF HIPPOS were the main techniques used here. The ligands and decoys datasets from the enhanced version of the database of useful de- coys (DUDE) targeting human G protein-coupled receptors (GPCRs) were employed in this research since the mutation data are available and could be used to retrospectively verify the prediction. The results show that the method presented in this article could pinpoint some retrospectively verified molecular determinants. The method is therefore suggested to be employed as a routine in drug Citation: Istyastono, E.P.; Yuniarti, design and discovery. N.; Prasasty, V.D.; Mungkasi, S. PyPLIF HIPPOS-Assisted Prediction Keywords: PyPLIF HIPPOS; AutoDock Vina; drug discovery; fragment-based; molecular determi- of Molecular Determinants of Ligand Binding to Receptors.
    [Show full text]
  • Open Babel Documentation Release 2.3.1
    Open Babel Documentation Release 2.3.1 Geoffrey R Hutchison Chris Morley Craig James Chris Swain Hans De Winter Tim Vandermeersch Noel M O’Boyle (Ed.) December 05, 2011 Contents 1 Introduction 3 1.1 Goals of the Open Babel project ..................................... 3 1.2 Frequently Asked Questions ....................................... 4 1.3 Thanks .................................................. 7 2 Install Open Babel 9 2.1 Install a binary package ......................................... 9 2.2 Compiling Open Babel .......................................... 9 3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17 3.1 Synopsis ................................................. 17 3.2 Options .................................................. 17 3.3 Examples ................................................. 19 3.4 Differences between babel and obabel .................................. 21 3.5 Format Options .............................................. 22 3.6 Append property values to the title .................................... 22 3.7 Filtering molecules from a multimolecule file .............................. 22 3.8 Substructure and similarity searching .................................. 25 3.9 Sorting molecules ............................................ 25 3.10 Remove duplicate molecules ....................................... 25 3.11 Aliases for chemical groups ....................................... 26 4 The Open Babel GUI 29 4.1 Basic operation .............................................. 29 4.2 Options .................................................
    [Show full text]
  • Evaluation of Protein-Ligand Docking Methods on Peptide-Ligand
    bioRxiv preprint doi: https://doi.org/10.1101/212514; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Evaluation of protein-ligand docking methods on peptide-ligand complexes for docking small ligands to peptides Sandeep Singh1#, Hemant Kumar Srivastava1#, Gaurav Kishor1#, Harinder Singh1, Piyush Agrawal1 and G.P.S. Raghava1,2* 1CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India. 2Indraprastha Institute of Information Technology, Okhla Phase III, Delhi India #Authors Contributed Equally Emails of Authors: SS: [email protected] HKS: [email protected] GK: [email protected] HS: [email protected] PA: [email protected] * Corresponding author Professor of Center for Computation Biology, Indraprastha Institute of Information Technology (IIIT Delhi), Okhla Phase III, New Delhi-110020, India Phone: +91-172-26907444 Fax: +91-172-26907410 E-mail: [email protected] Running Title: Benchmarking of docking methods 1 bioRxiv preprint doi: https://doi.org/10.1101/212514; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. ABSTRACT In the past, many benchmarking studies have been performed on protein-protein and protein-ligand docking however there is no study on peptide-ligand docking.
    [Show full text]
  • In Silico Screening and Molecular Docking of Bioactive Agents Towards Human Coronavirus Receptor
    GSC Biological and Pharmaceutical Sciences, 2020, 11(01), 132–140 Available online at GSC Online Press Directory GSC Biological and Pharmaceutical Sciences e-ISSN: 2581-3250, CODEN (USA): GBPSC2 Journal homepage: https://www.gsconlinepress.com/journals/gscbps (RESEARCH ARTICLE) In silico screening and molecular docking of bioactive agents towards human coronavirus receptor Pratyush Kumar *, Asnani Alpana, Chaple Dinesh and Bais Abhinav Priyadarshini J. L. College of Pharmacy, Electronic Building, Electronic Zone, MIDC, Hingna Road, Nagpur-440016, Maharashtra, India. Publication history: Received on 09 April 2020; revised on 13 April 2020; accepted on 15 April 2020 Article DOI: https://doi.org/10.30574/gscbps.2020.11.1.0099 Abstract Coronavirus infection has turned into pandemic despite of efforts of efforts of countries like America, Italy, China, France etc. Currently India is also outraged by the virulent effect of coronavirus. Although World Health Organisation initially claimed to have all controls over the virus, till date infection has coasted several lives worldwide. Currently we do not have enough time for carrying out traditional approaches of drug discovery. Computer aided drug designing approaches are the best solution. The present study is completely dedicated to in silico approaches like virtual screening, molecular docking and molecular property calculation. The library of 15 bioactive molecules was built and virtual screening was carried towards the crystalline structure of human coronavirus (6nzk) which was downloaded from protein database. Pyrx virtual screening tool was used and results revealed that F14 showed best binding affinity. The best screened molecule was further allowed to dock with the target using Autodock vina software.
    [Show full text]
  • Homology Modeling, Virtual Screening, Prime- MMGBSA, Autodock-Identification of Inhibitors of FGR Protein
    Article Volume 11, Issue 4, 2021, 11088 - 11103 https://doi.org/10.33263/BRIAC114.1108811103 Homology Modeling, Virtual Screening, Prime- MMGBSA, AutoDock-Identification of Inhibitors of FGR Protein Narasimha Muddagoni 1 , Revanth Bathula 1 , Mahender Dasari 1 , Sarita Rajender Potlapally 1,* 1 Molecular Modeling Laboratory, Department of Chemistry, Nizam College, Osmania University, Hyderabad, India; * Correspondence: [email protected], [email protected]; Scopus Author ID 55317928000 Received: 11.11.2020; Revised: 4.12.2020; Accepted: 5.12.2020; Published: 8.12.2020 Abstract: Carcinogenesis is a multi-stage process in which damage to a cell's genetic material changes the cell from normal to malignant. Tyrosine-protein kinase FGR is a protein, member of the Src family kinases (SFks), nonreceptor tyrosine kinases involved in regulating various signaling pathways that promote cell proliferation and migration. FGR protein is also called Gardner-Rasheed Feline Sarcoma viral (v-fgr) oncogene homolog. FGR, FGR protein has an aberrant expression upregulated and activated by the tumor necrosis factor activation (TNF), enhancing the activity of FGR by phosphorylation and activation, causing ovarian cancer. In the present study, 3D structure of FGR protein is built by using comparative homology modeling techniques using MODELLER9.9 program. Energy minimization of protein is done by NAMD-VMD software. The quality of the protein is evaluated with ProSA, Verify 3D and Ramchandran Plot validated tools. The active site of protein is generated using SiteMap and literature Studies. In the present study of research, FGR protein was subjected to virtual screening with TOSLab ligand molecules database in the Schrodinger suite, to result in 12 lead molecules prioritized based on docking score, binding free energy and ADME properties.
    [Show full text]
  • Hands-On Tutorials of Autodock 4 and Autodock Vina
    Hands-on tutorials of AutoDock 4 and AutoDock Vina Pei-Ying Chu (朱珮瑩) Supervisor: Jung-Hsin Lin (林榮信) Research Center for Applied Sciences, Academia Sinica 2018 Frontiers in Computational Drug Design, Academia Sinica, March 16-20, 2018 AutoDock http://autodock.scripps.edu AutoDock is a suite of automated docking tools. It is designed to predict how small molecules, such as substrates or drug candidates, bind to a receptor of known 3D structure. AutoDock 4 is free and is available under the GNU General Public License. 2 AutoDock Vina http://vina.scripps.edu/ Because the scoring functions used by AutoDock 4 and AutoDock Vina are different and inexact, on any given problem, either program may provide a better result. AutoDock Vina is available under the Apache license, allowing commercial and 3 non-commercial use and redistribution. http://autodock.scripps.edu/downloads These programs were installed on VM. 4 http://mgltools.scripps.edu/ AutoDockTools (ADT) is developed to help set up the docking. ADT is included in MGLTools packages. 5 In general, each docking (AutoDock 4 and/or AutoDock Vina) requires: 1. structure of the receptor (protein), in pdbqt format 2. structure of the ligand (small molecule, drug, etc.) in pdbqt format 3. docking and grid parameters (search space) PDBQT format is very similar to PDB format but it includes partial charges ('Q') and AutoDock 4 (AD4) atom types ('T'). • Preparing the ligand involves ensuring that its atoms are assigned the correct AutoDock4 atom types, adding Gasteiger charges if necessary, merging non-polar hydrogens, detecting aromatic carbons if any, and setting up the 'torsion tree'.
    [Show full text]
  • Dockomatic - Automated Ligand Creation and Docking Casey W
    Boise State University ScholarWorks Chemistry Faculty Publications and Presentations Department of Chemistry and Biochemistry 11-8-2010 DockoMatic - Automated Ligand Creation and Docking Casey W. Bullock Boise State University Reed B. Jacob Boise State University Owen M. McDougal Boise State University Greg Hampikian Boise State University Tim Andersen Boise State University This document was originally published by BioMed Central in BMC Research Notes. Copyright restrictions may apply. DOI: 10.1186/ 1756-0500-3-289 DockoMatic - Automated Ligand Creation and Docking Casey W. Bullock1, Reed B. Jacob2, Owen M. McDougal3, Greg Hampikian4, Tim Andersen∗5 1;5Computer Science Department, Boise State University, Boise, Idaho 83725, USA 2;3Department of Chemistry and Biochemistry, Boise State University, Boise, Idaho 83725, USA 4Department of Biological Sciences, Boise State University, Boise, Idaho 83725, USA Email: Casey W. Bullock - [email protected]; Reed B. Jacob - [email protected]; Owen M. McDougal - [email protected]; Greg Hampikian - [email protected]; Tim Andersen∗- [email protected]; ∗Corresponding author Abstract Background: The application of computational modeling to rationally design drugs and characterize macro biomolecular receptors has proven increasingly useful due to the accessibility of computing clusters and clouds. AutoDock is a well-known and powerful software program used to model ligand to receptor binding interactions. In its current version, AutoDock requires significant amounts of user time to setup and run jobs, and collect results. This paper presents DockoMatic, a user friendly Graphical User Interface (GUI) application that eases and automates the creation and management of AutoDock jobs for high throughput screening of ligand to receptor interactions.
    [Show full text]
  • Computational Evidence for Nitro Derivatives of Quinoline and Quinoline N‑Oxide As Low‑Cost Alternative for the Treatment of SARS‑Cov‑2 Infection Letícia C
    www.nature.com/scientificreports OPEN Computational evidence for nitro derivatives of quinoline and quinoline N‑oxide as low‑cost alternative for the treatment of SARS‑CoV‑2 infection Letícia C. Assis1, Alexandre A. de Castro1, João P. A. de Jesus2, Eugenie Nepovimova3, Kamil Kuca3*, Teodorico C. Ramalho1,3 & Felipe A. La Porta2* A new and more aggressive strain of coronavirus, known as SARS‑CoV‑2, which is highly contagious, has rapidly spread across the planet within a short period of time. Due to its high transmission rate and the signifcant time–space between infection and manifestation of symptoms, the WHO recently declared this a pandemic. Because of the exponentially growing number of new cases of both infections and deaths, development of new therapeutic options to help fght this pandemic is urgently needed. The target molecules of this study were the nitro derivatives of quinoline and quinoline N‑oxide. Computational design at the DFT level, docking studies, and molecular dynamics methods as a well‑reasoned strategy will aid in elucidating the fundamental physicochemical properties and molecular functions of a diversity of compounds, directly accelerating the process of discovering new drugs. In this study, we discovered isomers based on the nitro derivatives of quinoline and quinoline N‑oxide, which are biologically active compounds and may be low‑cost alternatives for the treatment of infections induced by SARS‑CoV‑2. We are currently facing a new coronavirus disease designated as COVID-19. It started in China and has spread rapidly around the world, resulting in serious threats to international health and the economy1,2.
    [Show full text]
  • Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens
    International Journal of Molecular Sciences Review Application of Various Molecular Modelling Methods in the Study of Estrogens and Xenoestrogens Anna Helena Mazurek 1 , Łukasz Szeleszczuk 1,* , Thomas Simonson 2 and Dariusz Maciej Pisklak 1 1 Chair and Department of Physical Pharmacy and Bioanalysis, Department of Physical Chemistry, Medical Faculty of Pharmacy, University of Warsaw, Banacha 1 str., 02-093 Warsaw Poland; [email protected] (A.H.M.); [email protected] (D.M.P.) 2 Laboratoire de Biochimie (CNRS UMR7654), Ecole Polytechnique, 91-120 Palaiseau, France; [email protected] * Correspondence: [email protected]; Tel.: +48-501-255-121 Received: 21 July 2020; Accepted: 1 September 2020; Published: 3 September 2020 Abstract: In this review, applications of various molecular modelling methods in the study of estrogens and xenoestrogens are summarized. Selected biomolecules that are the most commonly chosen as molecular modelling objects in this field are presented. In most of the reviewed works, ligand docking using solely force field methods was performed, employing various molecular targets involved in metabolism and action of estrogens. Other molecular modelling methods such as molecular dynamics and combined quantum mechanics with molecular mechanics have also been successfully used to predict the properties of estrogens and xenoestrogens. Among published works, a great number also focused on the application of different types of quantitative structure–activity relationship (QSAR) analyses to examine estrogen’s structures and activities. Although the interactions between estrogens and xenoestrogens with various proteins are the most commonly studied, other aspects such as penetration of estrogens through lipid bilayers or their ability to adsorb on different materials are also explored using theoretical calculations.
    [Show full text]
  • Chem3d 17.0 User Guide Chem3d 17.0
    Chem3D 17.0 User Guide Chem3D 17.0 Table of Contents Recent Additions viii Chapter 1: About Chem3D 1 Additional computational engines 1 Serial numbers and technical support 3 About Chem3D Tutorials 3 Chapter 2: Chem3D Basics 5 Getting around 5 User interface preferences 9 Background settings 10 Sample files 10 Saving to Dropbox 10 Chapter 3: Basic Model Building 12 Default settings 12 Selecting a display mode 12 Using bond tools 13 Using the ChemDraw panel 15 Using other 2D drawing packages 15 Building from text 16 Adding fragments 18 Selecting atoms and bonds 18 Atom charges 21 Object position 23 Substructures 24 Refining models 27 Copying and printing 29 Finding structures online 32 Chapter 4: Displaying Models 35 © Copyright 1998-2017 PerkinElmer Informatics Inc., All rights reserved. ii Chem3D 17.0 Display modes 35 Atom and bond size 37 Displaying dot surfaces 38 Serial numbers 38 Displaying atoms 39 Atom symbols 40 Rotating models 41 Atom and bond properties 44 Showing hydrogen bonds 45 Hydrogens and lone pairs 46 Translating models 47 Scaling models 47 Aligning models 47 Applying color 49 Model Explorer 52 Measuring molecules 59 Comparing models by overlay 62 Molecular surfaces 63 Using stereo pairs 72 Stereo enhancement 72 Setting view focus 73 Chapter 5: Building Advanced Models 74 Dummy bonds and dummy atoms 74 Substructures 75 Bonding by proximity 78 Setting measurements 78 Atom and building types 81 Stereochemistry 85 © Copyright 1998-2017 PerkinElmer Informatics Inc., All rights reserved. iii Chem3D 17.0 Building with Cartesian
    [Show full text]
  • Autodock 3 User's Guide
    User’s Guide AutoDock Automated Docking of Flexible Ligands to Receptors 3 Version 3.0.5 Garrett M. Morris David S. Goodsell Ruth Huey William E. Hart Scott Halliday Rik Belew Arthur J. Olson 2 Important AutoDock is distributed free of charge for academic and non-commercial use. There are some caveats, however. Firstly, since we do not receive funding to support the academic community of users, we cannot guarantee rapid (or even slow) response to queries on installation and use. While there is documentation, it may require at least some basic Unix abilities to install. If you need more support for the AutoDock code, a commercial version (with support) is available from Oxford Molecular (http://www.oxmol.com). If you can’t afford support, but still need help: (1) Ask your local system administrator or programming guru for help about compiling, using Unix/Linux, etc.. (2) Consult the AutoDock web site, where you will find a wealth of information and a FAQ (Frequently Asked Questions) page with answers on AutoDock: http://www.scripps.edu/pub/olson-web/doc/autodock/ (3) If you can’t find the answer to your problem, send your question to the Computational Chemistry List (CCL). There are many seasoned users of computational chemistry software and some AutoDock users who may already know the answer to your question. You can find out more about the CCL on the web, at: http://ccl.osc.edu/ccl/welcome.html (4) If you have tried (1), (2) and (3), and you still cannot find an answer, send email to [email protected] for questions about AutoGrid or AutoDock; or to [email protected], for questions about AutoTors.
    [Show full text]
  • Introduction to Autodock and Autodock Tools
    Introduction to AutoDock and AutoDock Tools Alexander B. Pacheco User Services Consultant LSU HPC & LONI [email protected] HPC Training Series Louisiana State University Baton Rouge Mar. 28, 2012 Introduction to AutoDock and AutoDock Tools Mar. 28, 2012 HPC@LSU - http://www.hpc.lsu.edu 1 / 29 Outline 1 Introduction 2 Using Autodock Tools to Create Input Files Editing a PDB File Preparing the Ligand File for AutoDock Preparing the Macromolecular File Preparing the Grid Parameter File Preparing the Docking Parameter File 3 Running AutoGrid/AutoDock Calculations on LSU HPC and LONI AutoDock and AutoGrid Running AutoGrid and AutoDock 4 Analysis Using AutoDock Tools Introduction to AutoDock and AutoDock Tools Mar. 28, 2012 HPC@LSU - http://www.hpc.lsu.edu 2 / 29 Outline 1 Introduction 2 Using Autodock Tools to Create Input Files Editing a PDB File Preparing the Ligand File for AutoDock Preparing the Macromolecular File Preparing the Grid Parameter File Preparing the Docking Parameter File 3 Running AutoGrid/AutoDock Calculations on LSU HPC and LONI AutoDock and AutoGrid Running AutoGrid and AutoDock 4 Analysis Using AutoDock Tools Introduction to AutoDock and AutoDock Tools Mar. 28, 2012 HPC@LSU - http://www.hpc.lsu.edu 3 / 29 Introduction Interaction between biomolecules lie at the core of all metabolic processes and life activities. The number of solved protein structures available in the databases is expanding exponentially. To understand their functions it is essential to elucidate the interaction mechanisms between the different molecules. e.g. drug design, antigen-antibody interaction Introduction to AutoDock and AutoDock Tools Mar. 28, 2012 HPC@LSU - http://www.hpc.lsu.edu 4 / 29 Macromolecular Docking Macromolecular docking is the computational modelling of the quaternary structure of complexes formed by two or more interacting biological macromolecules.
    [Show full text]