Construction and Analysis of Three Networks of Genes and Micrornas in Adenocarcinoma

Total Page:16

File Type:pdf, Size:1020Kb

Construction and Analysis of Three Networks of Genes and Micrornas in Adenocarcinoma ONCOLOGY LETTERS 10: 3243-3251, 2015 Construction and analysis of three networks of genes and microRNAs in adenocarcinoma JIAHUI NING1,2, XIAOXIN GUO1,2, NING WANG1,2 and LUCHEN XUE1,2 1Department of Computer Science and Technology; 2Key Laboratory of Symbol Computation and Knowledge Engineering of The Ministry of Education, Jilin University, Changchun, Jilin 130012, P.R. China Received October 19, 2014; Accepted July 28, 2015 DOI: 10.3892/ol.2015.3676 Abstract. Adenocarcinoma is one of the most serious diseases which revealed the regulatory associations between genes that threaten human health. Numerous studies have inves- and miRNAs. The present study clearly revealed components tigated adenocarcinoma and have obtained a considerable of the pathogenesis of adenocarcinoma and the regulatory amount of data regarding genes and microRNA (miRNA) in associations between the elements in adenocarcinoma. The adenocarcinoma. However, studies have only focused on one present study may aid the investigation of gene therapy in or a small number of genes and miRNAs, and the data is stored adenocarcinoma and provides a theoretical basis for studies in a scattered form, making it challenging to summarize and of gene therapy methods as a treatment for adenocarcinoma. assess the associations between the genes and miRNAs. In the present study, three networks of genes and miRNAs in Introduction adenocarcinoma were focused on. This enabled the construc- tion of networks of elements involved in adenocarcinoma and Adenocarcinoma is a malignant tumor of the glands of epithe- the analysis of these networks, rather than only discussing one lial tissues that grows invasively and is not easy to resect (1). gene. Transcription factors (TFs), miRNAs, and target and The rate of lymph node metastasis is relatively high in adeno- host genes of miRNAs in adenocarcinoma, and the regula- carcinoma and may reach 36%. Relapse occurs easily, which tory associations between these elements were identified leads to a poor prognosis (2). Previous studies have demon- in the present study. These elements and associations were strated that the differentially-expressed genes and miRNAs then used to construct three networks, which consisted of the of adenocarcinoma may affect the development, transfer and differentially-expressed, associated and global networks. The treatment of cancer (3-7). In addition, there is a complex regu- similarities and differences between the three networks were latory network between the TFs, miRNAs, and target and host compared and analyzed. In total, 3 notable TFs, consisting genes in adenocarcinoma (3). Through these studies, a novel of TP53, phosphatase and tensin homolog and SMAD4, method of studying cancer may be produced. The present were identified in adenocarcinoma. These TFs were able to study aimed to investigate the elements and regulatory asso- regulate the differentially-expressed genes and the majority ciations between the elements in adenocarcinoma to increase of the differentially-expressed miRNAs. Certain important knowledge with regards to the pathogenesis, development and regulatory associations were also found in adenocarcinoma, gene therapy of adenocarcinoma. in addition to self-regulating associations between TFs and TFs are a type of protein that promotes or suppresses the miRNAs. The upstream and downstream elements of the transcription of genes by binding to the upstream regions of differentially-expressed genes and miRNAs were recorded, genes (8). TFs may regulate the transcription of genes indi- vidually or in combination with other proteins (8). MicroRNAs (miRNAs) are short non-coding RNA sequences that demonstrate regulatory functions (8). At present, the biological function of certain miRNAs has been Correspondence to: Professor Xiaoxin Guo, Department confirmed, which has revealed the notable regulatory role of Computer Science and Technology, Jilin University, played by miRNA in the growth, differentiation and apop- 2699 Qianjin Street, Changchun, Jilin 130012, P.R. China tosis of cells and the developmental process of disease (4). A E-mail: [email protected] decrease in miRNA levels is often observed in human cancers, Abbreviations: miRNA, microRNA; TFs, transcription factors; indicating that miRNA may possess an intrinsic function NCBI, National Center for Biotechnology Information; TFBSs, of tumor suppression (9). In addition, miRNAs participate transcription factor binding sites in the adjustment of cancer development by adjusting the target genes of the miRNA, which has been assessed in Key words: three networks, transcription factors, microRNA, target previous studies (4,10-12). O'Donnell et al revealed that the genes, host genes, adenocarcinoma mir-17-92 gene may be associated with tumors, and also identi- fied that mir‑17‑92 regulates MYC by regulating E2F1 (4). 3244 NING et al: CONSTRUCTION AND ANALYSIS OF THREE NETWORKS IN ADENOCARCINOMA Host genes are the genes that code for miRNAs. A components of the present study. The genes and miRNAs were considerable number of miRNAs have been identified in the then identified, as they were required to construct the three introns of host genes, and these miRNAs were termed intronic networks in the present study. miRNAs (5). The intronic miRNAs are transcribed in parallel Differentially‑expressed genes. The differentially-expressed with the host genes (5,6). Intronic miRNAs and the host genes genes in adenocarcinoma were obtained from the NCBI snp usually act as potential partners to achieve biological func- database (21), KEGG pathway database (18) and relevant tion and affect the alteration of pathways (7). These previous literature. studies have indicated that miRNA and the miRNA host genes Differentially‑expressed miRNAs. The Harbin Institute of may affect the development of cancer. Technology miR2Disease database (19) is a manually created The presence of regulatory associations between TFs, database of differentially-expressed miRNAs in various miRNAs, and the target and host genes of miRNA in adeno- human diseases. This database was used in the present study to carcinoma has been determined from the aforementioned identify differentially-expressed miRNAs in adenocarcinoma. understanding. These elements may affect the development In addition, differentially-expressed miRNAs and associated of cancer, and a considerable number of studies have investi- miRNAs in adenocarcinoma were identified using the relevant gated these regulatory associations (3-7). From these previous literature (20,22-29). Following the collection of these data, studies, it has been revealed that miRNAs regulate TFs and TFs differentially-expressed miRNAs from miR2Disease and the regulate miRNAs (13). It has also been demonstrated that TFs relevant literature were summarized as differentially-expressed and miRNA may regulate genes (8) and miRNA may regulate miRNAs in adenocarcinoma. The differentially-expressed and target genes (10). In addition, the data of numerous studies associated miRNAs in adenocarcinoma were summarized have been combined to form various databases, including from the relevant literature, and were classified as the associ- TransmiR (13), computational predicted methods (14), experi- ated miRNAs in adenocarcinoma. mentally validated databases (15,16), miRBase (17), the KEGG Associated genes. The associated gene network in adeno- pathway database (18), the miR2Disease database (19) and the carcinoma consisted of 4 components. Firstly, certain GeneCards database (20). In these databases, a large amount of differentially-expressed genes in adenocarcinoma were identi- data may be found, which was the basis for the present study. fied using theNCBI snp database, KEGG pathway database and In the present study, TFs, miRNAs, and the host and target relevant literature (30-34). These genes formed a component genes of miRNAs in adenocarcinoma were collected and of the associated gene network in adenocarcinoma. Secondly, analyzed. The aim of the present study was to identify the genes were identified in adenocarcinoma using the GeneCards networks surrounding various elements in adenocarcinoma database (35). The genes with a relevance score >0.8, according and to analyze these networks. Data were manually collected to the GeneCards database, were extracted as a component for adenocarcinoma, consisting of the differentially-expressed of the associated gene network for adenocarcinoma. Thirdly, genes and miRNA, associated genes and miRNA, and the 1,000-nt promoter region sequences of the target genes of host and target genes in adenocarcinoma. The regulatory differentially-expressed genes were obtained from the Univer- associations between the elements in adenocarcinoma were sity of California, Santa Cruz database (36). The P-match also recorded. This data formed the basis of follow-up assess- method, which combines pattern matching and weight matrix ments. Subsequent to the collection of various data, this data approaches, was then used to identify transcription factor was used to construct three networks, which consisted of binding sites (TFBSs) in 1,000-nt promoter region sequences the differentially-expressed, associated and global networks. and to map TFBSs onto the promoter region of target genes. This However, the global network was so complex that no useful method identified certain associated genes that corresponded data was obtained. The differentially-expressed and associ- with miRNAs through target genes. These associated genes ated networks were considered to
Recommended publications
  • CREB-Binding Protein Regulates Lung Cancer Growth by Targeting MAPK and CPSF4 Signaling Pathway
    MOLECULAR ONCOLOGY 10 (2016) 317e329 available at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/molonc CREB-binding protein regulates lung cancer growth by targeting MAPK and CPSF4 signaling pathway Zhipeng Tanga,1, Wendan Yua,1, Changlin Zhangb,1, Shilei Zhaoa, Zhenlong Yua, Xiangsheng Xiaob, Ranran Tanga, Yang Xuana, Wenjing Yanga, Jiaojiao Haoa, Tingting Xua, Qianyi Zhanga, Wenlin Huangb,c, Wuguo Dengb,c,*, Wei Guoa,* aInstitute of Cancer Stem Cell, Dalian Medical University, Dalian, China bSun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China cState Key Laboratory of Targeted Drug for Tumors of Guangdong Province, Guangzhou Double Bioproduct Inc., Guangzhou, China ARTICLE INFO ABSTRACT Article history: CBP (CREB-binding protein) is a transcriptional co-activator which possesses HAT (histone Received 15 September 2015 acetyltransferases) activity and participates in many biological processes, including embry- Accepted 19 October 2015 onic development, growth control and homeostasis. However, its roles and the underlying Available online 5 November 2015 mechanisms in the regulation of carcinogenesis and tumor development remain largely unknown. Here we investigated the molecular mechanisms and potential targets of CBP Keywords: involved in tumor growth and survival in lung cancer cells. Elevated expression of CBP CBP was detected in lung cancer cells and tumor tissues compared to the normal lung cells CPSF4 and tissues. Knockdown of CBP by siRNA or inhibition of its HAT activity using specific hTERT chemical inhibitor effectively suppressed cell proliferation, migration and colony forma- Lung cancer tion and induced apoptosis in lung cancer cells by inhibiting MAPK and activating cyto- chrome C/caspase-dependent signaling pathways.
    [Show full text]
  • Identification of the Fatty Acid Synthase Interaction Network Via Itraq-Based Proteomics Indicates the Potential Molecular Mecha
    Huang et al. Cancer Cell Int (2020) 20:332 https://doi.org/10.1186/s12935-020-01409-2 Cancer Cell International PRIMARY RESEARCH Open Access Identifcation of the fatty acid synthase interaction network via iTRAQ-based proteomics indicates the potential molecular mechanisms of liver cancer metastasis Juan Huang1, Yao Tang1, Xiaoqin Zou1, Yi Lu1, Sha She1, Wenyue Zhang1, Hong Ren1, Yixuan Yang1,2* and Huaidong Hu1,2* Abstract Background: Fatty acid synthase (FASN) is highly expressed in various types of cancer and has an important role in carcinogenesis and metastasis. To clarify the mechanisms of FASN in liver cancer invasion and metastasis, the FASN protein interaction network in liver cancer was identifed by targeted proteomic analysis. Methods: Wound healing and Transwell assays was performed to observe the efect of FASN during migration and invasion in liver cancer. Isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry were used to identify proteins interacting with FASN in HepG2 cells. Diferential expressed proteins were validated by co-immunoprecipitation, western blot analyses and confocal microscopy. Western blot and reverse transcription- quantitative polymerase chain reaction (RT-qPCR) were performed to demonstrate the mechanism of FASN regulating metastasis. Results: FASN knockdown inhibited migration and invasion of HepG2 and SMMC7721 cells. A total of, 79 proteins interacting with FASN were identifed. Additionally, gene ontology term enrichment analysis indicated that the majority of biological regulation and cellular processes that the FASN-interacting proteins were associated with. Co- precipitation and co-localization of FASN with fascin actin-bundling protein 1 (FSCN1), signal-induced proliferation- associated 1 (SIPA1), spectrin β, non-erythrocytic 1 (SPTBN1) and CD59 were evaluated.
    [Show full text]
  • Reed-Sternberg Cell Marker)(Clone : FSCN1/417
    9853 Pacific Heights Blvd. Suite D. San Diego, CA 92121, USA Tel: 858-263-4982 Email: [email protected] 36-1691: Monoclonal Antibody to Fascin-1 (Reed-Sternberg Cell Marker)(Clone : FSCN1/417) Clonality : Monoclonal Clone Name : FSCN1/417 Application : FACS,IF,WB,IHC Reactivity : Human Gene : FSCN1 Gene ID : 6624 Uniprot ID : Q16658 Format : Purified Alternative Name : FSCN1,FAN1,HSN,SNL Isotype : Mouse IgG2a Immunogen Information : Full length recombinant human FSCN1 protein Description Recognizes a protein of 55kDa, which is identified as fascin-1. Its actin binding ability is regulated by phosphorylation. Antibody to fascin-1 is a very sensitive marker for Reed-Sternberg cells and variants in nodular sclerosis, mixed cellularity, and lymphocyte depletion Hodgkin's disease. It is uniformly negative in lymphoid cells, plasma cells, and myeloid cells. Fascin-1 is also expressed in dendritic cells. This marker may be helpful to distinguish between Hodgkin lymphoma and non-Hodgkin lymphoma in difficult cases. Also, the lack of expression of fascin-1 in the neoplastic follicles in follicular lymphoma may be helpful in distinguishing these lymphomas from reactive follicular hyperplasia in which the number of follicular dendritic cells is normal or increased. Antibody to fascin-1 has been suggested as a prognostic marker in neuroendocrine neoplasms of the lung as well as in ovarian cancer. Fascin-1 expression may be induced by Epstein-Barr virus (EBV) infection of B cells with the possibility that viral induction of fascin in lymphoid or other cell types must also be considered in EBV-positive cases. Product Info Amount : 100 µg Purification : Affinity Chromatography 100 µg in 500 µl PBS containing 0.05% BSA and 0.05% sodium azide.
    [Show full text]
  • Roles of Fascin Mrna Expression in Colorectal Cancer: Meta‑Analysis and Bioinformatics Analysis
    MOLECULAR AND CLINICAL ONCOLOGY 13: 119-128, 2020 Roles of Fascin mRNA expression in colorectal cancer: Meta‑analysis and bioinformatics analysis SHUAI SHI, HUA-CHUAN ZHENG and ZHI-GANG ZHANG Department of Pathology, Cangzhou People's Hospital, Cangzhou, Hebei 061000, P.R. China Received July 4, 2019; Accepted April 22, 2020 DOI: 10.3892/mco.2020.2069 Abstract. Fascin (encoded by FSCN1) is a globular actin depth of invasion, microsatellite instability and low serum cross-linking protein that is required for the formation of carcinoembryonic antigen levels in colorectal cancer. Taken actin-based cell surface processes, which are critical for cell together, the results of the present study suggested that Fascin migration and cell-matrix adhesion. In the present study, a expression is a potential marker of tumorigenesis, aggressive- systematic meta-analysis and bioinformatics analysis was ness and poor prognosis in patients with colorectal cancer. used to identify clinicopathological or prognostic parameters in patients with colorectal cancer. A total of 17 articles were Introduction included in the present study obtained from PubMed, Web of Science, Wanfang data, SinoMed and CNKI databases. Fascin is a cytoskeletal protein, is one of the important Odd ratios (ORs) and the corresponding 95% confidence members of the Fascin family of proteins and is located on intervals (CIs) were used to estimate the prognostic signifi- chromosome 7q22 (1). An N-terminal serine participates cance of Fascin expression in patients with colorectal cancer, in actin binding, which is also the phosphorylation site of and the association between Fascin expression and clini- protein kinase C. The phosphorylation of this site regulates copathological factors.
    [Show full text]
  • Emerging Role and Therapeutic Potential of Lncrnas in Colorectal Cancer
    cancers Review Emerging Role and Therapeutic Potential of lncRNAs in Colorectal Cancer 1,2, 1,2, 1,2 1,2, Laura Schwarzmueller y, Oscar Bril y, Louis Vermeulen and Nicolas Léveillé * 1 Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; [email protected] (L.S.); [email protected] (O.B.); [email protected] (L.V.) 2 Oncode Institute, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands * Correspondence: [email protected] These authors contributed equally. y Received: 29 November 2020; Accepted: 16 December 2020; Published: 19 December 2020 Simple Summary: Homeostasis of the intestine is maintained by a delicate balance of signaling networks that regulate self-renewal and differentiation. In the past years, increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in the control of intestinal crypt turnover. Indeed, their deregulation can enable and drive malignant cell growth. Notably, lncRNAs have high tissue specificity, and therefore hold great potential for therapeutic intervention. Here, we address the function of lncRNAs in the intestine in physiological and pathological conditions and discuss promising interference systems to target oncogenic lncRNAs. Abstract: Maintenance of the intestinal epithelium is dependent on the control of stem cell (SC) proliferation and differentiation. The fine regulation of these cellular processes requires a complex dynamic interplay between several signaling pathways, including Wnt, Notch, Hippo, EGF, Ephrin, and BMP/TGF-β. During the initiation and progression of colorectal cancer (CRC), key events, such as oncogenic mutations, influence these signaling pathways, and tilt the homeostatic balance towards proliferation and dedifferentiation.
    [Show full text]
  • Host Cell Factors Necessary for Influenza a Infection: Meta-Analysis of Genome Wide Studies
    Host Cell Factors Necessary for Influenza A Infection: Meta-Analysis of Genome Wide Studies Juliana S. Capitanio and Richard W. Wozniak Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta Abstract: The Influenza A virus belongs to the Orthomyxoviridae family. Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus today, behind HIV. Recently, several genome-wide RNA interference studies have focused on identifying host molecules that participate in Influen- za infection. We used nine of these studies for this meta-analysis. Even though the overlap among genes identified in multiple screens was small, network analysis indicates that similar protein complexes and biological functions of the host were present. As a result, several host gene complexes important for the Influenza virus life cycle were identified. The biological function and the relevance of each identified protein complex in the Influenza virus life cycle is further detailed in this paper. Background and PA bound to the viral genome via nucleoprotein (NP). The viral core is enveloped by a lipid membrane derived from Influenza virus the host cell. The viral protein M1 underlies the membrane and anchors NEP/NS2. Hemagglutinin (HA), neuraminidase Viruses are the simplest life form on earth. They parasite host (NA), and M2 proteins are inserted into the envelope, facing organisms and subvert the host cellular machinery for differ- the viral exterior.
    [Show full text]
  • Integrating Structure to Protein-Protein Interaction Networks That Drive Metastasis to Brain and Lung in Breast Cancer
    Integrating Structure to Protein-Protein Interaction Networks That Drive Metastasis to Brain and Lung in Breast Cancer H. Billur Engin1, Emre Guney2, Ozlem Keskin1, Baldo Oliva2, Attila Gursoy1* 1 Center for Computational Biology and Bioinformatics and College of Engineering, Koc University, Istanbul, Turkey, 2 Structural Bioinformatics Group (GRIB), Universitat Pompeu Fabra Abstract Blocking specific protein interactions can lead to human diseases. Accordingly, protein interactions and the structural knowledge on interacting surfaces of proteins (interfaces) have an important role in predicting the genotype- phenotype relationship. We have built the phenotype specific sub-networks of protein-protein interactions (PPIs) involving the relevant genes responsible for lung and brain metastasis from primary tumor in breast cancer. First, we selected the PPIs most relevant to metastasis causing genes (seed genes), by using the “guilt-by-association” principle. Then, we modeled structures of the interactions whose complex forms are not available in Protein Databank (PDB). Finally, we mapped mutations to interface structures (real and modeled), in order to spot the interactions that might be manipulated by these mutations. Functional analyses performed on these sub-networks revealed the potential relationship between immune system-infectious diseases and lung metastasis progression, but this connection was not observed significantly in the brain metastasis. Besides, structural analyses showed that some PPI interfaces in both metastasis sub-networks are originating from microbial proteins, which in turn were mostly related with cell adhesion. Cell adhesion is a key mechanism in metastasis, therefore these PPIs may be involved in similar molecular pathways that are shared by infectious disease and metastasis. Finally, by mapping the mutations and amino acid variations on the interface regions of the proteins in the metastasis sub-networks we found evidence for some mutations to be involved in the mechanisms differentiating the type of the metastasis.
    [Show full text]
  • Fascin 1 Polyclonal Antibody Catalog # AP73395
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Fascin 1 Polyclonal Antibody Catalog # AP73395 Specification Fascin 1 Polyclonal Antibody - Product Information Application WB Primary Accession Q16658 Reactivity Human, Mouse, Rat Host Rabbit Clonality Polyclonal Fascin 1 Polyclonal Antibody - Additional Information Gene ID 6624 Other Names FSCN1; FAN1; HSN; SNL; Fascin; 55 kDa actin-bundling protein; Singed-like protein; p55 Dilution WB~~Western Blot: 1/500 - 1/2000. IHC-p: 1:100-300 ELISA: 1/20000. Not yet tested in other applications. Format Liquid in PBS containing 50% glycerol, 0.5% BSA and 0.02% sodium azide. Storage Conditions -20℃ Fascin 1 Polyclonal Antibody - Protein Information Name FSCN1 Synonyms FAN1, HSN, SNL Function Actin-binding protein that contains 2 major actin binding sites (PubMed:<a href="http:/ /www.uniprot.org/citations/21685497" target="_blank">21685497</a>, PubMed:<a href="http://www.uniprot.org/ci tations/23184945" target="_blank">23184945</a>). Page 1/3 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Organizes filamentous actin into parallel bundles (PubMed:<a href="http://www.unip rot.org/citations/20393565" target="_blank">20393565</a>, PubMed:<a href="http://www.uniprot.org/ci tations/21685497" target="_blank">21685497</a>, PubMed:<a href="http://www.uniprot.org/ci tations/23184945" target="_blank">23184945</a>). Plays a role in the organization of actin filament bundles and the formation of microspikes, membrane ruffles, and stress fibers (PubMed:<a href="http://www.uniprot.org/c itations/22155786" target="_blank">22155786</a>).
    [Show full text]
  • Towards Personalized Medicine in Psychiatry: Focus on Suicide
    TOWARDS PERSONALIZED MEDICINE IN PSYCHIATRY: FOCUS ON SUICIDE Daniel F. Levey Submitted to the faculty of the University Graduate School in partial fulfillment of the requirements for the degree Doctor of Philosophy in the Program of Medical Neuroscience, Indiana University April 2017 ii Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Andrew J. Saykin, Psy. D. - Chair ___________________________ Alan F. Breier, M.D. Doctoral Committee Gerry S. Oxford, Ph.D. December 13, 2016 Anantha Shekhar, M.D., Ph.D. Alexander B. Niculescu III, M.D., Ph.D. iii Dedication This work is dedicated to all those who suffer, whether their pain is physical or psychological. iv Acknowledgements The work I have done over the last several years would not have been possible without the contributions of many people. I first need to thank my terrific mentor and PI, Dr. Alexander Niculescu. He has continuously given me advice and opportunities over the years even as he has suffered through my many mistakes, and I greatly appreciate his patience. The incredible passion he brings to his work every single day has been inspirational. It has been an at times painful but often exhilarating 5 years. I need to thank Helen Le-Niculescu for being a wonderful colleague and mentor. I learned a lot about organization and presentation working alongside her, and her tireless work ethic was an excellent example for a new graduate student. I had the pleasure of working with a number of great people over the years. Mikias Ayalew showed me the ropes of the lab and began my understanding of the power of algorithms.
    [Show full text]
  • Global Identification of Hnrnp A1 Binding Sites for SSO-Based Splicing Modulation Gitte H
    Bruun et al. BMC Biology (2016) 14:54 DOI 10.1186/s12915-016-0279-9 RESEARCH ARTICLE Open Access Global identification of hnRNP A1 binding sites for SSO-based splicing modulation Gitte H. Bruun1, Thomas K. Doktor1, Jonas Borch-Jensen1, Akio Masuda2, Adrian R. Krainer3, Kinji Ohno2 and Brage S. Andresen1* Abstract Background: Many pathogenic genetic variants have been shown to disrupt mRNA splicing. Besides splice mutations in the well-conserved splice sites, mutations in splicing regulatory elements (SREs) may deregulate splicing and cause disease. A promising therapeutic approach is to compensate for this deregulation by blocking other SREs with splice-switching oligonucleotides (SSOs). However, the location and sequence of most SREs are not well known. Results: Here, we used individual-nucleotide resolution crosslinking immunoprecipitation (iCLIP) to establish an in vivo binding map for the key splicing regulatory factor hnRNP A1 and to generate an hnRNP A1 consensus binding motif. We find that hnRNP A1 binding in proximal introns may be important for repressing exons. We show that inclusion of the alternative cassette exon 3 in SKA2 can be significantly increased by SSO-based treatment which blocks an iCLIP-identified hnRNP A1 binding site immediately downstream of the 5’ splice site. Because pseudoexons are well suited as models for constitutive exons which have been inactivated by pathogenic mutations in SREs, we used a pseudoexon in MTRR as a model and showed that an iCLIP-identified hnRNP A1 binding site downstream of the 5′ splice site can be blocked by SSOs to activate the exon. Conclusions: The hnRNP A1 binding map can be used to identify potential targets for SSO-based therapy.
    [Show full text]
  • Functional Annotation of the Human Retinal Pigment Epithelium
    BMC Genomics BioMed Central Research article Open Access Functional annotation of the human retinal pigment epithelium transcriptome Judith C Booij1, Simone van Soest1, Sigrid MA Swagemakers2,3, Anke HW Essing1, Annemieke JMH Verkerk2, Peter J van der Spek2, Theo GMF Gorgels1 and Arthur AB Bergen*1,4 Address: 1Department of Molecular Ophthalmogenetics, Netherlands Institute for Neuroscience (NIN), an institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, the Netherlands (NL), 2Department of Bioinformatics, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands, 3Department of Genetics, Erasmus Medical Center, 3015 GE Rotterdam, the Netherlands and 4Department of Clinical Genetics, Academic Medical Centre Amsterdam, the Netherlands Email: Judith C Booij - [email protected]; Simone van Soest - [email protected]; Sigrid MA Swagemakers - [email protected]; Anke HW Essing - [email protected]; Annemieke JMH Verkerk - [email protected]; Peter J van der Spek - [email protected]; Theo GMF Gorgels - [email protected]; Arthur AB Bergen* - [email protected] * Corresponding author Published: 20 April 2009 Received: 10 July 2008 Accepted: 20 April 2009 BMC Genomics 2009, 10:164 doi:10.1186/1471-2164-10-164 This article is available from: http://www.biomedcentral.com/1471-2164/10/164 © 2009 Booij et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
    [Show full text]
  • Enriching Traditional Protein-Protein Interaction Networks with Alternative Conformations of Proteins
    Faculty Scholarship 2017 Enriching Traditional Protein-protein Interaction Networks with Alternative Conformations of Proteins Farideh Halakou Emel S. Kilic Engin Cukuroglu Ozlem Keskin Attila Gursoy Follow this and additional works at: https://researchrepository.wvu.edu/faculty_publications www.nature.com/scientificreports OPEN Enriching Traditional Protein- protein Interaction Networks with Alternative Conformations of Received: 27 March 2017 Accepted: 27 June 2017 Proteins Published: xx xx xxxx Farideh Halakou1, Emel Sen Kilic 2,4, Engin Cukuroglu3, Ozlem Keskin2 & Attila Gursoy1 Traditional Protein-Protein Interaction (PPI) networks, which use a node and edge representation, lack some valuable information about the mechanistic details of biological processes. Mapping protein structures to these PPI networks not only provides structural details of each interaction but also helps us to fnd the mutual exclusive interactions. Yet it is not a comprehensive representation as it neglects the conformational changes of proteins which may lead to diferent interactions, functions, and downstream signalling. In this study, we proposed a new representation for structural PPI networks inspecting the alternative conformations of proteins. We performed a large-scale study by creating breast cancer metastasis network and equipped it with diferent conformers of proteins. Our results showed that although 88% of proteins in our network has at least two structures in Protein Data Bank (PDB), only 22% of them have alternative conformations and the remaining proteins have diferent regions saved in PDB. However, using even this small set of alternative conformations we observed a considerable increase in our protein docking predictions. Our protein-protein interaction predictions increased from 54% to 76% using the alternative conformations.
    [Show full text]