The Role of Lymph Node-Derived Lymphatic Endothelial Cells in Immune Modulation in the Tumour Microenvironment

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Lymph Node-Derived Lymphatic Endothelial Cells in Immune Modulation in the Tumour Microenvironment The role of lymph node-derived lymphatic endothelial cells in immune modulation in the tumour microenvironment Jennifer Nicole Harris Darwin College Student Name (CRSid): Jennifer Nicole Harris (jnh42) Dissertation Title: The role of lymph node-derived lymphatic endothelial cells in immune modulation in the tumour microenvironment Abstract: The lymphatic vasculature is a key player in progression of many cancers, with lymphangiogenesis at the primary tumour and tumour-draining lymph nodes (TDLNs) associated with poor patient prognosis. As well as providing a highway for metastatic tumour cells, recent reports propose lymphatics as modulators of immunity, highlighting a need for greater understanding of immune regulation by lymphatics. The specific role of lymphatic endothelial cells (LECs) in this context, particularly in TDLNs, is unknown. As TDLNs are immune hubs, yet anti-tumour immune responses are often ineffective, this thesis aimed to investigate functional changes to lymphatics in TDLNs and the role of TDLN-derived LECs in anti-tumour immunity. I hypothesised that factors from the tumour microenvironment alter functionality of TDLN-LECs from early stages of tumour development. I further hypothesised that these changes would promote immune tolerance, with this thesis exploring specific impact on dendritic cell (DC) mediated immunity. Using the B16-F10 melanoma model, this work confirmed expansion of TDLN- LECs prior to metastasis and demonstrated transcriptional reprogramming of immune- associated pathways in LECs isolated from early TDLNs. This was accompanied by differentially localized migratory DCs, clustered at lymphatic subcapsular sinuses. In vitro using co-culture assays revealed mature DCs undergo prolonged interactions with LECs conditioned with B16-F10 tumour-conditioned media, suggesting a change in the physical interactions occurring in vivo in early TDLNs. Additionally, we investigated possible mechanistic contributors, demonstrating using in vitro and in vivo blockade and knockout models, a role for lymphatic expressed Podoplanin in DC interactions and migration. Prolonged physical interactions were further found to facilitate antigen transfer from ovalbumin-loaded LECs to DCs yet inhibit DC priming of T-cells, with DCs found capable of acquiring TDLN-LEC archived antigen in vivo. These results show that in lymph nodes conditioned by factors derived from the tumour microenvironment, prolonged physical interactions between LECs and DCs impact DC migration and T-cell priming. As immune tolerance is a key feature of the tumour microenvironment, this work has highlighted lymphatics as key modulators of the anti-tumour immune response. Furthermore, this work provides new insight into lymphatic involvement during tumour development, identifying lymphatics as a potential target for early intervention therapies. 2 i. Declaration This dissertation is the result of my own work and includes nothing, which is the outcome of work done in collaboration except as declared in the Preface and specific in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma of other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified text. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma, or other qualification at the University of Cambridge or any other University or similar institution except as declared in the Preface and specified in the text. It does not exceed the prescribed work limit of 60,000 words for the Clinical Medicine and Clinical Veterinary Medicine Degree Committee. Miss. Jennifer Nicole Harris 3 ii. Acknowledgements First and foremost, I would like to thank my PhD supervisor Dr Jacqui Shields, who not only has given me the opportunity to work in her lab for the past few years but has also been incredibly supportive and helpful. From experimental design to conversations about cycling and running – you have genuinely been a friend as well as a mentor. Secondly, I would like to thank every single Agent of S.H.I.E.L.D who have been best friends as well as colleagues, thank you so much for always being there – Luisa Pedro, Matthew Lakins, Angela Riedel, Hafsa Munir, Ehsan Ghorani, James Jones, Sarah (Dave) Davidson, Jake Cridge, Carlo Zimarino, Rebecca White, Bastian Schmied, Lisa Haas, Jonathan Swietlik, Garrett Beeghly and Will Moody. I would also like to thank Emma Kerr, Frances Turrell, Eleanor Heaton, Annalise Katz-Summercorn and Jason Crawte for always being there as a friend to have a laugh with and to turn to in tough times. Finally, Nadeera de Silva – I wish you had been here to share this PhD rollercoaster with us; you are forever missed. Thirdly, I would like to thank Thilo Richter who has been my best friend and partner throughout, supporting me and helping me through all the late nights, long weekends and celebratory wins along the way - I love you so very much. Alongside all those at Darwin College and beyond, especially BarComm, Alki, Gaby and Joana, you have been my Cambridge bedrock through the happiest and toughest moments of this PhD, and without you all, I’m not sure how I would have coped – many many thanks. Last but not least, I would like to thank my beautiful family. Coming to the University of Cambridge was always an ambition of mine and you have all sacrificed a lot to allow me to fulfil that goal. From that life-changing moment in 2004, right up to current day, you have all been nothing other than a gift. My support network and my constant – I thank you from the bottom of my heart for being the best family a woman could ask for. So, Josephine Harris-Cook, Rachel Harris, Bex-Harris Cook, Arwyn Harris-Cook, Maisie Double-Cook and Leo Double-Cook – I love you all and I am forever grateful and indebted. 4 iii. List of presentations and prizes awarded at scientific meetings Poster presentations • Cambridge Immunology Network PhD & Post-Doc Day, Cambridge, June 2016 • Hutchison / MRC Research Centre Annual Retreat, Cambridge, November 2015 and November 2017 • BMS-UKCAS Conference, Birmingham, April 2017 • 1st Crick International Cancer Conference, London, September 2017 Oral presentations • Hutchison / MRC Research Centre Lunchtime Seminar, Cambridge, May 2016 • Hutchison / MRC Research Centre Annual Retreat, Cambridge, December 2016 Prizes • Best Oral Presentation at the Hutchison / MRC Research Centre Annual Retreat, Cambridge, December 2016 • Poster Prize at the joint British Microcirculation Society (BMS) and UK Cell Adhesion Society (UKCAS) conference, Birmingham, April 2017 Other Attended Conferences • Cambridge Cancer Centre Annual Symposia, Cambridge, June 2014, 2015, 2016, 2017 • Cancer Research UK Cambridge Institute Annual International Symposium, Cambridge, March 2015 • 2nd AstraZeneca-MedImmune Cambridge Cancer Science Symposium, Cambridge, September 2015 5 Table of Contents Abstract 2 i. Declaration 3 ii. Acknowledgements 4 iii. List of presentations and prizes awarded at scientific meetings 5 Table of Contents 6 List of Figures 8 List of Tables 11 Abbreviations 13 CHAPTER 1 15 INTRODUCTION 15 1. General Introduction 16 1.1. Overview of lymphatics in cancer 16 1.2. Structure and function of the lymphatic system 17 1.3. The role of lymphatics in inflammation 31 1.4. The role of lymphatics in cancer 36 1.5. Summary 43 1.6. Hypothesis and Aims 44 CHAPTER 2 46 METHODS 46 2. Methods 47 2.1. Cell Culture 47 2.2. Isolation of primary murine cell populations 48 2.3. In vivo mouse studies 50 2.4. RNA Isolation, Amplification and Quantification 58 2.5. Microarray Hybridisation and Data Normalisation 61 2.6. Quantitative real-time polymerase chain reaction (qRT-PCR) 62 2.7. Dendritic Cell and Antigen Presenting Cell PCR Array 63 2.8. Flow Cytometry analysis of primary and cell line populations 67 2.9. Immunofluorescent Imaging (IF) 68 2.10. Functional Assays 72 2.11. Statistical Analysis 78 CHAPTER 3 82 RESULTS 82 3. Functional characterisation of lymphatics from melanoma TDLNs 83 3.1. Introduction 83 3.2. Methods 84 3.3. Results 89 3.4. Discussion 114 6 CHAPTER 4 118 RESULTS 118 4. Determining the interactions between DCs and LECs in TDLNs 119 4.1. Introduction 119 4.2. Methods 121 4.3. Results 126 4.4. Discussion 164 CHAPTER 5 171 RESULTS 171 5. Determining the role of lymphatic-DC cross-talk in T-cell priming in TDLNs 172 5.1. Introduction 172 5.2. Methods 174 5.3. Results 179 5.4. Discussion 216 CHAPTER 6 220 DISCUSSION 220 6. General Discussion 221 6.1. Project rationale and overview 221 6.2. Lymphangiogenesis in the tumour microenvironment 222 6.3. Modulation of DC migration in TDLNs mediated by Podoplanin positive lymphatics 225 6.4. Lymphatics as modulators of antigen-mediated immune priming 230 6.5. Driving factors involved in altered lymphatic and DC behaviour in the tumour microenvironment 232 6.6. Summary and Future Perspectives 234 Bibliography 238 APPENDICES 262 Appendix 1 – Altered gene targets in TDLN-derived LECs 263 Appendix 2 – Gene targets altered in Day 4 and Day 11 TDLN-derived LECs 264 Appendix 3 – Gene ontology pathways for altered genes 265 Appendix 4 – Altered canonical pathways and associated gene targets 267 Appendix 5 – Manual categorisation of canonical pathways 269 Appendix 6 – Altered Immunity associated gene targets 272 Appendix 7 – Flow cytometry gating for profiling dendritic cells 273 Appendix
Recommended publications
  • Preclinical 89Zr-Immunopet of High Grade Serous Ovarian Cancer and Lymph Node Metastasis Sai Kiran Sharma1,3, Kuntal K
    Journal of Nuclear Medicine, published on February 2, 2016 as doi:10.2967/jnumed.115.167072 Preclinical 89Zr-immunoPET of High Grade Serous Ovarian Cancer and Lymph Node Metastasis Sai Kiran Sharma1,3, Kuntal K. Sevak1, Sebastien Monette2, Sean D. Carlin1, James C. Knight3, Frank R. Wuest3, Evis Sala4, Brian M. Zeglis5,*, Jason S. Lewis1,* 1 Department of Radiology and the Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, NY, USA 2 Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, and The Rockefeller University, NY, USA 3 Department of Oncology, University of Alberta, AB, Canada 4 Department of Radiology, Memorial Sloan Kettering Cancer Center, NY, USA 5 Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, NY, USA First Author: Sai Kiran Sharma, Department of Radiology, Zuckerman Research Center, 417 East 68th Street, 394, New York, NY, 10065, USA Email: [email protected] Phone: +1.212.896.0484. Fax: +1.646.888.3059 *Co-Corresponding Authors: Brian M. Zeglis, Department of Chemistry, Hunter College and the Graduate Center of the City University of New York, NY, 10021, USA Email: [email protected] Phone: +1.212.896.0443. Fax: +1.212.772.5332 Jason S. Lewis, Department of Radiology, 1275 York Avenue, Memorial Sloan Kettering Cancer Center, NY, 10065, USA Email: [email protected] Phone: +1.646.888.3038. Fax: +1.646.888.3059 1 Financial Support: The authors gratefully acknowledge the MSKCC Small Animal Imaging Core Facility, which is supported in part by NIH grant P30 CA08748.
    [Show full text]
  • Patterns of Lymphatic Drainage in the Adultlaboratory
    J. Anat. (1971), 109, 3, pp. 369-383 369 With 11 figures Printed in Great Britain Patterns of lymphatic drainage in the adult laboratory rat NICHOLAS L. TILNEY Department of Surgery, Peter Bent Brigham Hospital, and Harvard Medical School, Boston, Massachusetts (Accepted 27 April 1971) INTRODUCTION This study was undertaken to define and elucidate patterns of lymphatic drainage in the adult laboratory rat. The incentive for the work arose from investigations into the role of regional lymphatics in the sensitization of the host by skin allografts. It has become clear that the response of rats to antigens, investigated increasingly in the available inbred strains, requires an accurate knowledge of lymphoid anatomy and lymphatic drainage routes. Examinations of the lymphatics of specific body areas of the rat have appeared sporadically in the literature, but descriptions of regional drainage patterns, especially of peripheral sites, are unavailable. Previous investigations by Job (1919), Greene (1935) and Sanders & Florey (1940) have con- centrated primarily upon the location of the lymphoid tissues. Miotti (1965) has stressed visceral drainage, and Higgins (1925) has described the lymphatic system of the newborn rat. A more complete definition of both somatic and visceral lymphatic routes is presented. MATERIALS AND METHODS One hundred and thirty normal adult rats of both sexes, each weighing between 150 and 300 g, were studied. The animals came from five strains: each inbred - Oxford strains of the albino (AO), hooded (HO), agouti (DA), and F1 hybrid of the HO and DA strains - and 'stock' animals from a closed outbred albino colony. Under ether anaesthesia, the site for cutaneous injection was clipped or a serous cavity entered for visceral injection.
    [Show full text]
  • Tumor-Draining Lymph Nodes Resection and Chemotherapy Have Diverse Impacts on Cancer Immunotherapies
    bioRxiv preprint doi: https://doi.org/10.1101/664912; this version posted June 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Tumor-draining lymph nodes resection and chemotherapy have diverse impacts on cancer immunotherapies Xianda Zhao1, Beminet Kassaye1, Dechen Wangmo1, Emil Lou2, and Subbaya Subramanian1,3* 1Department of Surgery, University of Minnesota Medical School, Minneapolis, MN 2Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 3Masonic Cancer Center, University of Minnesota, Minneapolis, MN Running title: Effects of tumor-draining lymph nodes resection and chemotherapy on cancer immunotherapies Keywords: immunotherapy, checkpoint inhibitors, tumor-draining lymph nodes, chemotherapy Number of manuscript main figures: 7 Supplementary figures: 9; supplementary tables: 2 1 bioRxiv preprint doi: https://doi.org/10.1101/664912; this version posted June 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Immunotherapies are used as adjuvant therapies for cancers after surgical resection or multiple lines of chemotherapies and or targeted therapies. Tumor-draining lymph nodes (TdLNs) are usually the first sites of metastasis; therefore, they are routinely resected for diagnostic and/ or treatment proposes. However, knowledge of how traditional cancer treatments affect immunotherapies is still very limited.
    [Show full text]
  • Breast Cancer
    30 Breast Cancer Regine Unkels and Eva J. Kantelhardt INTRODUCTION International organizations such as the Breast Health Global Initiative (BHGI) together with the Cancer in developing countries was not considered World Health Organization (WHO) are working a priority until recently. Since ‘non-communicable on evidence-based guidelines for early detection, diseases’ were the major topic at the general diagnosis and treatment of breast cancer in different assembly of the United Nations (UN) in September settings (http://www.portal.bhgi.org). Activities 2011 this opinion has definitely changed within the are recommended for four different levels of re- international community. The four main non- sources: basic, limited, enhanced and maximal level communicable diseases – cardiovascular disease, of resource (Box 1). It is recommended that each chronic lung diseases, diabetes and cancer – kill health facility or program, passes from level to level three in five people worldwide causing great socio- once all the activities of one level are in place, func- economic harm particularly in developing nations. tioning and evaluated3. Cancer of the breast is the most common cancer in women worldwide. Every year 1.6 million women are newly diagnosed with breast cancer glo- Box 1 Levels according to the BHGI. These are bally and around 425,000 die of the disease. Breast defined and quoted throughout the chapter4 cancer accounts for 23% of all female cancers glo- bally and shows a geographic variation in incidence Basic level (1): Core resources/fundamental and death rates. Age-standardized incidence rates level – necessary for any breast health service, are 39 per 100,000 worldwide – 27 in less and 66 usually applied in single-center institutions per 100,000 in the more developed regions.
    [Show full text]
  • W O 2019/232265 Al 05 December 2019 (05.12.2019) W IPO I PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property (1) Organization11111111111111111111111I1111111111111i1111liiiii International Bureau (10) International Publication Number (43) International Publication Date W O 2019/232265 Al 05 December 2019 (05.12.2019) W IPO I PCT (51) International Patent Classification: (74) Agent: BREIER, Adam M. et al.; McNeill Baur PLLC, A61K 9/00 (2006.01) A61M37/00 (2006.01) 125 Cambridge Park Drive, Suite 301, Cambridge, Massa (21) International Application Number: chusetts 02140 (US). PCT/US2019/034736 (81) Designated States (unless otherwise indicated, for every AM, (22) International Filing Date: kind ofnational protection available): AE, AG, AL, BZ, 30 May 2019 (30.05.2019) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (26)PublicationKLanguage: English R, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 62/678,584 31 May 2018 (31.05.2018) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 62/678,592 31 May 2018 (31.05.2018) US SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/678,601 31 May 2018 (31.05.2018) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • CNS Lymphatic Drainage and Neuroinflammation Are Regulated by Meningeal Lymphatic Vasculature
    ARTICLES https://doi.org/10.1038/s41593-018-0227-9 CNS lymphatic drainage and neuroinflammation are regulated by meningeal lymphatic vasculature Antoine Louveau 1,2,9*, Jasmin Herz1,2,9, Maria Nordheim Alme1,2,3,4, Andrea Francesca Salvador1,2,5, Michael Q. Dong1,2, Kenneth E. Viar1,2, S. Grace Herod1,2, James Knopp1,2, Joshua C. Setliff1,2, Alexander L. Lupi1,2, Sandro Da Mesquita 1,2, Elizabeth L. Frost1,2, Alban Gaultier 1,2, Tajie H. Harris1,2, Rui Cao 6, Song Hu6, John R. Lukens 1,2, Igor Smirnov1,2, Christopher C. Overall1,2, Guillermo Oliver7 and Jonathan Kipnis 1,2,5,8* Neuroinflammatory diseases, such as multiple sclerosis, are characterized by invasion of the brain by autoreactive T cells. The mechanism for how T cells acquire their encephalitogenic phenotype and trigger disease remains, however, unclear. The exis- tence of lymphatic vessels in the meninges indicates a relevant link between the CNS and peripheral immune system, perhaps affecting autoimmunity. Here we demonstrate that meningeal lymphatics fulfill two critical criteria: they assist in the drainage of cerebrospinal fluid components and enable immune cells to enter draining lymph nodes in a CCR7-dependent manner. Unlike other tissues, meningeal lymphatic endothelial cells do not undergo expansion during inflammation, and they express a unique transcriptional signature. Notably, the ablation of meningeal lymphatics diminishes pathology and reduces the inflamma- tory response of brain-reactive T cells during an animal model of multiple sclerosis. Our findings demonstrate that meningeal lymphatics govern inflammatory processes and immune surveillance of the CNS and pose a valuable target for therapeutic intervention.
    [Show full text]
  • The Sensitization of Rats by Allografts Transplanted to Alymphatic Pedicles of Skin by N
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central 8110~X MOPlICIPAL DIOSPITALCE~mTil, m ~lhem PwkwaV Se.~ & rum~ THE SENSITIZATION OF RATS BY ALLOGRAFTS TRANSPLANTED TO ALYMPHATIC PEDICLES OF SKIN BY N. L. TILNEY,* M.D., A~¢O J. L. GOWANS, M.B. (From the Medical Research Council, Cellular Immunology Unit, Sir William Dunn School of Pathology, Oxford University, Oxford, England) (Received for publication 16 October 1970) Allografts of skin are destroyed rapidly only if they establish lymphatic connections with the host (1); kidney a]lografts are destroyed even if such connections are prevented from forming (2). It has been suggested that the be- havior of kidney grafts may be explained by a process of "peripheral sensitiza- tion" in which the graft antigens stimulate circulating lymphocytes as they pass through the vascular bed of the organ itself (3, 4). With orthotopic allo- grafts of skin the requirement for lymphatics is usually taken to mean that sensitization occurs centrally in the regional lymph nodes after the arrival of antigen by way of the afferent lymphatics. Alternatively, lymphocytes might become sensititized as they migrate from the blood into the skin; the afferent lymphatics would then provide the route by which peripherally sensitized cells travel from the skin to the regional nodes. While the present evidence on skin grafts does not enable a choice to be made between these alternatives, the im- portance of lymphatics is not in dispute and their role in mediating sensitization is emphasized by the prolonged survival of grafts placed in certain immuno- logically privileged sites which do not provide an effective lymphatic drainage, for example, the hamster cheek pouch (5).
    [Show full text]
  • In Vivo Fluorescence Imaging and Tomography Methods to Quantify Metastatic Burden in Lymph Nodes
    IN VIVO FLUORESCENCE IMAGING AND TOMOGRAPHY METHODS TO QUANTIFY METASTATIC BURDEN IN LYMPH NODES A Thesis Submitted to the Faculty in partial fulfillment of the requirements for the degree of Doctor of Philosophy by ALISHA VIOLA DSOUZA Thayer School of Engineering Dartmouth College Hanover, New Hampshire May 2016 Examining Committee: Chairman_______________________ Brian W. Pogue, Ph.D. Member________________________ Kimberley S. Samkoe, Ph.D. Member________________________ Scott C. Davis, Ph.D. Member________________________ Kenneth M. Tichauer, Ph.D. ___________________ F. Jon Kull Dean of Graduate Studies Abstract Morbidity and complexity involved in lymph node staging via surgical resection and biopsy could ideally be overcome using node assay techniques that are non-invasive. Visible blue dyes, fluorophores and radio-tracers are often used to locate the sentinel lymph nodes from draining lymphatic vessels near a tumor, but they only rarely provide an in situ metric to evaluate the presence of cancer. As such, imaging systems that are quantitative and sensitive to surface- and subsurface-fluorescence could provide a radiation-free, less invasive alternative to existing approaches, and have the potential to perform both node mapping and metastasis sensing. Issues of non-specific uptake, and high delivery variability complicate imaging of single tracers in a lymph node. To overcome these problems, ratiometric schemes using multiple fluorescent tracers along with modeling techniques to estimate cancer biomarkers have recently been demonstrated. In this approach, quantitative estimates of the cancer burden are attainable using micro-doses of fluorescence-labeled tracers targeted to cancer-specific receptors, thus providing high specificity in studying cancer progression and metastasis. In this work, an extensive review of commercial fluorescence imagers and their capabilities led to some unique directions in sensing of lymph nodes with alternative hardware and image processing methods.
    [Show full text]
  • Lymphatic Drainage Therapy
    Lymphatic Drainage Therapy © By Victoria Bowmann, Ph.D., USA lectromagnetic energy from the Sun bombards the Whereas the blood has a pump (heart) the lymphatic Earth. Our Sun orbits around the center of the system doesn’t. It depends upon two functions. One is E Milky Way galaxy. Electromagnetic energy beams muscular peristalsis during gentle exercise that encourages the from the heart of our galaxy. This confirms the presence of movement of lymphatic fluid through the tissues. Second is a super massive Black Hole, a million times denser and four deep diaphragmatic breathing to “pump” the cysterna chyli. million times larger than our Sun. Gama, x-ray, infrared This enlarged lymphatic vessel is about 6 centimeters long and and radio waves are emitted from the Galactic center and is located in the lumbar region of the abdomen. It assists in the affect the electromagnetic fields of our Earth and all inhab- storage and movement of lymph from the lower watershed. itants on it. Fortunately, science has found ways to harness The thoracic duct carries lymph from the upper watershed many of these energy waves to the benefit of our health, moving upward and returning to the venous circulation comfort and enjoyment. through the left subclavian vein. When considering the lymphatic system, most focus Candidates for Treatment is on the vessels and nodes. Lymph is the interstitial fluid Upon examination, a patient might show enlarged found between the cells of the human body. It enters the nodes in the throat or armpit as well as in the groin, or lymph vessels by filtration through pores in the walls swelling in the lower extremities.
    [Show full text]