TheThe TransitTransit ofof VenusVenus

JohnJohn S.S. ReidReid

CruickshankCruickshank LecturerLecturer inin AstronomyAstronomy DepartmentDepartment ofof PhysicsPhysics

UniversityUniversity ofof AberdeenAberdeen PublicPublic interestinterest

 VenusVenus crossingcrossing thethe Telescopic view by US faceface ofof thethe SunSun Naval Observatory of 1882 transit  AA rarerare phenomenonphenomenon ¾ Last seen in 1882 ¾ Visible without a telescope ¾ An annular eclipse of the by

Courtesy: www.williams.edu/astronomy/ eclipse/transits/ AstronomicalAstronomical interestinterest

 RefineRefine elementselements ofof Venus’sVenus’s orbitorbit usingusing observedobserved timingtiming ¾ 1717th centurycentury resultresult  DetermineDetermine thethe absoluteabsolute scalescale ofof thethe solarsolar systemsystem ¾ 1818th centurycentury resultresult  FindFind anan accurateaccurate valuevalue forfor 11 AUAU ¾ 1919th centurycentury interestinterest ¾ 11 AUAU isis thethe metremetre--stickstick forfor thethe UniverseUniverse SolarSolar systemsystem andand Kepler’sKepler’s lawslaws

 TheThe relativerelative sizessizes ofof thethe orbitsorbits inin thethe solarsolar systemsystem Average areare givengiven byby Kepler’sKepler’s 33rd distance a Sun lawlaw ¾ a3 ∝ (planetary year)2  WhatWhat isis thethe absoluteabsolute sizesize?? Planet a ¾ 1 AU is average distance Mercury 0.387 between Earth and Sun between Earth and Sun Venus 0.723 Earth 1.00 Mars 1.524 5.203 ParallaxParallax ofof aa planetplanet

 YouYou cancan findfind thethe distancedistance ofof aa planet,planet, P,P, ifif youyou cancan measuremeasure itsits parallaxparallax angleangle fromfrom separatedseparated points,points, AA andand B,B, onon thethe EarthEarth

Parallax angle B P

Distance A Earth

Definition: Parallax angle = AB/Distance Hence: Distance = AB/Parallax angle MethodMethod waswas triedtried forfor MarsMars

 ObserveObserve positionposition ofof MarsMars againstagainst thethe fixedfixed backgroundbackground ofof starsstars

Mars

Earth ¾ DifficultDifficult ¾ ParallaxParallax fromfrom 11 EarthEarth radiusradius isis 2020"" atat bestbest ¾ CanCan useuse EarthEarth’’ss rotationrotation andand observeobserve changechange inin MarsMars’’ positionposition fromfrom eveningevening toto prepre--dawndawn EnterEnter VenusVenus

 VenusVenus isis closestclosest planetplanet toto EarthEarth andand inin principleprinciple bestbest forfor parallaxparallax ¾ ClosestClosest isis typicallytypically 0.280.28 AUAU  MeasureMeasure parallaxparallax againstagainst backgroundbackground ofof Sun’sSun’s diskdisk ¾ WhenWhen atat greatestgreatest elongationelongation Venus orbit fromfrom SunSun (46(46ºº)),, VenusVenus 46º V ~2.5~2.5 timestimes furtherfurther fromfrom EarthEarth E Sun 0.28 AU TheThe mastermaster planplan

 UseUse thethe Sun’sSun’s diskdisk asas aa calibratedcalibrated screenscreen  ObserveObserve thethe transittransit fromfrom differentdifferent locationslocations onon EarthEarth  MeasureMeasure thethe parallaxparallax ofof VenusVenus

Observed  ScaleScale thethe solarsolar systemsystem andand hencehence from determinedetermine 11 AUAU inin termsterms ofof metresmetres St Helena

Observed from Aberdeen

Venus Earth Side view Sun’s disk TheThe refinementrefinement

 UseUse thethe curvedcurved edgeedge ofof thethe SunSun andand timetime thethe ingressingress andand egressegress ofof VenusVenus toto deducededuce whichwhich chordchord VenusVenus travelledtravelled onon ¾ ClocksClocks areare moremore accurateaccurate thanthan telescopetelescope anglesangles

Sun AlignmentsAlignments ofof Earth,Earth, VenusVenus && SunSun

 TheThe Earth,Earth, VenusVenus && SunSun areare inin aa lineline lookinglooking downdown onon thethe solarsolar systemsystem everyevery 583.9583.9 daysdays (1.6(1.6 yearsyears == 8/58/5 years)years) ¾ VenusVenus orbitsorbits 2+2+ timestimes

¾ EarthEarth orbitsorbits 1+1+ timetime 2

4 E V S

5 3 Earth year: 365.25630 days Venus year: 224.70078 days TheThe problemproblem

 Venus’sVenus’s orbitorbit isis tiltedtilted atat 3.393.39ºº withwith respectrespect toto thethe EarthEarth’’ss orbitorbit  InIn reality,reality, onlyonly 22 pointspoints inin VenusVenus’’ss orbitorbit areare inin thethe planeplane ofof thethe EarthEarth’’ss orbitorbit ¾ DescendingDescending nodenode NN View from ¾ AscendingAscending nodenode N'N' Earth to N' Venus E V S N 3.39º Plane of Earth’s orbit Line of nodes TheThe opticsoptics

 EarthEarth mustmust bebe inin thethe centralcentral shadowshadow conecone ofof VenusVenus toto seesee VenusVenus inin frontfront ofof thethe SunSun

Sun V E

Shadow cone Line of sight to Venus and Sun

 SomeSome ofof shadowshadow conecone mustmust bebe inin thethe planeplane ofof Earth’sEarth’s orbitorbit forfor transittransit toto bebe seenseen TheThe transittransit seasonseason

2004  TheThe transittransit seasonseason lastslasts ~3.5~3.5 daysdays

Plane of Venus’s Shadow orbit cone What would be N seen E

Earth’s orbit

~1 day for shadow cone 1.8 days for Earth TheThe alignmentsalignments

 SupposeSuppose aa transittransit occursoccurs inin oneone year,year, howhow longlong beforebefore thethe nextnext one?one?  EarthEarth--VenusVenus--SunSun alignmentalignment shiftsshifts 2.42.4 daysdays (earlier)(earlier) afterafter 88 yearsyears 2012 ¾ HenceHence afterafter 88 yearsyears aa secondsecond transittransit willwill occuroccur onon thethe otherother sideside ofof thethe nodenode

What would be N seen

Earth’s orbit E

~2.4 days ThenThen what?what?

 ThereThere areare nono transitstransits forfor aa longlong timetime ¾ WhenWhen thethe EarthEarth passespasses throughthrough thethe lineline ofof nodes,nodes, VenusVenus hashas alreadyalready beenbeen therethere  TheThe ~8~8 yearyear alignmentsalignments occuroccur progressivelyprogressively earlier,earlier, beforebefore thethe EarthEarth reachesreaches thethe nodenode  TheThe alignmentalignment ‘spokes’‘spokes’ retreatretreat clockwiseclockwise

2.4° per 8 2 E years V 44 2 E S NN' 3 5 3 5 243243 yearsyears betweenbetween repeatrepeat pairspairs

 AlignmentAlignment directionsdirections everyevery 88 yearsyears lessless 2.42.4 daysdays 2, alignment after 1.6 years Alignment 153 ≡ 243 years 32

62 153 Sun N N' 72

123 alignment 72 ≡ 113.5 years 93 V 63 E 33 3, alignment after 3.2 years TheThe ascendingascending nodenode transitstransits

 7171 transitstransits (113.5(113.5 years)years) afterafter thethe firstfirst one,one, thethe shadowshadow conecone passespasses closeclose toto thethe 1874 ascendingascending nodenode NN'' & 2117 ¾ AnotherAnother pairpair ofof transitstransits willwill bebe seenseen

What would be N' seen Earth’s orbit

E Venus moving shadow cone SeriesSeries ofof transitstransits everyevery 243243 yearsyears

 AscendingAscending nodenode seriesseries ReturnReturn toto 20042004 transittransit

(2012 transit occurs 2.4 days earlier, mainly during our ) ExpectedExpected sightsight

 CloudsClouds allowing!allowing!

Courtesy: http://www.eso.org/outreach/press- rel/pr-2004/images/vt-anim.gif Venus’Venus’ tracktrack acrossacross thethe SunSun

 WhyWhy isis Venus’Venus’ tracktrack 8.78.7ºº toto thethe ecliptic?ecliptic?

→ 29.78 km s-1 E N → 48.55 km s-1 ↓ 2.87 km s-1 0.52×106 km  VenusVenus tracktrack acrossacross thethe SunSun isis thethe EarthEarth’’ss tracktrack acrossacross thethe shadowshadow conecone ¾ VelocityVelocity ofof EarthEarth relativerelative toto shadowshadow conecone ¾ MaxMax durationduration ~7.6~7.6 hrhr 19 km s-1 8.7º ¾ 20042004 transittransit ~~ ¾¾ maxmax ~~ 55½½ hrhr Illustrating the Earth & central parallax in transits shadow cone to experienced at Parallax effects scale different latitudes on Earth Aberdeen (57ºN)

St Helena (15ºS)

Each point in the shadow Equatorial cone corresponds rotational speed to Venus 0.46 km s-1 appearing at a different place on the Sun’s disk DetailsDetails ofof JuneJune 88thth transittransit

Sun Approximate BST timings shown for Aberdeen Ecliptic

0640 BST 7 8 9 10 11 12 ObservingObserving thethe SpectacleSpectacle

 DirectlyDirectly –– useuse eclipseeclipse glassesglasses ¾ VenusVenus willwill bebe aa veryvery smallsmall dotdot

 ProjectProject usingusing binoculars/telescopebinoculars/telescope  PhotographPhotograph withwith ~200~200 mmmm telephototelephoto lens,lens, oror longerlonger ¾ rememberremember thethe solarsolar filter!filter! JeremiahJeremiah HorrocksHorrocks (1619(1619 –– 1641)1641)

 Horrocks predicted the 1639 transit and observed it, as did his friend Wm Crabtree  Horrocks deduced improved orbital parameters for Venus

William Crabtree, Horrock’s friend 24th Nov 1639 Old-style calendar JamesJames GregoryGregory (1638(1638 –– 1675)1675)

 BrilliantBrilliant mathematicianmathematician && astronomerastronomer fromfrom DrumoakDrumoak  FirstFirst suggestedsuggested thatthat observationobservation ofof thethe transittransit ofof VenusVenus couldcould determinedetermine thethe scalescale ofof thethe solarsolar systemsystem

Courtesy: University of Aberdeen EdmondEdmond HalleyHalley (1656(1656 –– 1742)1742)

St Helena Halley observed the transit of Mercury and worked out the details of finding the solar distance from the Transit of Venus observations

Plantation house 1812 66thth JuneJune 17611761 transittransit

 AA bigbig internationalinternational  CharlesCharles MasonMason (1730(1730 -- efforteffort 1786)1786)  JeremiahJeremiah DixonDixon (1733(1733 -- 1779)1779)

Transit of Venus from ceiling of the Paris Observatory Nevil Maskelyne (1732 – 1811) unsuccessful at St Helena

http://www.bdl.fr/Granpub/Promenade/ pages6/608.html 33rdrd JuneJune 17691769 TransitTransit

 CharlesCharles Green’sGreen’s && JamesJames Cook’sCook’s James Cook observationsobservations fromfrom TahitiTahiti werewere successfulsuccessful

Pictures courtesy: http://www.transitofvenus.org/historic.htm

Venus Point DavidDavid GillGill (1843(1843 –– 1914)1914)

 SirSir DavidDavid GillGill KCB,KCB, FRS,FRS, PRAS,PRAS, etc.etc.  OneOne ofof thethe 1919th century’scentury’s foremostforemost observationalobservational astronomersastronomers  HerHer Majesty’sMajesty’s astronomerastronomer atat thethe CapeCape ofof GoodGood HopeHope EnterEnter LordLord LindsayLindsay

 FounderFounder ofof thethe DunDun EchtEcht observatoryobservatory ¾ ~15~15 kmkm WestWest ofof AberdeenAberdeen  ThisThis observatoryobservatory waswas amongamong thethe bestbest equippedequipped inin thethe world,world, turningturning outout highlyhighly professionalprofessional astronomyastronomy Heliometer dome ↓

DavidDavid GillGill atat thethe CapeCape ObservatoryObservatory ResultsResults

 1761:1761: “solar“solar parallax”parallax” 8.288.28"" toto 10.20"10.20" ¾ Equivalent solar distances (159 – 129)×106 km  1769:1769: “solar“solar parallax”parallax” 8.438.43"" toto 8.80"8.80" ¾ Equivalent solar distances (156 – 149)×106 km  1919th centurycentury rere--analysisanalysis ¾ Encke (1825): 8.577" z Widely used but later discredited  EndEnd 1919th century:century: “solar“solar parallax”parallax” 8.788.78""  ModernModern value:value: “solar“solar parallax”parallax” 8.7941488.794148"" ¾ Equivalent solar distances 149.598×106 km ReferencesReferences

 David Sellers The Transit of Venus [Maga Velda Press, Leeds, 2001]  Eli Maor June 8 2004: Venus in transit [Princeton Univ. Press, 2000]

 http://www-astronomy.mps.ohio-state.edu/~pogge/Ast161/Unit4/venussun.html  http://www.transitofvenus.org/historic.htm  http://www.venus-transit.de/links.html library of refs

 VT-2004 international observing programme seeking active participation of amateurs from around the globe ¾ http://www.vt-2004.org/ PhotographicPhotographic animationanimation ofof thethe 18821882 transittransit

http://skyandtelescope.com/observing/objects/sun/article_1187_1.asp