On the Consistency of a Class of R-Symmetry Gauged 6D N = (1,0) Supergravities
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Renormalization Group Flows from Holography; Supersymmetry and a C-Theorem
© 1999 International Press Adv. Theor. Math. Phys. 3 (1999) 363-417 Renormalization Group Flows from Holography; Supersymmetry and a c-Theorem D. Z. Freedmana, S. S. Gubser6, K. Pilchc and N. P. Warnerd aDepartment of Mathematics and Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 b Department of Physics, Harvard University, Cambridge, MA 02138, USA c Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484, USA d Theory Division, CERN, CH-1211 Geneva 23, Switzerland Abstract We obtain first order equations that determine a super symmetric kink solution in five-dimensional Af = 8 gauged supergravity. The kink interpo- lates between an exterior anti-de Sitter region with maximal supersymme- try and an interior anti-de Sitter region with one quarter of the maximal supersymmetry. One eighth of supersymmetry is preserved by the kink as a whole. We interpret it as describing the renormalization group flow in J\f = 4 super-Yang-Mills theory broken to an Af = 1 theory by the addition of a mass term for one of the three adjoint chiral superfields. A detailed cor- respondence is obtained between fields of bulk supergravity in the interior anti-de Sitter region and composite operators of the infrared field theory. We also point out that the truncation used to find the reduced symmetry critical point can be extended to obtain a new Af = 4 gauged supergravity theory holographically dual to a sector of Af = 2 gauge theories based on quiver diagrams. e-print archive: http.y/xxx.lanl.gov/abs/hep-th/9904017 *On leave from Department of Physics and Astronomy, USC, Los Angeles, CA 90089 364 RENORMALIZATION GROUP FLOWS We consider more general kink geometries and construct a c-function that is positive and monotonic if a weak energy condition holds in the bulk gravity theory. -
Varying Fundamental Constants and Particle Physics
Varying fundamental constants and particle physics Rikard Enberg Tanumoy Mandal Uppsala Seminar, 2017-04-06 Overview • The general idea • Old idea: Varying electromagnetic coupling • Particle physics à new scalar particles • Generalization to SU(3) × SU(2) × U(1) • Generalization to Yukawa couplings • Collider signatures All results in this talk are based on work with Ulf Danielsson, Gunnar Ingelman, Tanumoy Mandal: arXiv:1601.00624 (Nucl. Phys. B, in press) and a forthcoming paper 2 Free parameters of the SM Fundamental constant: a parameter that cannot be explained by the theory (even in principle) How many parameters are there in the Standard Model? • 19: Yukawas, gauge couplings, CKM, theta, Higgs • 26: If we include neutrino mixing and masses • 27: If we include the cosmological constant • 31–37: If we add cosmological standard model [See e.g. Tegmark et al., PRD 73 (2006) 023505] And then there are c, ħ, G, kB, etc. … Recommended reading: R.N. Cahn, Rev. Mod. Phys. 68 (1996) 951-960 M.J. Duff, arXiv:1412.2040 3 From Wikipedia, “Standard Model” Wikipedia, “Standard From 4 What are the fundamental constants and what are just units? • There’s a debate in the literature about what are the fundamental constants, and how many are there. [e.g. Duff, Okun. Veneziano, arXiv:physics/0110060] • Michael Duff in particular argues that only dimensionless constants are fundamental. Dimensionful constants are just unit conversions (Fathoms and nautical miles) speed of light = 1 lightyear/year • “Asking whether c has varied over cosmic history … is like asking whether the number of litres to the gallon has varied” [M.J. -
Coordinate Space Approach to Double Copy Michael Duff Imperial College
Coordinate space approach to double copy Michael Duff Imperial College London based on [arXiv:1301.4176 arXiv:1309.0546 arXiv:1312.6523 arXiv:1402.4649 arXiv:1408.4434 arXiv:1602.08267 arXiv:1610.07192 arXiv:1707.03234 arXiv:1711.08476 arXiv:1807.02486 A. Anastasiou, L. Borsten, M. J. Duff, M. Hughes, A. Marrani, S. Nagy and M. Zoccali] Copenhagen August 2018 Basic idea Strong nuclear, Weak nuclear and Electromagnetic forces described by Yang-Mills gauge theory (non-abelian generalisation of Maxwell). Gluons, W, Z and photons have spin 1. Gravitational force described by Einstein’s general relativity. Gravitons have spin 2. But maybe (spin 2) = (spin 1)2. If so: 1) Do global gravitational symmetries follow from flat-space Yang-Mills symmetries? 2) Do local gravitational symmetries and Bianchi identities follow from flat-space Yang-Mills symmetries? 3) What about twin supergravities with same bosonic lagrangian but different fermions? 4) Are all supergravities Yang-Mills squared? Gravity as square of Yang-Mills A recurring theme in attempts to understand the quantum theory of gravity and appears in several different forms: Closed states from products of open states and KLT relations in string theory [Kawai, Lewellen, Tye:1985, Siegel:1988], On-shell D = 10 Type IIA and IIB supergravity representations from on-shell D = 10 super Yang-Mills representations [Green, Schwarz and Witten:1987], Vector theory of gravity [Svidzinsky 2009] Supergravity scattering amplitudes from those of super Yang-Mills in various dimensions, [Bern, Carrasco, Johanson:2008, 2010; Bern, Huang, Kiermaier, 2010: Bjerrum-Bohr, Damgaard, Monteiro, O’Connell 2012,Montiero, O’Connell, White 2011, 2014, Bianchi:2008, Elvang, Huang:2012, Cachazo:2013, Dolan:2013] Ambitwistor strings [Hodges:2011, Mason:2013, Geyer:2014] See talks by [Goldberger, Montiero, O’Connell] Gravity from Yang-Mills LOCAL SYMMETRIES: general covariance, local lorentz invariance, local supersymmetry, local p-form gauge invariance [ arXiv:1408.4434, Physica Scripta 90 (2015)] [ A. -
Solutions and Democratic Formulation of Supergravity Theories in Four Dimensions
Universidad Consejo Superior Aut´onoma de Madrid de Investigaciones Cient´ıficas Facultad de Ciencias Instituto de F´ısica Te´orica Departamento de F´ısica Te´orica IFT–UAM/CSIC Solutions and Democratic Formulation of Supergravity Theories in Four Dimensions Mechthild Hubscher¨ Madrid, May 2009 Copyright c 2009 Mechthild Hubscher.¨ Universidad Consejo Superior Aut´onoma de Madrid de Investigaciones Cient´ıficas Facultad de Ciencias Instituto de F´ısica Te´orica Departamento de F´ısica Te´orica IFT–UAM/CSIC Soluciones y Formulaci´on Democr´atica de Teor´ıas de Supergravedad en Cuatro Dimensiones Memoria de Tesis Doctoral realizada por Da Mechthild Hubscher,¨ presentada ante el Departamento de F´ısica Te´orica de la Universidad Aut´onoma de Madrid para la obtenci´on del t´ıtulo de Doctora en Ciencias. Tesis Doctoral dirigida por Dr. D. Tom´as Ort´ın Miguel, Investigador Cient´ıfico del Consejo Superior de Investigaciones Cient´ıficas, y Dr. D. Patrick Meessen, Investigador Contratado por el Consejo Superior de Investigaciones Cient´ıficas. Madrid, Mayo de 2009 Contents 1 Introduction 1 1.1 Supersymmetry, Supergravity and Superstring Theory . ....... 1 1.2 Gauged Supergravity and the p-formhierarchy . 10 1.3 Supersymmetric configurations and solutions of Supergravity ..... 18 1.4 Outlineofthisthesis............................ 23 2 Ungauged N =1, 2 Supergravity in four dimensions 25 2.1 Ungauged matter coupled N =1Supergravity. 25 2.1.1 Perturbative symmetries of the ungauged theory . ... 27 2.1.2 Non-perturbative symmetries of the ungauged theory . ..... 33 2.2 Ungauged matter coupled N =2Supergravity. 35 2.2.1 N = 2, d =4SupergravityfromStringTheory . 42 3 Gauging Supergravity and the four-dimensional tensor hierarchy 49 3.1 Theembeddingtensorformalism . -
UNIVERSITY of CALIFORNIA Los Angeles Conformal Defects In
UNIVERSITY OF CALIFORNIA Los Angeles Conformal Defects in Gauged Supergravity A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics by Matteo Vicino 2020 c Copyright by Matteo Vicino 2020 ABSTRACT OF THE DISSERTATION Conformal Defects in Gauged Supergravity by Matteo Vicino Doctor of Philosophy in Physics University of California, Los Angeles, 2020 Professor Michael Gutperle, Chair In this dissertation, we explore 1/2-BPS conformal defects that are holographically realized as a warped product of anti-de Sitter spacetime and a circle in gauged supergravity. These solutions can be obtained as the double analytic continuation of BPS black holes with hy- perbolic horizons. Observables including the expectation value of the defect and one-point functions of fields in the presence of the defect are calculated. In Chapter 1, we present a brief review of the AdS/CFT correspondence and its super- gravity approximation together with an introduction to conformal defects. In Chapter 2, we construct a singular spacetime in pure D = 4;N = 2 gauged supergravity dual to a 1/2-BPS conformal line defect. In Chapter 3, we show that the coupling of vector multiplets to the previous solution is capable of removing the singularity and present several examples. In Chapter 4, we construct solutions in D = 5;N = 4 gauged supergravity dual to 1/2-BPS surface operators in N = 2 superconformal field theories. ii The dissertation of Matteo Vicino is approved. Thomas Dumitrescu Eric D'Hoker Per Kraus Michael Gutperle, Committee Chair University of California, Los Angeles 2020 iii Table of Contents 1 Introduction :::::::::::::::::::::::::::::::::::::: 1 1.1 The AdS/CFT Correspondence . -
Introduction to Supergravity
Introduction to Supergravity Lectures presented by Henning Samtleben at the 13th Saalburg School on Fundamentals and New Methods in Theoretical Physics, September 3 { 14, 2007 typed by Martin Ammon and Cornelius Schmidt-Colinet ||| 1 Contents 1 Introduction 3 2 N = 1 supergravity in D = 4 dimensions 4 2.1 General aspects . 4 2.2 Gauging a global symmetry . 5 2.3 The vielbein formalism . 6 2.4 The Palatini action . 9 2.5 The supersymmetric action . 9 2.6 Results . 14 3 Extended supergravity in D = 4 dimensions 16 3.1 Matter couplings in N = 1 supergravity . 16 3.2 Extended supergravity in D = 4 dimensions . 17 4 Extended supergravity in higher Dimensions 18 4.1 Spinors in higher dimensions . 18 4.2 Eleven-dimensional supergravity . 20 4.3 Kaluza-Klein supergravity . 22 4.4 N = 8 supergravity in D = 4 dimensions . 26 A Variation of the Palatini action 27 2 1 Introduction There are several reasons to consider the combination of supersymmetry and gravitation. The foremost is that if supersymmetry turns out to be realized at all in nature, then it must eventually appear in the context of gravity. As is characteristic for supersymmetry, its presence is likely to improve the quantum behavior of the theory, particularly interesting in the context of gravity, a notoriously non-renormalizable theory. Indeed, in supergravity divergences are typically delayed to higher loop orders, and to date it is still not ruled out that the maximally supersymmetric extension of four-dimensional Einstein gravity might eventually be a finite theory of quantum gravity | only recently very tempting indications in this direction have been unvealed. -
Quantum Gravity: a Primer for Philosophers∗
Quantum Gravity: A Primer for Philosophers∗ Dean Rickles ‘Quantum Gravity’ does not denote any existing theory: the field of quantum gravity is very much a ‘work in progress’. As you will see in this chapter, there are multiple lines of attack each with the same core goal: to find a theory that unifies, in some sense, general relativity (Einstein’s classical field theory of gravitation) and quantum field theory (the theoretical framework through which we understand the behaviour of particles in non-gravitational fields). Quantum field theory and general relativity seem to be like oil and water, they don’t like to mix—it is fair to say that combining them to produce a theory of quantum gravity constitutes the greatest unresolved puzzle in physics. Our goal in this chapter is to give the reader an impression of what the problem of quantum gravity is; why it is an important problem; the ways that have been suggested to resolve it; and what philosophical issues these approaches, and the problem itself, generate. This review is extremely selective, as it has to be to remain a manageable size: generally, rather than going into great detail in some area, we highlight the key features and the options, in the hope that readers may take up the problem for themselves—however, some of the basic formalism will be introduced so that the reader is able to enter the physics and (what little there is of) the philosophy of physics literature prepared.1 I have also supplied references for those cases where I have omitted some important facts. -
String Theory and Our Relationship with Nature: the Convergence of Science, Curriculum Theory, and the Environment
Georgia Southern University Digital Commons@Georgia Southern Electronic Theses and Dissertations Graduate Studies, Jack N. Averitt College of Fall 2010 String Theory and Our Relationship with Nature: The Convergence of Science, Curriculum Theory, and the Environment Virginia Therese Bennett Follow this and additional works at: https://digitalcommons.georgiasouthern.edu/etd Recommended Citation Bennett, Virginia Therese, "String Theory and Our Relationship with Nature: The Convergence of Science, Curriculum Theory, and the Environment" (2010). Electronic Theses and Dissertations. 530. https://digitalcommons.georgiasouthern.edu/etd/530 This dissertation (open access) is brought to you for free and open access by the Graduate Studies, Jack N. Averitt College of at Digital Commons@Georgia Southern. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons@Georgia Southern. For more information, please contact [email protected]. STRING THEORY AND OUR RELATIONSHIP WITH NATURE: THE CONVERGENCE OF SCIENCE, CURRICULUM THEORY, AND THE ENVIRONMENT by VIRGINIA THERESE BENNETT (Under the Direction of John A. Weaver) ABSTRACT Curriculum Theory affords us the opportunity to examine education from a multitude of directions. This work takes advantage of that opportunity to explore the relationships between science, nature, and curriculum using string theory and our ideas about the environment as a backdrop. Both the energy and multiple possibilities created by strings and the rich history leading up to the theory help to illustrate the many opportunities we have to advance discussions in alternative ways of looking at science. By considering the multiple dimensions inherent in string theory as multiple pathways and interweaving metaphors from Deleuze and Guattari, Michel Serres, and Donna Haraway, our approach to environmental issues and environmental education allow us to include alternative ways of looking at the world. -
Constellations Education Resource Pack
CONSTELLATIONS BACKGROUND RESOURCES CONTENTS 1. About the Production 2. About the Writer 3. About the Play 4 & 5. Interview with Nick Payne 6. Interview with Lucy Cullingford 7. Practical Activities 8. Scene Study 9. Further Reading and Education at The Royal Court These resources are intended to give teachers and students a detailed insight into the creative process behind developing and staging Constellations. Through interviews, production notes and rehearsal techniques, they demonstrate how the writer, director and cast worked in collaboration to create the show. We aim to provide useful information and opportunities to help students discover the unique world of the play for themselves. DUKE OF YORKS THEATRE Constellations by Nick Payne Constellations had its premier at The Royal Court Jerwood Downstairs on Friday 13th January 2012 Constellations had its premier at The Duke of Yorks Theatre on Friday 9th November 2012 by Nick Payne Marianne Sally Hawkins Roland Rafe Spall Director Michael Longhurst Designer Tom Scutt Lighting Designer Lee Curran Composer Simon Slater Sound Designer David McSeveney Casting Director Amy Ball Assistant Director Sam Caird Production Manager Tariq Rifaat Movement Director Lucy Cullingford BSLBT Consultant Daryl Jackson Fight Director Kate Waters Stage Managers Rhiannon Harper, Bryan Paterson Stage Management Work Placement Amy Burkett Costume Supervisor Iona Kenrick WHAT THE CRITICS SAY: “Payne announced himself as a dramatist of rich humanity, vitality and promise. Here he makes a quantum leap with a -
Supergravity with a Single Superfield
Ph.D. Thesis Inflation in Supergravity with a Single Superfield Takahiro Terada Advanced Leading Graduate Course for Photon Science, and Department of Physics, Graduate School of Science, The University of Tokyo Research Fellow of Japan Society for the Promotion of Science arXiv:1508.05335v1 [hep-th] 21 Aug 2015 Submitted: December 16, 2014 Defended: January 20, 2015 Revised for Library: February 17, 2015 Revised for arXiv: August 20, 2015 Thesis Advisor: Prof. Koichi Hamaguchi, Chief Examiner: Prof. Hitoshi Murayama, Co-Examiner: Prof. Masaki Ando, Co-Examiner: Prof. Shigeki Matsumoto, Co-Examiner: Prof. Yuji Tachikawa, Co-Examiner: Prof. Taizan Watari. Abstract Supergravity is a well-motivated theory beyond the standard model of particle physics, and a suitable arena to study high-energy physics at the early universe including inflation, whose observational evidences are growing more and more. Inflation in supergravity, how- ever, can not be trivially described because of restrictions from supersymmetry. The scalar potential has an exponential factor and a large negative term whereas a flat and positive potential is needed to realize inflation. The standard method to obtain a suitable infla- tionary scalar potential requires an additional superfield to the one containing inflaton. In this thesis, we propose and develop an alternative method which does not require the ad- ditional superfield and thus reduces the necessary degrees of freedom by half. That is, we study inflation in supergravity with only a single chiral superfield which contains inflaton. We accomplish it by introducing a higher dimensional term in the inflaton K¨ahlerpotential, which plays an important dual role: fixing the value of the scalar superpartner of the inflaton resulting in effective single field models, and ensuring the positivity of the inflaton potential at the large field region. -
Arxiv:1701.02422V1 [Hep-Th] 10 Jan 2017 Asnmes 46.M 11.15.Bt 04.60.-M, Numbers: PACS Operators
UCLA/16/TEP/103 SLAC–PUB–16905 Two-Loop Renormalization of Quantum Gravity Simplified Zvi Berna, Huan-Hang Chib, Lance Dixonb and Alex Edisona aMani L. Bhaumik Institute for Theoretical Physics Department of Physics and Astronomy University of California at Los Angeles Los Angeles, CA 90095, USA bSLAC National Accelerator Laboratory Stanford University Stanford, CA 94309, USA Abstract The coefficient of the dimensionally regularized two-loop R3 divergence of (nonsupersymmetric) gravity theories has recently been shown to change when non-dynamical three forms are added to the theory, or when a pseudo-scalar is replaced by the anti-symmetric two-form field to which it is dual. This phenomenon involves evanescent operators, whose matrix elements vanish in four dimensions, including the Gauss-Bonnet operator which is also connected to the trace anomaly. On the other hand, these effects appear to have no physical consequences in renormalized scattering arXiv:1701.02422v1 [hep-th] 10 Jan 2017 processes. In particular, the dependence of the two-loop four-graviton scattering amplitude on the renormalization scale is simple. In this paper, we explain this result for any minimally-coupled massless gravity theory with renormalizable matter interactions by using unitarity cuts in four dimensions and never invoking evanescent operators. PACS numbers: 04.60.-m, 11.15.Bt 1 I. INTRODUCTION Recent results show that the ultraviolet structure of gravity is much more interesting and subtle than might be anticipated from standard considerations. One example of a new ultraviolet surprise is the recent identification of “enhanced ultraviolet cancellations” in certain supergravity theories [1, 2], which are as yet unexplained by standard symme- tries [3]. -
On the Vacua of N = 8 Gauged Supergravity in 4 Dimensions Arxiv
DFPD-11/TH/17 ROM2F/2011/18 On the vacua of N = 8 gauged supergravity in 4 dimensions G. Dall'Agata1;2 and G. Inverso3;4 1Dipartimento di Fisica \Galileo Galilei" Universit`adi Padova, Via Marzolo 8, 35131 Padova, Italy 2INFN, Sezione di Padova Via Marzolo 8, 35131 Padova, Italy 3Dipartimento di Fisica, Universit`adi Roma \Tor Vergata" Via della Ricerca Scientifica, 00133 Roma, Italy 4INFN, Sezione di Roma Via della Ricerca Scientifica, 00133 Roma, Italy ABSTRACT We discuss a simple procedure for finding vacua of gauged supergravity models, based on the variation of the embedding tensor rather than on a direct minimization of the scalar arXiv:1112.3345v2 [hep-th] 23 Jan 2012 potential. We apply this procedure to N = 8 gauged supergravity in 4 dimensions. We easily recover many of the previously known vacua, also completing their scalar mass spectrum, and we apply our procedure to find a dozen of new analytical vacuum solutions. The analysis shows an interesting structure on the moduli spaces of these vacua and provides new criteria to determine the expected value of the cosmological constant by a simple inspection of the group properties of the embedding tensor. 1 Introduction The maximal supersymmetric gravity theory in 4 dimensions has received a lot of attention since its discovery because of its unique matter content and its special properties. The hope that it could be used as a basis to construct a unified theory of gauge interactions in the context of a sensible quantum gravity theory has been hampered by the lack of chiral fermions. However, N = 8 supergravity is still at the center of current investigations because of its possible perturbative finiteness and because its massive deformations (gauged models) can be related via the gauge/gravity correspondence to the theories of stacks of M2-branes.