Steven Charles Williams

Total Page:16

File Type:pdf, Size:1020Kb

Steven Charles Williams EXTRAGALACTIC NOVAE AND THEIR PROGENITORS Steven Charles Williams A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy. April 2014 The copyright of this thesis rests with the author. No quotation from it should be published without prior written consent and information derived from it should be acknowledged °c Steven Charles Williams (2014). ii Declaration The work presented in this thesis was carried out at the Astrophysics Research Institute, Faculty of Science, Liverpool John Moores University. Unless otherwise stated, it is the original work of the author. While registered as a candidate for the degree of Doctor of Philosophy, for which submission is now made, the author has not been registered as a candidate for any other award. This thesis has not been submitted in whole, or in part, for any other degree. Steven Charles Williams Astrophysics Research Institute Liverpool John Moores University IC2, Liverpool Science Park 146 Brownlow Hill Liverpool L3 5RF UK April 2014 iii Abstract Novae are binary systems containing a white dwarf (WD) and a less-evolved compan- ion star, either a main-sequence, sub-giant or red giant star. The WD accretes matter from the companion through Roche lobe overflow or via a stellar wind. As material is accreted, the pressure and temperature at the base of the accreted envelope increase until a thermonuclear runaway occurs. This causes a sudden increase in brightness (the outburst), which ranks among the most luminous stellar astrophysical phenomena. Following the outburst, some novae form detectable dust in the ejecta. Observationally, there is a correlation between the dust-formation timescale and the time it takes the nova to fade optically by two magnitudes, which was emphasised in a study of infrared emission from novae in the Andromeda Galaxy (M31). In the first part of this thesis, a simple theoretical model is presented, which considers the higher-energy photons produced by the nova being absorbed by neutral hydrogen in the ejecta, before they can reach the potential dust-formation sites. This new model successfully replicates the observed trend between these two parameters and agrees well with the observational data. The majority of novae are thought to consist of a WD and a main-sequence star, al- though some systems harbour a sub-giant (SG-novae) or red giant (RG-novae) com- panion instead. In the Milky Way galaxy, relatively few RG-novae have been con- firmed, although in many systems, the evolutionary state of the secondary is simply not known. There is evidence that the progenitors of some Type Ia supernovae (SNe Ia) may be RG-nova systems (e.g. SN PTF11kx), therefore it is important to under- stand the population of such systems. In this thesis, archival Hubble Space Telescope iv (HST) data are used to search for RG-novae in M31. Many more novae are discovered in M31 each year (∼30) than in the Milky Way (∼10). Distance determination is a major complication when studying Galactic novae. However, at the distance of M31 all the novae may be considered to be at the same distance, making M31 an excellent environment for studying nova populations. We conducted a survey of 38 spectroscopically confirmed M31 novae in quiescence. We determined that 11 of these systems had a coincident progenitor candidate whose probability of being a chance alignment with a resolved source in the HST data was ≤ 5%. As the main sequence and the majority of the sub-giant branch are not resolvable in the HST data, this implies that a significant proportion of these systems contain red giant secondaries. The light curves of several M31 novae are also presented here, some of which use HST data to extend the light curves far deeper than is typically possible for extragalactic systems. A statistical study was then carried out to test the results of the survey and derive an estimate of the proportion of M31 novae associated with a resolved source in the HST data. This includes, for example, models of the spatial distribution, speed class and peak magnitude of the M31 nova population, as well as considering biases introduced +0.16 by the HST coverage of M31. The initial results suggest 0.38−0.12 of M31 novae are associated with a source in the HST data, a class of objects expected to be dominated by RG-novae. This is a much greater proportion than that observed so far in our Galaxy, and will be important when considering such systems as potential SN Ia candidates. The spatial distribution of novae that have resolved progenitor candidates is consistent with these systems being associated with the M31 disk, rather than the bulge. The method used to locate the progenitors of M31 novae was also used to study three additional systems. The M31 nova, M31N 2008-12a, which appears to be a recurrent nova (RN) with a very short inter-outburst period, produced an outburst in November 2013. This outburst was studied and a candidate progenitor system was found in HST data when it was apparently in quiescence, supporting its classification as a RN with a high accretion rate. The method was also used to explore upper limits on the brightness of the progenitor of SN 2014J, a SN Ia in M82, although no progenitor was found, a v RG-nova (or in-fact any type of system) could not be ruled out due to the limitations of the data. For the M31 transient TCP J00403295+4034387, which showed an unusual spectrum, archival HST data were used to show the object was probably a blend of two objects with a very small apparent separation. Finally, the thesis is summarised, and future work on both dust formation and the progenitor search are discussed. vi Publications Refereed Journals: Williams, S. C., Bode, M. F., Darnley, M. J., Evans, A., Zubko, V. and Shafter, A. W., 2013, ApJ, 777, L32 – Rapid Dust Formation in Novae: The Speed Class−Formation Timescale Correlation Explained Henze, M., Ness, J.-U., Darnley, M. J., Bode, M. F., Williams, S. C., Shafter, A. W., Kato, M. and Hachisu, I., 2014, A&A, 563, L8 – A remarkable recurrent nova in M31: The X-ray observations Darnley, M. J., Williams, S. C., Bode, M. F., Henze, M., Ness, J.-U., Shafter, A. W., Hornoch, K. and Votruba, V., 2014, A&A, 563, L9 – A remarkable recurrent nova in M31: The optical observations Williams, S. C., Darnley, M. J., Bode, M. F., Keen, A. and Shafter A. W., 2014, ApJS, accepted (arXiv:1405.4874) – On the Progenitors of Local Group Novae - I. The M31 Catalog Williams, S. C., Darnley, M. J., Bode, M. F. and Shafter, A. W., ApJ, in preparation – On the Progenitors of Local Group Novae - II. vii Telegrams: Shafter, A. W., Darnley, M. J., Bode, M. F., Williams, S. C., Hornoch, K. and Ciar- dullo, R., 2011, ATel, 3806 – Spectroscopic observations of the M31 optical transient, TCP J00403295+4034387 Williams, S. C., Darnley, M. J., Bode, M. F. and Shafter, A. W., 2013, ATel, 5611 – A Candidate Recurrent Nova in M31: The Progenitor System? Henze, M., Ness, J.-U., Bode, M. F., Darnley, M. J. and Williams, S. C., 2013, ATel, 5627 – A Candidate Recurrent Nova in M31: A fast supersoft X-ray counterpart found with Swift XRT Henze, M., Ness, J.-U., Bode, M. F., Darnley, M. J., Williams, S. C. and Shafter, A. W., 2013, ATel, 5633 – A Candidate Recurrent Nova in M31: X-ray and UV short- term variability with Swift Henze, M., Ness, J.-U., Bode, M. F., Darnley, M. J., Williams, S. C. and Shafter, A. W., 2013, ATel, 5687 – A recent M 31 nova found as a supersoft X-ray source with Swift Williams, S. C., Darnley, M. J., Bode, M. F., Shafter, A. W., Zhang, J. J., Mazzali, P. and Pian, E., 2014, ATel, 5723 – Spectroscopic Classification of the M31 Nova Candidate PNV J00425172+4118142 Williams, S. C., Darnley, M. J., Bersier, D. F., Bode, M. F., James, P. A. and Mazzali, P., 2014, ATel, 5824 – SN 2014J: HST archival observations do not preclude Recurrent or Classical Nova progenitor system Conference Proceedings: Darnley, M. J., Bode, M. F., Harman, D. J., Hounsell, R. A., Munari, U., Ribeiro, V. A. R. M., Surina, F., Williams, R. P. and Williams, S. C., 2013, in Stella Novae: Future and Past Decades, P. A. Woudt & V. A. R. M. Ribeiro (eds), ASPCS, in press viii (arXiv:1303.2711) – On the Galactic Nova Progenitor Population Williams, S. C., Darnley, M. J., Bode, M .F., Shafter, A. W., 2013, in Stella Novae: Future and Past Decades, P. A. Woudt & V. A. R. M. Ribeiro (eds), ASPCS, in press (arXiv:1303.1980) – On the M31 Nova Progenitor Population Williams, S. C., Bode, M .F., Darnley, M. J., Zubko, V., Evans, A. and Shafter, A. W., 2013, in Stella Novae: Future and Past Decades, P. A. Woudt & V. A. R. M. Ribeiro (eds), ASPCS, in press – Rapid Dust Formation in Novae: Speed Class and Grain Formation Timescale ix Acknowledgements First and foremost, I would like to thank my supervisors, Dr Matt Darnley and Prof. Mike Bode for their help, support and guidance throughout these last three and a half years. I would like to extend these thanks to everyone at the ARI, past and present, that made my time here enjoyable. I would particularly like to thank fellow students Matt Prescott, Rob Barnsley, Dave Eden, Rich Harrison and Joe Lyman. The many pub trips, and the laughs and adventures we’ve had along the way, is what has made my stay in Liverpool really enjoyable.
Recommended publications
  • Pos(BASH 2013)009 † ∗ [email protected] Speaker
    The Progenitor Systems and Explosion Mechanisms of Supernovae PoS(BASH 2013)009 Dan Milisavljevic∗ † Harvard University E-mail: [email protected] Supernovae are among the most powerful explosions in the universe. They affect the energy balance, global structure, and chemical make-up of galaxies, they produce neutron stars, black holes, and some gamma-ray bursts, and they have been used as cosmological yardsticks to detect the accelerating expansion of the universe. Fundamental properties of these cosmic engines, however, remain uncertain. In this review we discuss the progress made over the last two decades in understanding supernova progenitor systems and explosion mechanisms. We also comment on anticipated future directions of research and highlight alternative methods of investigation using young supernova remnants. Frank N. Bash Symposium 2013: New Horizons in Astronomy October 6-8, 2013 Austin, Texas ∗Speaker. †Many thanks to R. Fesen, A. Soderberg, R. Margutti, J. Parrent, and L. Mason for helpful discussions and support during the preparation of this manuscript. c Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. http://pos.sissa.it/ Supernova Progenitor Systems and Explosion Mechanisms Dan Milisavljevic PoS(BASH 2013)009 Figure 1: Left: Hubble Space Telescope image of the Crab Nebula as observed in the optical. This is the remnant of the original explosion of SN 1054. Credit: NASA/ESA/J.Hester/A.Loll. Right: Multi- wavelength composite image of Tycho’s supernova remnant. This is associated with the explosion of SN 1572. Credit NASA/CXC/SAO (X-ray); NASA/JPL-Caltech (Infrared); MPIA/Calar Alto/Krause et al.
    [Show full text]
  • Planning the VLT Interferometer
    No. 60 - -.June 1990 --, Planning the VLTVLT Interferometer J. M. BECKERS, ESO 1. The VlVLTT Interferometer: VLTVLT Reports 44 and 49), the interfero­interfero- approved YLTVLT implementation. P. LemaLena One of the Operating Modes metric mode of the VLVLTT was indudedincluded in described the concept and planning torfor ofoftheVLT the VLT the VLTVLT proposal, and accepted inin theIhe the inlerferometricinterferometric mode of the VLTVLT at 1.1.11 Itsfts Context Adaptive Optics at the ESO 3.6-m Telescope The Very Large Telescope has three differenldifferent modes of being used. As four separate 8-metre telescopes it provides theIhe capabililycapability of carrying out in parallel tourfour different observing programmes, each with a sensitivitysensilivity which matches that of the other most powerful ground­ground- based telescopes available. In the sec­sec- ond mode the light of the four tele-lele­ scopes is combined in a single imageimage making ilit inin sensitivity the most powerful telescope on earth, almost 16t6 metres in diameter if the light losses in the beam eombinationcombination canean be kept low. In the third mode Ihethe light of the four tele-tele­ scopes is combined coherenlly,coherently, allow­allow- This faise-colourfalse-colour photo illustrates the dramatiedramatic improvement in image sharpness whiehwhich is ing interferomelrlcinterferometric observations with the obtained with adaptive optiesoptics at the ESO 3.6·m3.6-m telescope. seeSee also the artielearticle on page 9. unparalleled sensitivity resulting fromtrom I1It shows the 5.5 magnitudemagnilude star HR 6658 in the galacticga/aeUe eluslercluster Messier 7 (NGC 6475), as the 8-metre apertures. In this mode theIhe observed in the infrared L·bandL-band (wavelength 3.5pm),3.Sllm), without ("ullcorrecled",("uncorrected", left) alldand with angular resolulionresolution is determined by the "corrected","corrected, right) the "VL"VLTT adaptive optics prototype" switched on.
    [Show full text]
  • How Supernovae Became the Basis of Observational Cosmology
    Journal of Astronomical History and Heritage, 19(2), 203–215 (2016). HOW SUPERNOVAE BECAME THE BASIS OF OBSERVATIONAL COSMOLOGY Maria Victorovna Pruzhinskaya Laboratoire de Physique Corpusculaire, Université Clermont Auvergne, Université Blaise Pascal, CNRS/IN2P3, Clermont-Ferrand, France; and Sternberg Astronomical Institute of Lomonosov Moscow State University, 119991, Moscow, Universitetsky prospect 13, Russia. Email: [email protected] and Sergey Mikhailovich Lisakov Laboratoire Lagrange, UMR7293, Université Nice Sophia-Antipolis, Observatoire de la Côte d’Azur, Boulevard de l'Observatoire, CS 34229, Nice, France. Email: [email protected] Abstract: This paper is dedicated to the discovery of one of the most important relationships in supernova cosmology—the relation between the peak luminosity of Type Ia supernovae and their luminosity decline rate after maximum light. The history of this relationship is quite long and interesting. The relationship was independently discovered by the American statistician and astronomer Bert Woodard Rust and the Soviet astronomer Yury Pavlovich Pskovskii in the 1970s. Using a limited sample of Type I supernovae they were able to show that the brighter the supernova is, the slower its luminosity declines after maximum. Only with the appearance of CCD cameras could Mark Phillips re-inspect this relationship on a new level of accuracy using a better sample of supernovae. His investigations confirmed the idea proposed earlier by Rust and Pskovskii. Keywords: supernovae, Pskovskii, Rust 1 INTRODUCTION However, from the moment that Albert Einstein (1879–1955; Whittaker, 1955) introduced into the In 1998–1999 astronomers discovered the accel- equations of the General Theory of Relativity a erating expansion of the Universe through the cosmological constant until the discovery of the observations of very far standard candles (for accelerating expansion of the Universe, nearly a review see Lipunov and Chernin, 2012).
    [Show full text]
  • Arxiv:Astro-Ph/0204354 V1 20 Apr 2002 1 DI Ilb Netdb Adlater) Hand by Inserted Be Will (DOI: Astrophysics & Astronomy H Uecn Dnicto Fi O a Confusing
    Astronomy & Astrophysics manuscript no. June 3, 2005 (DOI: will be inserted by hand later) Recurrent Nova IM Normae Taichi Kato1, Hitoshi Yamaoka2, William Liller3, and Berto Monard4 1 Department of Astronomy, Kyoto University, Kyoto 606-8502, Japan 2 Faculty of Science, Kyushu University, Fukuoka 810-8560, Japan 3 Center for Nova Studies, Casilla 5022 Renaca, Vi˜na del Mar, Chile 4 Bronberg Observatory, PO Box 11426, Tiegerpoort 0056, South Africa Received / accepted Abstract. We detected the second historical outburst of the 1920 nova IM Nor. Accurate astrometry of the outbursting object revealed the true quiescent counterpart having a magnitude of R=17.0 mag and B=18.0 mag. We show that the quiescent counterpart shows a noticeable variation. From the comparison of light curves and spectroscopic signatures, we propose that IM Nor and CI Aql comprise a new class of recurrent novae bearing some characteristics similar to those of classical novae. We interpret that the noticeable quiescent variation can be a result of either high orbital inclination, which may be also responsible for the low quiescent brightness, or the presence of high/low states. If the second possibility is confirmed by future observations, IM Nor becomes the first recurrent nova showing state changes in quiescence. Such state changes may provide a missing link between recurrent novae and supersoft X-ray sources. Key words. novae, cataclysmic variables — Stars: individual (IM Nor) 1. Introduction nal studies, Duerbeck (1987) reported the remeasured po- sition of the nova, and different candidates for the qui- IM Nor was originally discovered as a possible nova in 1920 escent counterpart, whose exact identification remained by I.
    [Show full text]
  • Meeting Program
    A A S MEETING PROGRAM 211TH MEETING OF THE AMERICAN ASTRONOMICAL SOCIETY WITH THE HIGH ENERGY ASTROPHYSICS DIVISION (HEAD) AND THE HISTORICAL ASTRONOMY DIVISION (HAD) 7-11 JANUARY 2008 AUSTIN, TX All scientific session will be held at the: Austin Convention Center COUNCIL .......................... 2 500 East Cesar Chavez St. Austin, TX 78701 EXHIBITS ........................... 4 FURTHER IN GRATITUDE INFORMATION ............... 6 AAS Paper Sorters SCHEDULE ....................... 7 Rachel Akeson, David Bartlett, Elizabeth Barton, SUNDAY ........................17 Joan Centrella, Jun Cui, Susana Deustua, Tapasi Ghosh, Jennifer Grier, Joe Hahn, Hugh Harris, MONDAY .......................21 Chryssa Kouveliotou, John Martin, Kevin Marvel, Kristen Menou, Brian Patten, Robert Quimby, Chris Springob, Joe Tenn, Dirk Terrell, Dave TUESDAY .......................25 Thompson, Liese van Zee, and Amy Winebarger WEDNESDAY ................77 We would like to thank the THURSDAY ................. 143 following sponsors: FRIDAY ......................... 203 Elsevier Northrop Grumman SATURDAY .................. 241 Lockheed Martin The TABASGO Foundation AUTHOR INDEX ........ 242 AAS COUNCIL J. Craig Wheeler Univ. of Texas President (6/2006-6/2008) John P. Huchra Harvard-Smithsonian, President-Elect CfA (6/2007-6/2008) Paul Vanden Bout NRAO Vice-President (6/2005-6/2008) Robert W. O’Connell Univ. of Virginia Vice-President (6/2006-6/2009) Lee W. Hartman Univ. of Michigan Vice-President (6/2007-6/2010) John Graham CIW Secretary (6/2004-6/2010) OFFICERS Hervey (Peter) STScI Treasurer Stockman (6/2005-6/2008) Timothy F. Slater Univ. of Arizona Education Officer (6/2006-6/2009) Mike A’Hearn Univ. of Maryland Pub. Board Chair (6/2005-6/2008) Kevin Marvel AAS Executive Officer (6/2006-Present) Gary J. Ferland Univ. of Kentucky (6/2007-6/2008) Suzanne Hawley Univ.
    [Show full text]
  • Radio Supernovae and the Square Kilometer Array
    RADIO SUPERNOVAE AND THE SQUARE KILOMETER ARRAY SCHUYLER D. VAN DYK IPAC/Caltech, MS 100-22, Pasadena, CA 91125, USA E-mail: [email protected] KURT W. WEILER & MARCOS J. MONTES Naval Research Lab, Code 7214, Washington, DC 20375-5320 USA E-mail: [email protected], [email protected] RICHARD A. SRAMEK NRAO/VLA, PO Box 0, Socorro, NM 87801 USA E-mail: [email protected] NINO PANAGIA STScI/ESA, 3700 San Martin Dr., Baltimore, MD 21218 USA E-mail: [email protected] Detailed radio observations of extragalactic supernovae are critical to obtaining valuable informa- tion about the nature and evolutionary phase of the progenitor star in the period of a few hundred to several tens-of-thousands of years before explosion. Additionally, radio observations of old super- novae (>20 years) provide important clues to the evolution of supernovae into supernova remnants, a gap of almost 300 years (SN 1680, Cas A, to SN 1923A) in our current knowledge. Finally, new empirical relations indicate that it may be possible to use some types of radio supernovae as distance yardsticks, to give an independent measure of the distance scale of the Universe. However, the study of radio supernovae is limited by the sensitivity and resolution of current radio telescope arrays. Therefore, it is necessary to have more sensitive arrays, such as the Square Kilometer Array and the several other radio telescope upgrade proposals, to advance radio supernova studies and our understanding of supernovae, their progenitors, and the connection to supernova remnants. 1 Supernovae Supernovae (SNe) play a vital role in galactic evolution through explosive nucleosynthesis and chemical enrichment, through energy input into the interstellar medium, through production of stellar remnants such as neutron stars, pulsars, and black holes, and by the production of cosmic rays.
    [Show full text]
  • The Deepest Radio Observations of Nearby Type IA Supernovae: Constraining Progenitor Types and Optimizing Future Surveys
    Draft version January 20, 2020 Typeset using LATEX default style in AASTeX63 The Deepest Radio Observations of Nearby Type IA Supernovae: Constraining Progenitor Types and Optimizing Future Surveys Peter Lundqvist,1, 2 Esha Kundu,1, 2, 3 Miguel A. Pérez-Torres,4, 5 Stuart D. Ryder,6, 7 Claes-Ingvar Björnsson,1 Javier Moldon,8 Megan K. Argo,8, 9 Robert J. Beswick,8 Antxon Alberdi,4 and Erik C. Kool1, 2, 6, 7 1Department of Astronomy, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden 2The Oskar Klein Centre, AlbaNova, SE-10691 Stockholm, Sweden 3Curtin Institute of Radio Astronomy, Curtin University, GPO Box U1987, Perth WA 6845, Australia 4Instituto de Astrofísica de Andalucía, Glorieta de las Astronomía, s/n, E-18008 Granada, Spain 5Visiting Scientist: Departamento de Física Teorica, Facultad de Ciencias, Universidad de Zaragoza, Spain 6Dept. of Physics and Astronomy, Macquarie University, Sydney NSW 2109, Australia 7Australian Astronomical Observatory, 105 Delhi Rd, North Ryde, NSW 2113, Australia 8Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, M13 9PL, UK 9Jeremiah Horrocks Institute, University of Central Lancashire, Preston PR1 2HE, UK (Received December 30, 2019; Revised January 15, 2020; Accepted January 16, 2020) ABSTRACT We report deep radio observations of nearby Type Ia Supernovae (SNe Ia) with the electronic Multi-Element Radio Linked Interferometer Net-work (e-MERLIN), and the Australia Telescope Compact Array (ATCA). No detections were made. With standard assumptions for the energy densities of relativistic electrons going into a power-law energy distribution, and the magnetic field strength (e = B = 0:1), we arrive at the upper limits on mass-loss rate for the progenitor system of SN 2013dy (2016coj, 2018gv, 2018pv, 2019np), to be Û −8 −1 −1 M ∼< 12 ¹2:8; 1:3; 2:1; 1:7º × 10 M yr ¹vw/100 km s º, where vw is the wind speed of the mass loss.
    [Show full text]
  • Interacting Binaries No
    Interacting Binaries No. 16, June 6, 2003 An Electronic Newsletter Editors: Boris T. Gansic¨ ke Dept. of Physics & Astronomy, University of Southampton, Southampton SO17 1BJ, UK Jens Kube Stiftung Alfred-Wegener-Institut fur¨ Polar- und Meeresforschung, Koldewey-Station, N-9173 Ny-Alesund,˚ Norway [email protected], http://astrocat.org/ibnews Contents 1 Editorial 2 2 Abstracts of refereed papers 3 – 1RXS J062518.2+733433: A new intermediate polar Araujo-Betancor et al. 3 – RX J0042.3+4115: a stellar mass black hole binary identified in M31 Barnard et al. 3 – Physical changes during Z-track movement in Sco X-1 on the flaring branch Barnard et al. 4 – Anomalous ultraviolet line flux ratios in the cataclysmic variables 1RXS J232953.9+062814, CE315, BZ UMa and EY Cyg observed with HST/STIS Gansic¨ ke et al. 4 – A new evolutionary channel for Type Ia supernovae King et al. 5 – CVcat: an interactive database on cataclysmic variables Kube et al. 5 – The Fe XXII I(11.92 A)/I(11.77˚ A)˚ Density Diagnostic Applied to the Chandra High Energy Trans- mission Grating Spectrum of EX Hydrae Mauche et al. 5 – The formation of the coronal flow/ADAF Meyer-Hofmeister & Meyer . 6 – The Origin of Soft X-rays in DQ Herculis Mukai et al. 6 – Looking for Dust and Molecules in Nova V4743 Sagittarii Nielbock & Schmidtobreick . 6 – Ultraviolet Spectra of CV Accretion Disks with Non-Steady T(r) Laws Orosz & Wade . 7 – On resonance line profiles predicted by radiation driven disk wind models. Proga . 7 – The emission distribution in RR Pictoris Schmidtobreick et al.
    [Show full text]
  • Chapter 1. Impact
    Atmosphere a Novel Excerpt Chapter 1. Impact our thousand and seventy years ago in a distant part of the Milky Way galaxy, a pair of gravitationally-linked stars began their death spiral, F rumbling into a super energetic state that culminated in a gamma-ray burst beamed at light speed into a then-barren region of the Milky Way. In the 21st Century A.D., the Earth was racing at half a million miles per hour towards a cataclysmic collision with the brief but devastating burst of raw energy from that ancient star explosion. In the city of Papeete, the capital of French Polynesia on the island of Tahiti, children from the local yacht club were on the water with a bevy of single sail dinghies, eight-foot-long training boats with seven-foot sails. Each boat had room for just one child, so the tiny flotilla of snub-nosed boats was being shepherded by two sailing instructors in a motorboat, busily keeping the students corralled within their marked sailing practice area. There was a light breeze, ideal conditions for the Optimus training fleet, with enough force to propel the dinghies wherever the sailors commanded, but not strong enough to flip the boats over. The instructors’ coaching could be clearly heard by the young sailors over the slapping of the waves gently jostling each boat. It was 5:42 in the afternoon of November 23, but the sun was still high. The Milky Way galaxy lay unseen directly overhead the French Polynesian Windward Islands when a blast from a galactic neighbor, a binary star system in the constellation Sagittarius the Archer, descended like Sagittarius’s arrow directly on top of the luckless Tahitians.
    [Show full text]
  • Recurrent Nova IM Normae
    A&A 391, L7–L9 (2002) Astronomy DOI: 10.1051/0004-6361:20020985 & c ESO 2002 Astrophysics Recurrent nova IM Normae T. Kato1,H.Yamaoka2, W. Liller3, and B. Monard4 1 Department of Astronomy, Kyoto University, Kyoto 606-8502, Japan 2 Faculty of Science, Kyushu University, Fukuoka 810-8560, Japan 3 Center for Nova Studies, Casilla 5022 Renaca, Vi˜na del Mar, Chile 4 Bronberg Observatory, PO Box 11426, Tiegerpoort 0056, South Africa Letter to the Editor Received 26 March 2002 / Accepted 2 July 2002 Abstract. We detected the second historical outburst of the 1920 nova IM Nor. Accurate astrometry of the outbursting object revealed the true quiescent counterpart having a magnitude of R = 17:0 mag and B = 18:0 mag. We show that the quiescent counterpart shows a noticeable variation. From the comparison of light curves and spectroscopic signatures, we propose that IM Nor and CI Aql comprise a new class of recurrent novae bearing some characteristics similar to those of classical novae. We interpret that the noticeable quiescent variation can be a result of either high orbital inclination, or the presence of high /low states. If the second possibility is confirmed by future observations, IM Nor becomes the first recurrent nova showing state changes in quiescence. Such state changes may provide a missing link between recurrent novae and supersoft X-ray sources. Key words. novae, cataclysmic variables – stars: individual: IM Nor 1. Introduction Table 1. Astrometry of IM Nor. IM Nor was originally discovered as a possible nova in 1920 Source RA Dec Remarks by I. E.
    [Show full text]
  • FY1995 Q1 Oct-Dec NO
    NATIONAL OPTICAL ASTRONOMY OBSERVATORIES NATIONAL OPTICAL ASTRONOMY OBSERVATORIES QUARTERLY REPORT OCTOBER - DECEMBER 1994 March 6, 1995 TABLE OF CONTENTS I. INTRODUCTION 1 II. SCIENTIFIC HIGHLIGHTS 1 A. Cerro Tololo Inter-American Observatory 1 1. CN and CH Abundance Variations in Globular Cluster Turnoff Stars and Implications for Stellar Evolution and Star Formation 1 2. Detection ofLens Candidates for the Double Quasar Q2345+007 2 3. The Lithium Abundance in M67 and Implications for Stellar Evolution and Cosmology 2 B. Kitt Peak National Observatory 3 1. Color Evolution of Galaxies 3 2. Kinematics ofBrightest Cluster Galaxies 4 3. Evolution ofthe Infrared Spectrum of an ONeMgNova 5 C. National Solar Observatory 6 1. High Temperature Coronal Regions Follow Solar Ring Current 6 2. Scattering ofP-Modes by Localized Inhomogeneities 7 3. Detection of Intrinsically Weak Solar Disk Magnetism 8 III. US GEMINI PROGRAM 9 IV. PERSONNEL AND BUDGET STATISTICS, NOAO 10 A. Visiting Scientists 10 B. Hired 10 C. Completed Employment 10 D. Changed Status 10 E. Gemini 8-m Telescopes Project 11 F. Chilean Economic Statistics 11 G. NSF Foreign Travel Fund 11 Appendices Appendix A: Telescope Usage Statistics Appendix B: Observational Programs Appendix C: Safety Report I. INTRODUCTION This document covers scientific highlights and personnel changes for the period 1 October - 31 December 1994. Highlights emphasize concluded projects rather than work in progress. The NOAO Newsletter Number 41 (March 1995) contains information on major projects, new instrumentation, and operations. The appendices to this report summarize telescope usage statistics and observational programs. H. SCIENTIFIC HIGHLIGHTS A. Cerro Tololo Inter-American Observatory 1.
    [Show full text]
  • Binary Orbits As the Driver of Gamma
    LETTER doi:10.1038/nature13773 Binary orbits as the driver of c-ray emission and mass ejection in classical novae Laura Chomiuk1, Justin D. Linford1, Jun Yang2,3,4, T. J. O’Brien5, Zsolt Paragi3, Amy J. Mioduszewski6, R. J. Beswick5, C. C. Cheung7, Koji Mukai8,9, Thomas Nelson10, Vale´rio A. R. M. Ribeiro11, Michael P. Rupen6,12, J. L. Sokoloski13, Jennifer Weston13, Yong Zheng13, Michael F. Bode14, Stewart Eyres15, Nirupam Roy16 & Gregory B. Taylor17 Classical novae are the most common astrophysical thermonuclear These observations span a frequency range of 1–6 GHz and show a flat a explosions, occurring on the surfaces of white dwarf stars accreting radio spectrum (a < 20.1, where Sn / n ; n is the observing frequency 1 gas from companions in binary star systems . Novae typically expel and Sn is the flux density at this frequency). This spectral index is much about 1024 solar masses of material atvelocitiesexceeding 1,000 kilo- more consistent with synchrotron radiation than the expected optic- metres per second. However, the mechanism of mass ejection in novae ally thick emission from warm nova ejecta13,14 (a < 2 is predicted and is poorly understood, and could be dominated by the impulsive flash observed in V959 Mon at later times; Fig. 1 and Extended Data Fig. 1). of thermonuclear energy2, prolonged optically thick winds3 or bin- Like gigaelectronvolt c-rays, synchrotron emission requires a popu- ary interaction with the nova envelope4. Classical novae are now lation of relativistic particles, and so we can use this radio emission as a routinely detected at gigaelectronvolt c-ray wavelengths5, suggest- tracer of c-ray production that lasts longer and enables much higher ing that relativistic particles are accelerated by strong shocks in the spatial resolution than do the c-rays themselves.
    [Show full text]