Serpulids Living Deep Calcareous Tubeworms Beyond the Abyss

Total Page:16

File Type:pdf, Size:1020Kb

Serpulids Living Deep Calcareous Tubeworms Beyond the Abyss Deep-Sea Research I 90 (2014) 91–104 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Serpulids living deep: calcareous tubeworms beyond the abyss$ Elena K. Kupriyanova a,n, Olev Vinn b, Paul D. Taylor c, J. William Schopf d,e,f,g,h, Anatoliy B. Kudryavtsev e,g,h, Julie Bailey-Brock i a The Australian Museum, 6 College Street, Sydney, NSW 2010, Australia b Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia c Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK d Department of Earth, Planetary, and Space Sciences, USA e Center for the Study of Evolution and the Origin of Life, USA f Molecular Biology Institute, University of California, Los Angeles, CA 90095, USA g PennState Astrobiology Research Center, University Park, PA 16802, USA h University of Wisconsin Astrobiology Research Consortium, Madison, WI 53706, USA i Biology Department of Zoology, University of Hawaii at Manoa, 2538 McCarthy Mall, Honolulu, HI 96822, USA article info abstract Article history: Although the carbonate compensation depth (CCD) for calcite, generally located in the depth range Received 17 December 2013 4000–5000 m, is often proposed as a physiological barrier to deep-ocean colonization, many organisms Received in revised form with calcareous exoskeletons are found in the deepest oceanic trenches. Serpulid polychaetes inhabiting 11 April 2014 unprotected calcareous tubes are unlikely deep-sea inhabitants, yet, they are found at all oceanic depths Accepted 15 April 2014 from intertidal to hadal. Here we review and revise the published and unpublished records of Serpulidae Available online 24 April 2014 from below 5000 m depth. We also describe tube ultrastructure and mineralogical content of available Keywords: deep-sea serpulid tubes to obtain insights into their biomineralisation. Species belonging to the genera Polychaeta Bathyditrupa, Bathyvermilia, Hyalopomatus, Pileolaria (spirorbin) and Protis were found at depths from Serpulidae 5020 to 9735 m. However, only specimens of Protis sp. were truly hadal (46000 m) being found at Abyssal 6200–9700 m. Hadal specimens of Protis have irregularly oriented prismatic tube microstructure similar Hadal Carbonate compensation depth to that found in more shallow-water representatives of the genus. Initial EDX analysis suggested a mostly Tube ultrastructure calcitic composition (i.e., the most stable CaCO3 polymorph) on the basis of high Mg levels. Surprisingly, Mineral composition however, tubes of Bathyditrupa hovei and a species of Protis analysed using the more reliable method of laser Raman spectroscopy were found to be composed of aragonite. The compensation depth for this less stable CaCO3 polymorph in the oceans is usually 2000–3000 m. We found no obvious structural adaptations to life at extreme depths in the studied serpulid tubes and how serpulids are able to biomineralise and maintain their tubes below the CCD remains to be explained. Crown Copyright & 2014 Published by Elsevier Ltd. All rights reserved. 1. Introduction (e.g., holothurians, and soft and organic-walled foraminifera, see Nozawa et al. (2006)). At 4000–5000 m there is the “Carbonate Calcium carbonate is widely used as a structural skeletal Compensation Depth” (CCD) at which calcium carbonate (calcite component by marine invertebrates, such as crustaceans, echino- and aragonite) supply equals the rate of dissolution (e.g., Bickert, derms, foraminiferans, corals and molluscs (e.g., Cuif et al., 2011). 2009). However, although the CCD has been commonly proposed Because carbonate solubility increases with increasing pressure, as a physiological barrier to deep-ocean colonization (e.g., biomineralisation becomes more difficult with increasing depth Blankenship-Williams and Levin, 2009), some bryozoans and and this has been proposed as an explanation (Jamieson et al., molluscs are found below these depths (e.g., Hayward, 1984: 2010) of why some groups with calcareous skeletons (e.g., ophiur- cheilostome bryozoans; Knudsen, 1970: bivalves; Leal and oids and echinoids) tend to be replaced by soft-bodied organisms Harasewych, 1999: cocculinid and pseudococculinid limpets). How species with external calcareous skeletons persist below the CCD remains one of the most intriguing questions of modern ☆Author contributions: EKK wrote most of the first draft of the manuscript, parts deep-sea biology. One obvious explanation is that these calcareous on biomineralisation were also written by OV and PDT, EKK and JBB are responsible exoskeletons do not come into direct contact with seawater, but for diagnoses and illustrations of deep-sea species, OV and PDT did SEM and EDX are protected by thick organic layers, the structure and composi- mineralogical analyses, JWS and AK did Raman mineralogical analyses. n Corresponding author. tion of which vary widely amongst organisms. The calcareous E-mail address: [email protected] (E.K. Kupriyanova). exoskeletons of molluscs typically are externally covered with an http://dx.doi.org/10.1016/j.dsr.2014.04.006 0967-0637/Crown Copyright & 2014 Published by Elsevier Ltd. All rights reserved. 92 E.K. Kupriyanova et al. / Deep-Sea Research I 90 (2014) 91–104 organic layer (periostracum) that could protect against carbonate Natural History Museum, London (NHMUK). Back-scattered elec- dissolution (Harper, 1997; Taylor and Kennedy, 1969), and crusta- trons were used to form images of these uncoated tubes. cean carapaces are covered with a thick epicuticle. Molluscs largely exposed to ambient seawater, such as scallops and oysters, 2.3. Mineralogical composition are not found in the lower abyssal zone. For example, the deep-sea oyster Neopycnodonte zibrowii (Gofas et al., 2009) occurs in a The elemental compositions of the deep-sea serpulid tubes were bathymetric range between 350 and 846 m (Van Rooij et al., 2010). determined using an Oxford Instruments X-max EDX detector Serpulid polychaetes inhabiting calcareous tubes that lack any attached to the LEO 1455-VP SEM at the NHMUK. The main objective external protective layers are the most unlikely inhabitants of the was to infer tube mineralogy using Mg and Sr as proxies for calcite deepest parts of the ocean. However, these sedentary suspension and aragonite, respectively. However, because the tubes were not feeders are found from intertidal to abyssal and even hadal depths flat, polished surfaces, these proxies proved to be unreliable. (e.g., Bruun, 1957; ten Hove and Kupriyanova, 2009; Kupriyanova Laser Raman spectroscopy was undertaken at the University of et al., 2011; Levenstein, 1973; Zibrowius, 1977). Vinn and California, Los Angeles (UCLA). Spectroscopic data were obtained Kupriyanova (2011) hypothesised that dense outer layers (DOL) using a T64000 triple-stage laser Raman system (JY Horiba, Edison, giving a smooth shiny appearance to the tube surface evolved as NJ, USA) with macro-Raman and confocal micro-Raman capabil- an adaptation to delay tube dissolution in waters of the deep-sea ities. A Coherent Innova 90 argon ion laser (Santa Clara, CA, USA) under-saturated with respect to calcium carbonate, but this idea provided several laser wavelengths in the blue-green region of the based on a very limited sample size still requires testing. visible spectrum. A single spectral window centred at 1400 cm–1 The deepest parts of the oceans (6000–11,000 m), known as the was employed. For the laser excitation used, at 488 nm, this gave ultra-abyssal (Belyaev, 1989) or hadal zone, are represented almost coverage from 140 to 2650 cm–1, a range containing all of the exclusively by trenches. To date, published records of serpulids major Raman bands of calcite and aragonite. For analysis, speci- from depths below 6000 m are very scarce. Zibrowius (1977), who mens were centred in the path of the laser beam projected reviewed serpulids from depths exceeding 2000 m, listed 25 through an Olympus BX41 microscope (Olympus, Center Valley, species, including only one unidentifiable specimen from the PA, USA). Typical laser power was 1–8 mW over a 1 mm spot, an Kermadec Trench collected at 6620–6730 m (Kirkegaard, 1956). instrumental configuration well below the threshold causing In his influential book on hadal faunas, Belyaev (1989), in addition radiation damage to specimens of the kind studied here. Point to the record of Kirkegaard (1956), listed two unidentified Serpu- spectra were obtained from various parts of the interior and lidae from 6410 to 6757 m (Aleutian Trench) and 9715–9735 m exterior surfaces of the serpulid tubes. (Izu-Bonin Trench), the latter being the deepest record for a serpulid. More recently, Kupriyanova et al. (2011) reviewed all previous reports of abyssal serpulids and provided new records 3. Results based on collections by the R/V “Vityaz”, including Bathyditrupa hovei Kupriyanova, 1993 from 6050 to 6330 m. 3.1. Taxonomy The aims of the current study are to review and revise published and unpublished records of serpulids collected below the CCD The serpulid species found below 5000 m are summarized in (5000 m and deeper), and to address the question whether the tube Table 1. A short taxonomic account of these records with informa- ultrastructure and mineralogy of these calcareous tube-building tion on their tube ultrastructure is given below. polychaetes show functional adaptations to deep-sea habitats. Genus Bathyditrupa Kupriyanova, 1993a 2. Material and methods Remarks. This monotypic genus appears to be closely related
Recommended publications
  • Descriptions of New Serpulid Polychaetes from the Kimberleys Of
    © The Author, 2009. Journal compilation © Australian Museum, Sydney, 2009 Records of the Australian Museum (2009) Vol. 61: 93–199. ISSN 0067-1975 doi:10.3853/j.0067-1975.61.2009.1489 Descriptions of New Serpulid Polychaetes from the Kimberleys of Australia and Discussion of Australian and Indo-West Pacific Species of Spirobranchus and Superficially Similar Taxa T. Gottfried Pillai Zoology Department, Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom absTracT. In 1988 Pat Hutchings of the Australian Museum, Sydney, undertook an extensive polychaete collection trip off the Kimberley coast of Western Australia, where such a survey had not been conducted since Augener’s (1914) description of some polychaetes from the region. Serpulids were well represented in the collection, and their present study revealed the existence of two new genera, and new species belonging to the genera Protula, Vermiliopsis, Hydroides, Serpula and Spirobranchus. The synonymy of the difficult genera Spirobranchus, Pomatoceros and Pomatoleios is also dealt with. Certain difficult taxa currently referred to as “species complexes” or “species groups” are discussed. For this purpose it was considered necessary to undertake a comparison of apparently similar species, especially of Spirobranchus, from other locations in Australia and the Indo-West Pacific region. It revealed the existence of many more new species, which are also described and discussed below. Pillai, T. Gottfried, 2009. Descriptions of new serpulid polychaetes from the Kimberleys of Australia and discussion of Australian and Indo-West Pacific species ofSpirobranchus and superficially similar taxa.Records of the Australian Museum 61(2): 93–199. Table of contents Introduction ................................................................................................................... 95 Material and methods ..................................................................................................
    [Show full text]
  • Phylogenetic Relationships of Serpulidae (Annelida: Polychaeta) Based on 18S Rdna Sequence Data, and Implications for Opercular Evolution Janina Lehrkea,Ã, Harry A
    ARTICLE IN PRESS Organisms, Diversity & Evolution 7 (2007) 195–206 www.elsevier.de/ode Phylogenetic relationships of Serpulidae (Annelida: Polychaeta) based on 18S rDNA sequence data, and implications for opercular evolution Janina Lehrkea,Ã, Harry A. ten Hoveb, Tara A. Macdonaldc, Thomas Bartolomaeusa, Christoph Bleidorna,1 aInstitute for Zoology, Animal Systematics and Evolution, Freie Universitaet Berlin, Koenigin-Luise-Street 1-3, 14195 Berlin, Germany bZoological Museum, University of Amsterdam, P.O. Box 94766, 1090 GT Amsterdam, The Netherlands cBamfield Marine Sciences Centre, Bamfield, British Columbia, Canada, V0R 1B0 Received 19 December 2005; accepted 2 June 2006 Abstract Phylogenetic relationships of (19) serpulid taxa (including Spirorbinae) were reconstructed based on 18S rRNA gene sequence data. Maximum likelihood, Bayesian inference, and maximum parsimony methods were used in phylogenetic reconstruction. Regardless of the method used, monophyly of Serpulidae is confirmed and four monophyletic, well- supported major clades are recovered: the Spirorbinae and three groups hitherto referred to as the Protula-, Serpula-, and Pomatoceros-group. Contrary to the taxonomic literature and the hypothesis of opercular evolution, the Protula- clade contains non-operculate (Protula, Salmacina) and operculate taxa both with pinnulate and non-pinnulate peduncle (Filograna vs. Vermiliopsis), and most likely is the sister group to Spirorbinae. Operculate Serpulinae and poorly or non-operculate Filograninae are paraphyletic. It is likely that lack of opercula in some serpulid genera is not a plesiomorphic character state, but reflects a special adaptation. r 2007 Gesellschaft fu¨r Biologische Systematik. Published by Elsevier GmbH. All rights reserved. Keywords: Serpulidae; Phylogeny; Operculum; 18S rRNA gene; Annelida; Polychaeta Introduction distinctive calcareous tubes and bilobed tentacular crowns, each with numerous radioles that bear shorter Serpulids are common members of marine hard- secondary branches (pinnules) on the inner side.
    [Show full text]
  • Biomineralization of Polychaete Annelids in the Fossil Record
    minerals Review Biomineralization of Polychaete Annelids in the Fossil Record Olev Vinn Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia; [email protected]; Tel.: +372-5067728 Received: 31 August 2020; Accepted: 25 September 2020; Published: 29 September 2020 Abstract: Ten distinct microstructures occur in fossil serpulids and serpulid tubes can contain several layers with different microstructures. Diversity and complexity of serpulid skeletal structures has greatly increased throughout their evolution. In general, Cenozoic serpulid skeletal structures are better preserved than Mesozoic ones. The first complex serpulid microstructures comparable to those of complex structures of molluscs appeared in the Eocene. The evolution of serpulid tube microstructures can be explained by the importance of calcareous tubes for serpulids as protection against predators and environmental disturbances. Both fossil cirratulids and sabellids are single layered and have only spherulitic prismatic tube microstructures. Microstructures of sabellids and cirratulids have not evolved since the appearance of calcareous species in the Jurassic and Oligocene, respectively. The lack of evolution in sabellids and cirratulids may result from the unimportance of biomineralization for these groups as only few species of sabellids and cirratulids have ever built calcareous tubes. Keywords: biominerals; calcite; aragonite; skeletal structures; serpulids; sabellids; cirratulids; evolution 1. Introduction Among polychaete annelids, calcareous tubes are known in serpulids, cirratulids and sabellids [1–3]. The earliest serpulids and sabellids are known from the Permian [4], and cirratulids from the Oligocene [5]. Only serpulids dwell exclusively within calcareous tubes. Polychaete annelids build their tubes from calcite, aragonite or a mixture of both polymorphs. Calcareous polychaete tubes possess a variety of ultrastructural fabrics, from simple to complex, some being unique to annelids [1].
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • A Study of Natural Durability of Wood in Selected Tropical Wood Species From
    Board of reviewers: Scientific council : Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology № 92, 2015: 11-17 (Ann. WULS - SGGW, For. and Wood Technol. 92, 2015) Piotr Beer Arnold WilczyĔski (Poland) Piotr Borysiuk Kazimierz Oráowski (Poland) Ewa Dobrowolska Ladislav Dzurenda (Slovakia) A study of natural durability of wood in selected tropical wood species from Dorota Dziurka Miroslav Rousek (Czech Republic) South America and Africa affected by the fungus Serpula lacrymans (Wulf., Jarosáaw Górski Nencho Deliiski (Bulgaria) Fr.) Schroet. Emila Grzegorzewska Olena Pinchewska (Ukraine) 1 1 2 1 1 ďubomír Javorek Wáodzimierz PrądzyĔski (Poland) B. ANDRES , A. JANKOWSKA , M. KLOCH , A. MAZUREK , A. OLEKSIEWICZ , M. 1 1 Grzegorz Kowaluk PAŁUCKI , A. WÓJCIK 1 Paweá Kozakiewicz Department of Wood Science and Wood Protection, Faculty of Wood Technology, Warsaw University of Life Sciences - SGGW, Sáawomir Krzosek 2Department of Physics, Faculty of Wood Technology, Warsaw University of Life Sciences - SGGW Mariusz MamiĔski Kazimierz Oráowski Abstract: This paper presents the results of a study on natural durability of selected tropical wood species from Danuta Nicewicz South America and Africa affected by Serpula lacrymans (Wulf., Fr.) Schroet. Tabebuia sp. and Autranella Jan Osipiuk congolensis (De Wild.) A.Chev. wood displayed the highest class of natural durability. They were ranked to first Olena Pinchewska class in terms of natural durability. Apuleia leiocarpa (Vogel) J.F.Macbr. exhibited the lowest resistance to fungal activity. It was classified third class in terms of natural durability presented in European standards. Alena Rohanova Miroslav Rousek Keywords: natural durability, Tabebuia, Autranella congolensis, Apuleia leiocarpa, Serpula lacrymans Jacek Wilkowski Piotr Witomski INTRODUCTION Ján Sedliaþik Mariana Sedliaþiková The use of wood in construction has a long tradition and the demand for the material is constant.
    [Show full text]
  • The Marine Fauna of New Zealand : Spirorbinae (Polychaeta : Serpulidae)
    ISSN 0083-7903, 68 (Print) ISSN 2538-1016; 68 (Online) The Marine Fauna of New Zealand : Spirorbinae (Polychaeta : Serpulidae) by PETER J. VINE ANOGlf -1,. �" ii 'i ,;.1, J . --=--� • ��b, S�• 1 • New Zealand Oceanographic Institute Memoir No. 68 1977 The Marine Fauna of New Zealand: Spirorbinae (Polychaeta: Serpulidae) This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Frontispiece Spirorbinae on a piece of alga washed up on the New Zealand seashore. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ NEW ZEALAND DEPARTMENT OF SCIENTIFIC AND INDUSTRIAL RESEARCH The Marine Fauna of New Zealand: Spirorbinae (Polychaeta: Serpulidae) by PETER J. VINE Department of Zoology, University College, Singleton Park, Swansea, Wales, UK and School of Biological Sciences, James Cook University of North Queensland, Townsville, Australia PERMANENT ADDRESS "Coe! na Mara", Faul, c/- Dr Casey, Clifden, County Galway, Ireland New Zealand Oceanographic Institute Memoir No. 68 1977 This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ Citation according to World list of Scientific Periodicals (4th edition: Mem. N.Z. oceanogr. Inst. 68 ISSN 0083-7903 Received for publication at NZOI January 1973 Edited by T. K. Crosby, Science InformationDivision, DSIR and R.
    [Show full text]
  • Omnibus Essential Fish Habitat (Efh) Amendment 2 Draft Environmental Impact Statement
    New England Fishery Management Council 50 WATER STREET | NEWBURYPORT, MASSACHUSETTS 01950 | PHONE 978 465 0492 | FAX 978 465 3116 E.F. “Terry” Stockwell III, Chairman | Thomas A. Nies, Executive Director OMNIBUS ESSENTIAL FISH HABITAT (EFH) AMENDMENT 2 DRAFT ENVIRONMENTAL IMPACT STATEMENT Appendix D: The Swept Area Seabed Impact (SASI) approach: a tool for analyzing the effects of fishing on Essential Fish Habitat Appendix D: The Swept Area Seabed Impact Approach This document was prepared by the following members of the NEFMC Habitat Plan Development team, with feedback from the NEFMC Habitat Oversight Committee, NEFMC Habitat Advisory Panel, and interested members of the public. Michelle Bachman, NEFMC staff Peter Auster, University of Connecticut Chad Demarest, NOAA/Northeast Fisheries Science Center Steve Eayrs, Gulf of Maine Research Institute Kathyrn Ford, Massachusetts Division of Marine Fisheries Jon Grabowski, Gulf of Maine Research Institute Brad Harris, University of Massachusetts School of Marine Science and Technology Tom Hoff, Mid-Atlantic Fishery Management Council Mark Lazzari, Maine Department of Marine Resources Vincent Malkoski, Massachusetts Division of Marine Fisheries Dave Packer, NOAA/ Northeast Fisheries Science Center David Stevenson, NOAA/Northeast Regional Office Page Valentine, U.S. Geological Survey January 2011 Page 2 of 257 Appendix D: The Swept Area Seabed Impact Approach Table of Contents 1.0 OVERVIEW OF THE SWEPT AREA SEABED IMPACT MODEL ........... 13 2.0 DEFINING HABITAT ......................................................................................
    [Show full text]
  • Filogranula Cincta (Goldfuss, 1831), a Serpulid Worm (Polychaeta, Sedentaria, Serpulidae) from the Bohemian Cretaceous Basin
    SBORNÍK NÁRODNÍHO MUZEA V PRAZE ACTA MUSEI NATIONALIS PRAGAE Řada B – Přírodní vědy • sv. 71 • 2015 • čís. 3–4 • s. 293–300 Series B – Historia Naturalis • vol. 71 • 2015 • no. 3–4 • pp. 293–300 FILOGRANULA CINCTA (GOLDFUSS, 1831), A SERPULID WORM (POLYCHAETA, SEDENTARIA, SERPULIDAE) FROM THE BOHEMIAN CRETACEOUS BASIN TOMÁŠ KOČÍ Department of Palaeontology, Natural History Museum, National Museum, Václavské náměstí 68, 115 79 Praha 1, the Czech Republic; Ivančická 581, Praha 9 – Letňany 199 00, the Czech Republic; e-mail: [email protected] MANFRED JÄGER Lindenstrasse 53, D-72348 Rosenfeld, Germany; e-mail: [email protected] Kočí, T., Jäger, M. (2015): Filogranula cincta (GOLDFUSS, 1831), a serpulid worm (Polychaeta, Sedentaria, Serpulidae) from the Bohemian Cretaceous Basin. – Acta Mus. Nat. Pragae, Ser. B Hist. Nat., 71(3-4): 293–300, Praha. ISSN 1804-6479. Abstract. Tubes of the serpulid worm Filogranula cincta (GOLDFUSS, 1831) were found in several rocky coast facies and other nearshore / shallow water localities in the Bohemian Cretaceous Basin ranging in geological age from the Late Cenomanian to the Late Turonian. A mor - phological description, discussion regarding systematics and taxonomy and notes on palaeoecology and stratigraphy are presented. ■ Late Cretaceous, Polychaeta, Filogranula, Serpulidae, Palaeoecology Received April 24, 2015 Issued December, 2015 Introduction any Filogranula cincta specimen. It seems that, apart from the vague mention from Strehlen by Wegner (1913), for more Filogranula cincta (GOLDFUSS, 1831) is a small and than a hundred years no additional finds of Filogranula inconspicuous but nevertheless common serpulid species in cincta from the BCB had been published until the present the Bohemian Cretaceous Basin (BCB).
    [Show full text]
  • Polychaete Worms Definitions and Keys to the Orders, Families and Genera
    THE POLYCHAETE WORMS DEFINITIONS AND KEYS TO THE ORDERS, FAMILIES AND GENERA THE POLYCHAETE WORMS Definitions and Keys to the Orders, Families and Genera By Kristian Fauchald NATURAL HISTORY MUSEUM OF LOS ANGELES COUNTY In Conjunction With THE ALLAN HANCOCK FOUNDATION UNIVERSITY OF SOUTHERN CALIFORNIA Science Series 28 February 3, 1977 TABLE OF CONTENTS PREFACE vii ACKNOWLEDGMENTS ix INTRODUCTION 1 CHARACTERS USED TO DEFINE HIGHER TAXA 2 CLASSIFICATION OF POLYCHAETES 7 ORDERS OF POLYCHAETES 9 KEY TO FAMILIES 9 ORDER ORBINIIDA 14 ORDER CTENODRILIDA 19 ORDER PSAMMODRILIDA 20 ORDER COSSURIDA 21 ORDER SPIONIDA 21 ORDER CAPITELLIDA 31 ORDER OPHELIIDA 41 ORDER PHYLLODOCIDA 45 ORDER AMPHINOMIDA 100 ORDER SPINTHERIDA 103 ORDER EUNICIDA 104 ORDER STERNASPIDA 114 ORDER OWENIIDA 114 ORDER FLABELLIGERIDA 115 ORDER FAUVELIOPSIDA 117 ORDER TEREBELLIDA 118 ORDER SABELLIDA 135 FIVE "ARCHIANNELIDAN" FAMILIES 152 GLOSSARY 156 LITERATURE CITED 161 INDEX 180 Preface THE STUDY of polychaetes used to be a leisurely I apologize to my fellow polychaete workers for occupation, practised calmly and slowly, and introducing a complex superstructure in a group which the presence of these worms hardly ever pene- so far has been remarkably innocent of such frills. A trated the consciousness of any but the small group great number of very sound partial schemes have been of invertebrate zoologists and phylogenetlcists inter- suggested from time to time. These have been only ested in annulated creatures. This is hardly the case partially considered. The discussion is complex enough any longer. without the inclusion of speculations as to how each Studies of marine benthos have demonstrated that author would have completed his or her scheme, pro- these animals may be wholly dominant both in num- vided that he or she had had the evidence and inclina- bers of species and in numbers of specimens.
    [Show full text]
  • Polychaeta, Serpulidae) from the Hawaiian Islands1 JULIE H
    Deepwater Tube Worms (Polychaeta, Serpulidae) from the Hawaiian Islands1 JULIE H. BAILEy-BROCK2 THREE SERPULID TUBE WORMS have been dis­ (1906), but no serpulids were found. Hart­ covered on shells and coral fragments taken in man (1966a) reviewed the literature in an dredges from around the Hawaiian Islands. The extensive analysis of the Hawaiian polychaete two serpulines Spirobranchus latiscapus Maren­ fauna. Straughan (1969), presented a more zeller and Vermiliopsis infundibulum Philippi recent survey of the littoral and upper sublit­ are new records for the islands. However, the toral Serpulidae. Other works by Vine (1972) small spirorbid Pileolaria (Duplicaria) dales­ and Vine, Bailey-Brock, and Straughan (1972) traughanae Vine has been described previously include ecological data collected from settle­ from within diving depths (Vine, 1972), but ment plates and by diving, but no records ex­ it is absent from shoal waters and intertidal re­ tend below 28 meters. Serpulids have been gions. 3 The occurrence of this species in the described from deepwater collections in other dredged collections indicates an extensive depth parts of the world. Southward (1963) found range in the Hawaiian Islands. 14 species of calcareous tube worms on hard The tube worms were obtained from col­ substrata dredged from depths as great as 1,755 lections taken during two separate oceano­ meters along the continental shelf off south­ graphic investigations in Hawaiian waters. western Britain. Antarctic collections yielded 14 Material consisting mostly of the pink serpuline genera and more than 23 species from depths Spirobranchus latiscapus was loaned by Dr. E. C. ranging from the littoral zone down to 4,930­ Jones of the National Marine Fisheries Service 4,963 meters in the South Sandwich Trench (N.M.F.S.) and was taken from an average (Hartman, 1966b, 1967).
    [Show full text]
  • The Distribution and Unexpected Genetic Diversity of the Non-Indigenous Annelid Ficopomatus Enigmaticus in California
    Aquatic Invasions (2019) Volume 14, Issue 2: 250–266 CORRECTED PROOF Research Article The distribution and unexpected genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in California Alison Yee1, Joshua Mackie2 and Bruno Pernet1,* 1Department of Biological Sciences, California State University Long Beach,1250 Bellflower Blvd, Long Beach, CA 90840, USA 2Gilmac P/L, Suite G04, 1 Havelock Street, West Perth 6005, Australia Author e-mails: [email protected] (AY), [email protected] (JM), [email protected] (BP) *Corresponding author Citation: Yee A, Mackie J, Pernet B (2019) The distribution and unexpected Abstract genetic diversity of the non-indigenous annelid Ficopomatus enigmaticus in The non-indigenous annelid Ficopomatus enigmaticus has been established in San California. Aquatic Invasions 14(2): 250– Francisco Bay since at least 1921, but in the past 30 years it has also been found in 266, https://doi.org/10.3391/ai.2019.14.2.06 other parts of California. In the summer of 2017 we surveyed 136 sites to determine Received: 25 October 2018 its current distribution in the state. We found F. enigmaticus at 23 sites ranging Accepted: 23 January 2019 from San Francisco Bay in the north to Newport Bay in the south. Populations were concentrated in four regions: San Francisco Bay, Monterey Bay, Santa Barbara, and Published: 29 March 2019 sites in Los Angeles and Orange Counties. Presence sites did not differ systematically Handling editor: Maiju Lehtiniemi in salinity or temperature from absence sites, but all presence sites appeared to have Thematic editor: Charles W. Martin restricted exchange of water with nearby oceanic habitats.
    [Show full text]
  • Download Complete Work
    AUSTRALIAN MUSEUM SCIENTIFIC PUBLICATIONS Hutchings, Pat A., & Anna Murray, 1984. Taxonomy of polychaetes from the Hawkesbury River and the southern estuaries of New South Wales, Australia. Records of the Australian Museum, Supplement 3: 1–118. [28 September 1984]. doi:10.3853/j.0812-7387.3.1984.101 ISSN 0812-7387 Published by the Australian Museum, Sydney naturenature cultureculture discover discover AustralianAustralian Museum Museum science science is is freely freely accessible accessible online online at at www.australianmuseum.net.au/publications/www.australianmuseum.net.au/publications/ 66 CollegeCollege Street,Street, SydneySydney NSWNSW 2010,2010, AustraliaAustralia Records of the Australian Museum (1984), Suppl. 3 ISSN-0067-1975 Taxonomy of Polychaetes from the Hawkesbury River and the Southern Estuaries of New South Wales, Australia PAT HUTCHINGS and ANNA MURRAY The Australian Museum, P.O. Box A285, Sydney South, NSW 2000, Australia ABSTRACT. The polychaete fauna of the Hawkesbury River and some other estuarine areas in central and southern New South Wales is described. The majority of material comes from Merimbula, Jervis Bay, Port Hacking, Botany Bay, Hawkesbury River, Port Stephens and Broughton Island; often from seagrass habitats. The material from the Hawkesbury River has been collected over several years and detailed habitat and occurrence data are available. Over 180 species are recorded, of which 28 species and 4 genera are new: Harmothoe charlottae n.sp., Sthenelais pettiboneae n.sp., Compsanaitis inflata n.gen., n.sp., Podarke microantennata n.sp., Augeneria verdis n.sp., Schistomeringosjilijormis n.sp., Caulleriella dimorphosetosa n.sp., C. longisetosa n.sp., C. retusiseta n.sp., Chaetozone platycerca n.sp., Tharyx aphelocephalus n.sp., Lobochesis bibrancha n.gen., n.sp., L.
    [Show full text]