From Quantum Field Theory to Quantum Gravity

Total Page:16

File Type:pdf, Size:1020Kb

From Quantum Field Theory to Quantum Gravity From quantum field theory to quantum gravity Klaus Fredenhagen II. Institut f¨urTheoretische Physik, Hamburg Klaus Fredenhagen From quantum field theory to quantum gravity Introduction Since about a century, the relation between quantum physics and gravity is not fully understood. Quantum physics: very successful in nonrelativistic physics where precise mathematical results can be compared with experiments, somewhat less successful in elementary particle physics where theory delivers only the first terms of a formal power series, but up to now also excellent agreement with experiments. Gravity (general relativity): spectacular confirmation e.g. by gravitational waves. Deviations can be explained by plausible assumptions (dark matter, dark energy). Essentially open: Consistent theory which combines general relativity and quantum physics. Klaus Fredenhagen From quantum field theory to quantum gravity Approaches to quantum gravity are difficult because: Field equations of general relativity are complicated nonlinear partial differential equations. Quantization of field theory leads to divergences which are more dangerous in gravity than in particle physics. Meaning of general covariance after quantization is unclear. Observed phenomena seem to give no hint on the form of the theory. Needed: Input from experiments, mathematics and natural philosophy. Klaus Fredenhagen From quantum field theory to quantum gravity Attempts for quantum gravity: String theory: surprising cancellation of divergences, rich and unexpected mathematical structures, but unclear concepts. Loop Quantum Gravity: clear concept of quantizing a discretized version of general relativity, but problems with the relation to continuum theory. Perturbative Quantum Field Theory: explicit and well established methods, good connection to known nongravitational phenomena, but severe problems with divergences and with the physical interpretation. Other approaches (causal sets, noncommutative spaces, . ) are less developed. Klaus Fredenhagen From quantum field theory to quantum gravity Big problem for Quantum Gravity: Lack of visible effects =) Ans¨atzeare tested by consistency, but not by observations. Consistency requires Internal consistency In the limit where quantum effects become small it should reproduce Classical General Relativity. If the back reaction of matter fields on the gravitational fields are neglegible it should agree with Quantum Field Theory on Lorentzian manifolds. Klaus Fredenhagen From quantum field theory to quantum gravity Claim: Perturbative Quantum Gravity is consistent as an effective quantum field theory. It reproduces General Relativity and Quantum Field Theory on curved spacetime in appropriate limits. In addition, it has already been tested via cosmological perturbation theory in Cosmic Microwave Background. Problems of perturbative Quantum Gravity: Nonrenormalizability Existence of local observables? What is the meaning of spacetime after quantization? Klaus Fredenhagen From quantum field theory to quantum gravity Tentative answers: Renormalization at every order is well defined, hence perturbative Quantum Gravity is an effective field theory whose validity for small energies depends on the size of the new coupling constants occuring in higher orders. In addition there are indications that Quantum Gravity might be asymptotically safe (Reuter et al.). Local observables in the sense of relative observables (Rovelli) can be defined (see later). Spacetime after quantization is defined in terms of quantum fields which are interpreted as coordinates. Klaus Fredenhagen From quantum field theory to quantum gravity Quantum Field Theory on curved spacetime First step towards quantum gravity: Quantum field theory on Lorentzian spacetimes (external gravitational field) Meaningful since the back reaction on the gravitational field is usually very small. Surprise: Contrary to classical fields there are problems for quantum fields. Klaus Fredenhagen From quantum field theory to quantum gravity Particles Origin: Role of particles. Connection quantum fields and particles (e.g. electromagnetical field and photons): Quantum field theory is a quantum theory, i.e. observables correspond to Hilbert space operators. Additional structure: Localizability of observables Example: Z d4x'(x)f (x) field ' at point x, averaged with the function f . Einstein causality (locality): observables in spacelike separarted regions commute. Klaus Fredenhagen From quantum field theory to quantum gravity Spacetime symmetries: act by unitary or antiunitary operators on the Hilbert space. Product of symmetry transformations corresponds to product of operators (up to a factor) (Wigner) Minkowski space: Poincar´esymmetry Classification of irreducible representations with positive energy (Wigner): Parametrized by 1 mass m > 0, spin s 2 2 N0, and 1 m = 0, helicity h 2 2 Z (m = 0 representations with infinite spin incompatible with quantum field theory) Klaus Fredenhagen From quantum field theory to quantum gravity Wigner: irreducible representations correspond to particles. Result of quantum field theory (Haag-Ruelle): To each particle there exist the corresponding multiparticle states, in two versions: outgoing and incoming particles Transition amplitudes = S-matrix-elements Conditions: existence of a vacuum state, locality, translation covariance and properties of the energy-momentum spectrum (positive energy, isolated mass shell). Klaus Fredenhagen From quantum field theory to quantum gravity Limitations of the particle interpretation of quantum field theory: No particle interpretation at finite time in interacting theories. Haag-Ruelle theory at m = 0 replaced by Buchholz theory but: no isolated mass shell for massive particles (infrared divergences) Charged particles do not have a sharp mass (infra particles)(Schroer, Buchholz). Finite temperature: Interacting particles cannot be eigenstates of the mass operator (Narnhofer, Requardt, Thirring). Klaus Fredenhagen From quantum field theory to quantum gravity Globally hyperbolic spacetimes External gravitational fields = curved spacetime A spacetime is globally hyperbolic, if it has a Cauchy surface. Cauchy surface = spacelike hypersurface which is met by each non prolongable causal curve exactly once. Causal: tangent vector timelike or lightlike. Globally hyperbolic: Initial value problem can be formulated. Causality structure similar to Minkowski space. In particular: no closed timelike curves. Klaus Fredenhagen From quantum field theory to quantum gravity Example: Klein-Gordon equation 2 ( + m + Rξ)' = 0 2 m and ξ parameter, d'Alembert operator 1 p = p @ g µν g@ g µ ν µν gµν spacetime metric with inverse g , determinant g and Ricci curvature scalar R. Globally hyperbolic: equation has unique advanced and retarded Green functions. But: Feynman propagator and Wightman-2-point function not uniquely determined. Reason: Decomposition according to positive and negative frequences coordinate dependent. Klaus Fredenhagen From quantum field theory to quantum gravity Consequence: Fock space quantization with creation and annihilation operators not well defined. Vacuum state for one decomposition is multiparticle state for another decompositon, with, in general, infinitely many particles. Thus: Many concepts of quantum field theory loose their meaning: There is no distinguished vacuum state. The concept of a particle is not well defined. Hence the S-matrix becomes meaningless. The Hilbert space of state vectors is not uniquely determined. Klaus Fredenhagen From quantum field theory to quantum gravity In addition technical problems: The momentum space depends on the choice of the coordinate system. A euclidian version (imaginary time) does not exist, in general. The path integral is not uniquely defined. Klaus Fredenhagen From quantum field theory to quantum gravity Algebraic Quantum Field Theory Appropriate framework: Algebraic Quantum Field Theory Basic structure: Algebras A(O) of observables associated to spacetime regions O. Axioms: If the observable A is associated to a region, then also to all larger regions (Isotony). Two observables which are associated to spacelike separated regions commute (Local commutativity). If O contains a Cauchy surface of the region O1, then all observables in O1 are contained in A(O)(Time-Slice-Axiom). Spacetime symmetries g act by algebra isomorphisms αg : A(O) ! A(gO)(Covariance). On static spacetimes the theory has a ground state (Stability) Klaus Fredenhagen From quantum field theory to quantum gravity Axioms work well on Minkowski space. On globally hyperbolic spacetimes the causal relations are similar to Minkowski space, hence the axioms of isotony, local commutativity and time slice remain meaningful. But problems with covariance (trivial symmetry group in the generic case) and stability (no useful concept of energy). Klaus Fredenhagen From quantum field theory to quantum gravity Solution: Stability is replaced by a local concept (microlocal spectrum condition): Wave front sets of correlation functions of quantum fields satisfy a positivity condition (Radzikowski 1995). Example: 2-point function of a free scalar field on Minkowski space: Positive frequency part of the causal propagator ∆ = ∆ret − ∆adv. On a curved globally hyperbolic spacetime: ∆ is uniquely determined, but a split into positive and negative frequencies depends on the choice of coordinates. Klaus Fredenhagen From quantum field theory to quantum gravity It is, however, possible to make a split up to smooth functions so that the singular part is unique. This defines the so-called Hadamard states
Recommended publications
  • Kaluza-Klein Gravity, Concentrating on the General Rel- Ativity, Rather Than Particle Physics Side of the Subject
    Kaluza-Klein Gravity J. M. Overduin Department of Physics and Astronomy, University of Victoria, P.O. Box 3055, Victoria, British Columbia, Canada, V8W 3P6 and P. S. Wesson Department of Physics, University of Waterloo, Ontario, Canada N2L 3G1 and Gravity Probe-B, Hansen Physics Laboratories, Stanford University, Stanford, California, U.S.A. 94305 Abstract We review higher-dimensional unified theories from the general relativity, rather than the particle physics side. Three distinct approaches to the subject are identi- fied and contrasted: compactified, projective and noncompactified. We discuss the cosmological and astrophysical implications of extra dimensions, and conclude that none of the three approaches can be ruled out on observational grounds at the present time. arXiv:gr-qc/9805018v1 7 May 1998 Preprint submitted to Elsevier Preprint 3 February 2008 1 Introduction Kaluza’s [1] achievement was to show that five-dimensional general relativity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s the- ory of electromagnetism. He however imposed a somewhat artificial restriction (the cylinder condition) on the coordinates, essentially barring the fifth one a priori from making a direct appearance in the laws of physics. Klein’s [2] con- tribution was to make this restriction less artificial by suggesting a plausible physical basis for it in compactification of the fifth dimension. This idea was enthusiastically received by unified-field theorists, and when the time came to include the strong and weak forces by extending Kaluza’s mechanism to higher dimensions, it was assumed that these too would be compact. This line of thinking has led through eleven-dimensional supergravity theories in the 1980s to the current favorite contenders for a possible “theory of everything,” ten-dimensional superstrings.
    [Show full text]
  • Conformal Symmetry in Field Theory and in Quantum Gravity
    universe Review Conformal Symmetry in Field Theory and in Quantum Gravity Lesław Rachwał Instituto de Física, Universidade de Brasília, Brasília DF 70910-900, Brazil; [email protected] Received: 29 August 2018; Accepted: 9 November 2018; Published: 15 November 2018 Abstract: Conformal symmetry always played an important role in field theory (both quantum and classical) and in gravity. We present construction of quantum conformal gravity and discuss its features regarding scattering amplitudes and quantum effective action. First, the long and complicated story of UV-divergences is recalled. With the development of UV-finite higher derivative (or non-local) gravitational theory, all problems with infinities and spacetime singularities might be completely solved. Moreover, the non-local quantum conformal theory reveals itself to be ghost-free, so the unitarity of the theory should be safe. After the construction of UV-finite theory, we focused on making it manifestly conformally invariant using the dilaton trick. We also argue that in this class of theories conformal anomaly can be taken to vanish by fine-tuning the couplings. As applications of this theory, the constraints of the conformal symmetry on the form of the effective action and on the scattering amplitudes are shown. We also remark about the preservation of the unitarity bound for scattering. Finally, the old model of conformal supergravity by Fradkin and Tseytlin is briefly presented. Keywords: quantum gravity; conformal gravity; quantum field theory; non-local gravity; super- renormalizable gravity; UV-finite gravity; conformal anomaly; scattering amplitudes; conformal symmetry; conformal supergravity 1. Introduction From the beginning of research on theories enjoying invariance under local spacetime-dependent transformations, conformal symmetry played a pivotal role—first introduced by Weyl related changes of meters to measure distances (and also due to relativity changes of periods of clocks to measure time intervals).
    [Show full text]
  • Gravity, Inertia, and Quantum Vacuum Zero Point Fields
    Foundations of Physics, Vol.31,No. 5, 2001 Gravity, Inertia, and Quantum Vacuum Zero Point Fields James F. Woodward1 Received July 27, 2000 Over the past several years Haisch, Rueda, and others have made the claim that the origin of inertial reaction forces can be explained as the interaction of electri- cally charged elementary particles with the vacuum electromagnetic zero-point field expected on the basis of quantum field theory. After pointing out that this claim, in light of the fact that the inertial masses of the hadrons reside in the electrically chargeless, photon-like gluons that bind their constituent quarks, is untenable, the question of the role of quantum zero-point fields generally in the origin of inertia is explored. It is shown that, although non-gravitational zero-point fields might be the cause of the gravitational properties of normal matter, the action of non-gravitational zero-point fields cannot be the cause of inertial reac- tion forces. The gravitational origin of inertial reaction forces is then briefly revisited. Recent claims critical of the gravitational origin of inertial reaction forces by Haisch and his collaborators are then shown to be without merit. 1. INTRODUCTION Several years ago Haisch, Rueda, and Puthoff (1) (hereafter, HRP) pub- lished a lengthy paper in which they claimed that a substantial part, indeed perhaps all of normal inertial reaction forces could be understood as the action of the electromagnetic zero-point field (EZPF), expected on the basis of quantum field theory, on electric charges of normal matter. In several subsequent papers Haisch and Rueda particularly have pressed this claim, making various modifications to the fundamental argument to try to deflect several criticisms.
    [Show full text]
  • Loop Quantum Cosmology, Modified Gravity and Extra Dimensions
    universe Review Loop Quantum Cosmology, Modified Gravity and Extra Dimensions Xiangdong Zhang Department of Physics, South China University of Technology, Guangzhou 510641, China; [email protected] Academic Editor: Jaume Haro Received: 24 May 2016; Accepted: 2 August 2016; Published: 10 August 2016 Abstract: Loop quantum cosmology (LQC) is a framework of quantum cosmology based on the quantization of symmetry reduced models following the quantization techniques of loop quantum gravity (LQG). This paper is devoted to reviewing LQC as well as its various extensions including modified gravity and higher dimensions. For simplicity considerations, we mainly focus on the effective theory, which captures main quantum corrections at the cosmological level. We set up the basic structure of Brans–Dicke (BD) and higher dimensional LQC. The effective dynamical equations of these theories are also obtained, which lay a foundation for the future phenomenological investigations to probe possible quantum gravity effects in cosmology. Some outlooks and future extensions are also discussed. Keywords: loop quantum cosmology; singularity resolution; effective equation 1. Introduction Loop quantum gravity (LQG) is a quantum gravity scheme that tries to quantize general relativity (GR) with the nonperturbative techniques consistently [1–4]. Many issues of LQG have been carried out in the past thirty years. In particular, among these issues, loop quantum cosmology (LQC), which is the cosmological sector of LQG has received increasing interest and has become one of the most thriving and fruitful directions of LQG [5–9]. It is well known that GR suffers singularity problems and this, in turn, implies that our universe also has an infinitely dense singularity point that is highly unphysical.
    [Show full text]
  • Perturbative Algebraic Quantum Field Theory
    Perturbative algebraic quantum field theory Klaus Fredenhagen Katarzyna Rejzner II Inst. f. Theoretische Physik, Department of Mathematics, Universität Hamburg, University of Rome Tor Vergata Luruper Chaussee 149, Via della Ricerca Scientifica 1, D-22761 Hamburg, Germany I-00133, Rome, Italy [email protected] [email protected] arXiv:1208.1428v2 [math-ph] 27 Feb 2013 2012 These notes are based on the course given by Klaus Fredenhagen at the Les Houches Win- ter School in Mathematical Physics (January 29 - February 3, 2012) and the course QFT for mathematicians given by Katarzyna Rejzner in Hamburg for the Research Training Group 1670 (February 6 -11, 2012). Both courses were meant as an introduction to mod- ern approach to perturbative quantum field theory and are aimed both at mathematicians and physicists. Contents 1 Introduction 3 2 Algebraic quantum mechanics 5 3 Locally covariant field theory 9 4 Classical field theory 14 5 Deformation quantization of free field theories 21 6 Interacting theories and the time ordered product 26 7 Renormalization 26 A Distributions and wavefront sets 35 1 Introduction Quantum field theory (QFT) is at present, by far, the most successful description of fundamental physics. Elementary physics , to a large extent, explained by a specific quantum field theory, the so-called Standard Model. All the essential structures of the standard model are nowadays experimentally verified. Outside of particle physics, quan- tum field theoretical concepts have been successfully applied also to condensed matter physics. In spite of its great achievements, quantum field theory also suffers from several longstanding open problems. The most serious problem is the incorporation of gravity.
    [Show full text]
  • Gravitational Interaction to One Loop in Effective Quantum Gravity A
    IT9700281 LABORATORI NAZIONALI Dl FRASCATI SIS - Pubblicazioni LNF-96/0S8 (P) ITHf 00 Z%i 31 ottobre 1996 gr-qc/9611018 Gravitational Interaction to one Loop in Effective Quantum Gravity A. Akhundov" S. Bellucci6 A. Shiekhcl "Universitat-Gesamthochschule Siegen, D-57076 Siegen, Germany, and Institute of Physics, Azerbaijan Academy of Sciences, pr. Azizbekova 33, AZ-370143 Baku, Azerbaijan 6INFN-Laboratori Nazionali di Frascati, P.O. Box 13, 00044 Frascati, Italy ^International Centre for Theoretical Physics, Strada Costiera 11, P.O. Box 586, 34014 Trieste, Italy Abstract We carry out the first step of a program conceived, in order to build a realistic model, having the particle spectrum of the standard model and renormalized masses, interaction terms and couplings, etc. which include the class of quantum gravity corrections, obtained by handling gravity as an effective theory. This provides an adequate picture at low energies, i.e. much less than the scale of strong gravity (the Planck mass). Hence our results are valid, irrespectively of any proposal for the full quantum gravity as a fundamental theory. We consider only non-analytic contributions to the one-loop scattering matrix elements, which provide the dominant quantum effect at long distance. These contributions are finite and independent from the finite value of the renormalization counter terms of the effective lagrangian. We calculate the interaction of two heavy scalar particles, i.e. close to rest, due to the effective quantum gravity to the one loop order and compare with similar results in the literature. PACS.: 04.60.+n Submitted to Physics Letters B 1 E-mail addresses: [email protected], bellucciQlnf.infn.it, [email protected] — 2 1 Introduction A longstanding puzzle in quantum physics is how to marry the description of gravity with the field theory of elementary particles.
    [Show full text]
  • Arxiv:1306.6519V5 [Math-Ph] 13 May 2014 5.1 Vacuum State
    Construction of KMS States in Perturbative QFT and Renormalized Hamiltonian Dynamics Klaus Fredenhagen and Falk Lindner II. Institute for Theoretical Physics, University of Hamburg [email protected], [email protected] Abstract We present a general construction of KMS states in the framework of pertur- bative algebraic quantum field theory (pAQFT). Our approach may be understood as an extension of the Schwinger-Keldysh formalism. We obtain in particular the Wightman functions at positive temperature, thus solving a problem posed some time ago by Steinmann [55]. The notorious infrared divergences observed in a di- agrammatic expansion are shown to be absent due to a consequent exploitation of the locality properties of pAQFT. To this avail, we introduce a novel, Hamiltonian description of the interacting dynamics and find, in particular, a precise relation between relativistic QFT and rigorous quantum statistical mechanics. Dedicated to the memory of Othmar Steinmann ∗27.11.1932 †11.03.2012 Contents 1 Introduction 2 2 Perturbed dynamics 4 3 Time averaged Hamiltonian description of the dynamics 7 4 KMS states for the interacting dynamics: General discussion 13 4.1 The case of finite volume . 13 4.2 The case of infinite volume . 17 5 Cluster properties of the massive scalar field 19 arXiv:1306.6519v5 [math-ph] 13 May 2014 5.1 Vacuum state . 20 5.2 Thermal equilibrium states . 23 6 Conclusion 29 A Proof of the KMS condition 31 1 B Propositions for the adiabatic limit 34 1 Introduction According to the standard model of cosmology, the early universe was for some time in an equilibrium state with high temperature.
    [Show full text]
  • Vacuum Energy
    Vacuum Energy Mark D. Roberts, 117 Queen’s Road, Wimbledon, London SW19 8NS, Email:[email protected] http://cosmology.mth.uct.ac.za/ roberts ∼ February 1, 2008 Eprint: hep-th/0012062 Comments: A comprehensive review of Vacuum Energy, which is an extended version of a poster presented at L¨uderitz (2000). This is not a review of the cosmolog- ical constant per se, but rather vacuum energy in general, my approach to the cosmological constant is not standard. Lots of very small changes and several additions for the second and third versions: constructive feedback still welcome, but the next version will be sometime in coming due to my sporadiac internet access. First Version 153 pages, 368 references. Second Version 161 pages, 399 references. arXiv:hep-th/0012062v3 22 Jul 2001 Third Version 167 pages, 412 references. The 1999 PACS Physics and Astronomy Classification Scheme: http://publish.aps.org/eprint/gateway/pacslist 11.10.+x, 04.62.+v, 98.80.-k, 03.70.+k; The 2000 Mathematical Classification Scheme: http://www.ams.org/msc 81T20, 83E99, 81Q99, 83F05. 3 KEYPHRASES: Vacuum Energy, Inertial Mass, Principle of Equivalence. 1 Abstract There appears to be three, perhaps related, ways of approaching the nature of vacuum energy. The first is to say that it is just the lowest energy state of a given, usually quantum, system. The second is to equate vacuum energy with the Casimir energy. The third is to note that an energy difference from a complete vacuum might have some long range effect, typically this energy difference is interpreted as the cosmological constant.
    [Show full text]
  • Dark Matter and Weak Signals of Quantum Spacetime
    PHYSICAL REVIEW D 95, 065009 (2017) Dark matter and weak signals of quantum spacetime † ‡ Sergio Doplicher,1,* Klaus Fredenhagen,2, Gerardo Morsella,3, and Nicola Pinamonti4,§ 1Dipartimento di Matematica, Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, I-00185 Roma, Italy 2II Institut für Theoretische Physik, Universität Hamburg, D-22761 Hamburg, Germany 3Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, I-00133 Roma, Italy 4Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, I-16146 Genova, Italy, and INFN Sezione di Genova, Genova, Italy (Received 29 December 2016; published 13 March 2017) In physically motivated models of quantum spacetime, a Uð1Þ gauge theory turns into a Uð∞Þ gauge theory; hence, free classical electrodynamics is no longer free and neutral fields may have electromagnetic interactions. We discuss the last point for scalar fields, as a way to possibly describe dark matter; we have in mind the gravitational collapse of binary systems or future applications to self-gravitating Bose-Einstein condensates as possible sources of evidence of quantum gravitational phenomena. The effects considered so far, however, seem too faint to be detectable at present. DOI: 10.1103/PhysRevD.95.065009 I. INTRODUCTION but their superpositions would, in general, not be—they would lose energy in favor of mysterious massive modes One of the main difficulties of present-day physics is the (see also [6]). lack of observation of quantum aspects of gravity. Quantum A naive computation showed, by that mechanism, that a gravity has to be searched without a guide from nature; the monochromatic wave train passing through a partially observed universe must be explained as carrying traces of reflecting mirror should lose, in favor of those ghost quantum gravitational phenomena in the only “laboratory” modes, a fraction of its energy—a very small fraction, suitable to those effects, i.e., the universe itself a few unfortunately, of the order of one part in 10−130 [5].
    [Show full text]
  • An Introduction to Loop Quantum Gravity with Application to Cosmology
    DEPARTMENT OF PHYSICS IMPERIAL COLLEGE LONDON MSC DISSERTATION An Introduction to Loop Quantum Gravity with Application to Cosmology Author: Supervisor: Wan Mohamad Husni Wan Mokhtar Prof. Jo~ao Magueijo September 2014 Submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London Abstract The development of a quantum theory of gravity has been ongoing in the theoretical physics community for about 80 years, yet it remains unsolved. In this dissertation, we review the loop quantum gravity approach and its application to cosmology, better known as loop quantum cosmology. In particular, we present the background formalism of the full theory together with its main result, namely the discreteness of space on the Planck scale. For its application to cosmology, we focus on the homogeneous isotropic universe with free massless scalar field. We present the kinematical structure and the features it shares with the full theory. Also, we review the way in which classical Big Bang singularity is avoided in this model. Specifically, the spectrum of the operator corresponding to the classical inverse scale factor is bounded from above, the quantum evolution is governed by a difference rather than a differential equation and the Big Bang is replaced by a Big Bounce. i Acknowledgement In the name of Allah, the Most Gracious, the Most Merciful. All praise be to Allah for giving me the opportunity to pursue my study of the fundamentals of nature. In particular, I am very grateful for the opportunity to explore loop quantum gravity and its application to cosmology for my MSc dissertation.
    [Show full text]
  • Quantum Gravity: a Primer for Philosophers∗
    Quantum Gravity: A Primer for Philosophers∗ Dean Rickles ‘Quantum Gravity’ does not denote any existing theory: the field of quantum gravity is very much a ‘work in progress’. As you will see in this chapter, there are multiple lines of attack each with the same core goal: to find a theory that unifies, in some sense, general relativity (Einstein’s classical field theory of gravitation) and quantum field theory (the theoretical framework through which we understand the behaviour of particles in non-gravitational fields). Quantum field theory and general relativity seem to be like oil and water, they don’t like to mix—it is fair to say that combining them to produce a theory of quantum gravity constitutes the greatest unresolved puzzle in physics. Our goal in this chapter is to give the reader an impression of what the problem of quantum gravity is; why it is an important problem; the ways that have been suggested to resolve it; and what philosophical issues these approaches, and the problem itself, generate. This review is extremely selective, as it has to be to remain a manageable size: generally, rather than going into great detail in some area, we highlight the key features and the options, in the hope that readers may take up the problem for themselves—however, some of the basic formalism will be introduced so that the reader is able to enter the physics and (what little there is of) the philosophy of physics literature prepared.1 I have also supplied references for those cases where I have omitted some important facts.
    [Show full text]
  • The Confrontation Between General Relativity and Experiment
    The Confrontation between General Relativity and Experiment Clifford M. Will Department of Physics University of Florida Gainesville FL 32611, U.S.A. email: [email protected]fl.edu http://www.phys.ufl.edu/~cmw/ Abstract The status of experimental tests of general relativity and of theoretical frameworks for analyzing them are reviewed and updated. Einstein’s equivalence principle (EEP) is well supported by experiments such as the E¨otv¨os experiment, tests of local Lorentz invariance and clock experiments. Ongoing tests of EEP and of the inverse square law are searching for new interactions arising from unification or quantum gravity. Tests of general relativity at the post-Newtonian level have reached high precision, including the light deflection, the Shapiro time delay, the perihelion advance of Mercury, the Nordtvedt effect in lunar motion, and frame-dragging. Gravitational wave damping has been detected in an amount that agrees with general relativity to better than half a percent using the Hulse–Taylor binary pulsar, and a growing family of other binary pulsar systems is yielding new tests, especially of strong-field effects. Current and future tests of relativity will center on strong gravity and gravitational waves. arXiv:1403.7377v1 [gr-qc] 28 Mar 2014 1 Contents 1 Introduction 3 2 Tests of the Foundations of Gravitation Theory 6 2.1 The Einstein equivalence principle . .. 6 2.1.1 Tests of the weak equivalence principle . .. 7 2.1.2 Tests of local Lorentz invariance . .. 9 2.1.3 Tests of local position invariance . 12 2.2 TheoreticalframeworksforanalyzingEEP. ....... 16 2.2.1 Schiff’sconjecture ................................ 16 2.2.2 The THǫµ formalism .............................
    [Show full text]