Principles of Quantum Universe”

Total Page:16

File Type:pdf, Size:1020Kb

Principles of Quantum Universe” Principles of Quantum Universe V.N. Pervushin, A.E. Pavlov Laboratory of Theoretical Physics Joint Institute for Nuclear Research, Dubna February 4, 2014 arXiv:1402.0354v1 [gr-qc] 3 Feb 2014 Contents 1 Introduction 15 1.1 Whatisthisbookabout?. 15 1.2 Program ........................... 20 1.3 Does the creation and evolution of the Universedependonanobserver? . 28 1.4 Contents........................... 56 2 Initial data and frames of reference 62 2.1 Unitsofmeasurement . 62 2.2 Nonrelativisticmechanicsofaparticle . 64 2.3 FoundationsofSpecialRelativity. 66 2.3.1 Actionofarelativisticparticle . 66 2.3.2 Dynamicsofarelativisticparticle . 68 2.3.3 Geometrodynamics of a relativistic particle . 72 2.3.4 Reduction of geometrodynamics to the Planck’s relativistic dynamics (1906) . 75 2.3.5 Quantum anomaly of geometric interval . 77 2.3.6 How does the invariant reduction differfromthechoiceofgauge? . 80 2 CONTENTS 3 2.4 Homogeneous approximation of GeneralRelativity . 82 2.4.1 Radiation-dominated cosmological model . 82 2.4.2 Arrow of conformal time as quantum anomaly . 86 2.5 Standardcosmologicalmodels . 87 2.6 Summary........................... 89 3 Principles of symmetry of physical theories 94 3.1 Irreducible representations of Lorentzgroup ........................ 94 3.2 Irreducible representations of Poincar´egroup. 97 3.3 Weylgroup..........................101 3.4 ConformalgroupC . .104 3.5 Conformal invariant theories ofgravitation ........................106 3.6 Affine group A(4) ......................117 3.7 Fundamental elements of base Minkowskian space M .................118 3.8 Summary...........................120 4 Nonlinearrealizationsofsymmetrygroups 123 4.1 DifferentialformsofCartan. 123 4.2 Structuralequations. .132 4.3 Exponentialparametrization . 135 4.4 Algebraic and dynamical principlesofsymmetry . .136 4 CONTENTS 4.5 Theory of gravitation as nonlinear realization of A(4) C ...................140 ⊗ 4.5.1 Derivation of action of General Relativity . 140 4.5.2 Differences between the standard General Relativ- ity and the nonlinear realization of A(4) C . 144 ⊗ 4.6 Summary...........................148 5 Hamiltonian formulation of the theory of gravity 151 5.1 Foliation4=3+1. .151 5.2 Hamiltonian formulation of GR intermsofCartanforms . .156 5.3 ProblemsofHamiltonianformulation . 162 5.4 Exact solution of the Hamiltonian constraint ..........................167 5.4.1 Statementoftheproblem . 167 5.4.2 Lagrangianformalism . .168 5.4.3 Hamiltonianformalism . 172 5.5 Summary...........................175 6 AmodelofanemptyUniverse 180 6.1 AnemptyUniverse . .180 6.2 The Supernovae data in ConformalCosmology. .184 6.3 Thehierarchyofcosmologicalscales . 194 6.4 Special Relativity – General Relativity correspondence . .197 6.5 The arrow of time as a consequence of the postulate of vacuum............................200 CONTENTS 5 6.6 CreationoftheUniverse . .204 6.7 Summary...........................209 7 Quantization of gravitons in terms of Cartan forms 215 7.1 Affinegravitons ... ... ... .. ... ... ... .. .215 7.2 Comparisonwithmetricgravitons . 220 7.3 Vacuumcreationofaffinegravitons . 224 7.4 Summary...........................230 8 Mathematical principles of description of the Universe 233 8.1 Theclassicaltheoryofgravitation . 233 8.2 Foundations of quantum theory ofgravity ..........................235 8.2.1 The irreducible unitary representation of the group A(4) C ...............235 ⊗ 8.2.2 Casimir’svacuum . .239 8.2.3 An approximation of a nearly empty Universe . 240 8.3 Summary...........................246 9 CreationofmatterintheUniverse 250 9.1 TheBigBangorthevacuumcreation? . 250 9.1.1 Statementoftheproblem . 250 9.1.2 Observational data on the CMB radiationorigin . .253 9.2 Vacuumcreationofscalarbosons . 256 9.3 Physicalstatesofmatter . .260 9.4 QUmodificationofS-matrixinQFT . 264 6 CONTENTS 9.5 Summary...........................271 10ReducedphasespaceQCD 278 10.1 Topologicalconfinement. 278 10.2 Quark–hadronduality. .283 10.3 ChiralsymmetrybreakinginQCD . 286 10.4Summary...........................296 11 QU modification of the Standard Model 301 11.1 SMLagrangian . .301 11.2 The condensate mechanism of Higgs boson mass . 304 11.3 EstimationoftheHiggsbosonmass . 311 11.4Summary...........................314 12 Electroweak vector bosons 318 12.1 Cosmological creation of electroweak vectorbosons ........................318 12.2 SourcesofCMBradiationanisotropy . 327 12.3 BaryonasymmetryoftheUniverse . 330 12.4Summary...........................334 13 Conformal cosmological perturbation theory 346 13.1 The equations of the theory of perturbations . ... ... ... .. ... ... ... .. .346 13.2 The solution of the equations for smallfluctuations . .348 13.3Summary...........................351 CONTENTS 7 14 Cosmological modification of Newtonian dynamics 353 14.1 Freemotion in conformallyflat metric . 353 14.2 The motion of a test particle inacentralfield ... ... ... .. ... ... ... .. .357 14.3 The Kepler problem in the Conformaltheory . .359 14.4 Capture ofaparticlebyacentralfield . 361 14.5 The problem of dark matter inSuperclusters . .363 14.6 The Kepler problem in the generalized Schwarzschildfield. .367 14.7 Quantum mechanics of a particle inConformalcosmology. .372 14.8Summary...........................374 15 Afterword 378 15.1 QuestionsofGenesis . .378 15.2 Generaldiscussionofresults . 381 15.2.1 Resultsofthework . .381 15.2.2 Discussion . .387 AReducedAbelianfieldtheory 390 A.1 ReducedQED ........................390 A.1.1 Actionandframeofreference. 390 A.1.2 Eliminationoftimecomponent . 392 A.1.3 Elimination of longitudinal component . 393 A.1.4 Staticinteraction . .393 8 CONTENTS A.1.5 Comparison of radiation variables with the Lorentz gaugeones ......................394 A.2 Reducedvectorbosontheory . 397 A.2.1 Lagrangianandreferenceframe. 397 A.2.2 Eliminationoftimecomponent . 398 A.2.3 Quantization. .400 A.2.4 Propagatorsandcondensates . 402 B Quantum field theory for bound states 408 B.1 Ladderapproximation. .408 B.2 Bethe–SalpeterEquations . 414 C Abel – Plana formula 422 D Functional Cartan forms 428 D.1 Dynamicalmodelwith high derivatives . 428 D.2 VariationalDeRhamcomplex . 433 E Dynamicsofthemixmastermodel 437 E.1 DynamicsoftheMisnermodel . 437 E.2 Kovalevskiexponents . .439 Preface to the first English edition The Russian edition of the present book was published in June 2013. It just happened that it was the time between two significant dates: in 2011 the Nobel Prize was awarded “for the discovery of the accelerated expansion of the Universe through observations of distant Supernovae” and in 2013 the Nobel Prize was awarded for “the theoretical discovery of a mechanism that contributes to our understanding of the origin of the mass of subatomic particles”. Both these formulations left the questions about the explanations of these phenomena in the framework of the fundamental principles open. Our book is devoted to attempts to explain the observed long dis- tances to the Supernovae and the small value of the Higgs particle mass by the principles of affine and conformal symmetries and the vacuum postulate. Both these phenomena are described by quantum gravity in the form of joint irreducible unitary representations of the affine and con- formal symmetry groups. These representations were used in our book to classify physical processes in the Universe, including its origin from the vacuum. The representations of the Poincar´egroup were used in the same way by Wigner to classify particles and their bound states. We are far from considering our understanding of the “distant Super- novae” and the “origin of the mass of subatomic particles” to be conclu- sive, but we do not abandon hope that the present revised and enlarged English edition encourages a deeper and worthier investigation of these open questions in the future. The authors express their appreciation and gratitude to the coauthors of the papers on which this book is based. The authors are grateful to I.V. Kronshtadtova and G.G. Sandukovskaya for proofreading the text of the book. The authors are grateful to Academician V.A. Matveev, Professors V.V. Voronov and M.G. Itkis for the support. V.N. Pervushin A.E. Pavlov December, 2013 Dubna Preface to the first Russian edition1 This monograph is based on papers published during last 25 years by the authors and lectures delivered by one of the authors (V.P.) at the universities of Graz (Austria), Berlin, Heidelberg, Rostock (Germany), New Delhi (India), Fairfield, the Argonne National Laboratory (USA), the physical faculty of Moscow State University and in the Joint Institute for Nuclear Research. The main goal of the authors is to bring readers into the interesting and intriguing problem of description of modern ex- perimental and observational data in the framework of ideas and methods elaborated until 1974 by the founders of the modern relativistic classical and quantum physics. The distinction of our approach from the stan- dard ones consists in using conformal symmetry: everywhere, from the horizon of the Universe to quarks, we use scale-invariant versions of mod- ern theories on the classical level with dimensionless coupling constants, breaking scale invariance only at the quantum level by normal ordering of products of field operators. The method of classification of novae data, obtained in the last fifteen years in cosmology and high–energy physics, essentially uses quantum theories and representations. From here the title of our book originated: “Principles of Quantum Universe”. Let us briefly present the content of the
Recommended publications
  • Arxiv:1904.10313V3 [Gr-Qc] 22 Oct 2020 PACS Numbers: Keywords: Entropy, Holographic Principle and CCDM Models
    Thermodynamic constraints on matter creation models R. Valentim∗ Departamento de F´ısica, Instituto de Ci^enciasAmbientais, Qu´ımicas e Farmac^euticas - ICAQF, Universidade Federal de S~aoPaulo (UNIFESP) Unidade Jos´eAlencar, Rua S~aoNicolau No. 210, 09913-030 { Diadema, SP, Brazil J. F. Jesusy Universidade Estadual Paulista (UNESP), C^ampusExperimental de Itapeva Rua Geraldo Alckmin 519, 18409-010, Vila N. Sra. de F´atima,Itapeva, SP, Brazil and Universidade Estadual Paulista (UNESP), Faculdade de Engenharia de Guaratinguet´a Departamento de F´ısica e Qu´ımica, Av. Dr. Ariberto Pereira da Cunha 333, 12516-410 - Guaratinguet´a,SP, Brazil Abstract Entropy is a fundamental concept from Thermodynamics and it can be used to study models on context of Creation Cold Dark Matter (CCDM). From conditions on the first (S_ 0)1 and ≥ second order (S¨ < 0) time derivatives of total entropy in the initial expansion of Sitter through the radiation and matter eras until the end of Sitter expansion, it is possible to estimate the intervals of parameters. The total entropy (St) is calculated as sum of the entropy at all eras (Sγ and Sm) plus the entropy of the event horizon (Sh). This term derives from the Holographic Principle where it suggests that all information is contained on the observable horizon. The main feature of this method for these models are that thermodynamic equilibrium is reached in a final de Sitter era. Total entropy of the universe is calculated with three terms: apparent horizon (Sh), entropy of matter (Sm) and entropy of radiation (Sγ). This analysis allows to estimate intervals of parameters of CCDM models.
    [Show full text]
  • The Future of Fundamental Physics
    The Future of Fundamental Physics Nima Arkani-Hamed Abstract: Fundamental physics began the twentieth century with the twin revolutions of relativity and quantum mechanics, and much of the second half of the century was devoted to the con- struction of a theoretical structure unifying these radical ideas. But this foundation has also led us to a number of paradoxes in our understanding of nature. Attempts to make sense of quantum mechanics and gravity at the smallest distance scales lead inexorably to the conclusion that space- Downloaded from http://direct.mit.edu/daed/article-pdf/141/3/53/1830482/daed_a_00161.pdf by guest on 23 September 2021 time is an approximate notion that must emerge from more primitive building blocks. Further- more, violent short-distance quantum fluctuations in the vacuum seem to make the existence of a macroscopic world wildly implausible, and yet we live comfortably in a huge universe. What, if anything, tames these fluctuations? Why is there a macroscopic universe? These are two of the central theoretical challenges of fundamental physics in the twenty-½rst century. In this essay, I describe the circle of ideas surrounding these questions, as well as some of the theoretical and experimental fronts on which they are being attacked. Ever since Newton realized that the same force of gravity pulling down on an apple is also responsible for keeping the moon orbiting the Earth, funda- mental physics has been driven by the program of uni½cation: the realization that seemingly disparate phenomena are in fact different aspects of the same underlying cause. By the mid-1800s, electricity and magnetism were seen as different aspects of elec- tromagnetism, and a seemingly unrelated phenom- enon–light–was understood to be the undulation of electric and magnetic ½elds.
    [Show full text]
  • Quantum Field Theory*
    Quantum Field Theory y Frank Wilczek Institute for Advanced Study, School of Natural Science, Olden Lane, Princeton, NJ 08540 I discuss the general principles underlying quantum eld theory, and attempt to identify its most profound consequences. The deep est of these consequences result from the in nite number of degrees of freedom invoked to implement lo cality.Imention a few of its most striking successes, b oth achieved and prosp ective. Possible limitation s of quantum eld theory are viewed in the light of its history. I. SURVEY Quantum eld theory is the framework in which the regnant theories of the electroweak and strong interactions, which together form the Standard Mo del, are formulated. Quantum electro dynamics (QED), b esides providing a com- plete foundation for atomic physics and chemistry, has supp orted calculations of physical quantities with unparalleled precision. The exp erimentally measured value of the magnetic dip ole moment of the muon, 11 (g 2) = 233 184 600 (1680) 10 ; (1) exp: for example, should b e compared with the theoretical prediction 11 (g 2) = 233 183 478 (308) 10 : (2) theor: In quantum chromo dynamics (QCD) we cannot, for the forseeable future, aspire to to comparable accuracy.Yet QCD provides di erent, and at least equally impressive, evidence for the validity of the basic principles of quantum eld theory. Indeed, b ecause in QCD the interactions are stronger, QCD manifests a wider variety of phenomena characteristic of quantum eld theory. These include esp ecially running of the e ective coupling with distance or energy scale and the phenomenon of con nement.
    [Show full text]
  • European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium
    European Astroparticle Physics Strategy 2017-2026 Astroparticle Physics European Consortium August 2017 European Astroparticle Physics Strategy 2017-2026 www.appec.org Executive Summary Astroparticle physics is the fascinating field of research long-standing mysteries such as the true nature of Dark at the intersection of astronomy, particle physics and Matter and Dark Energy, the intricacies of neutrinos cosmology. It simultaneously addresses challenging and the occurrence (or non-occurrence) of proton questions relating to the micro-cosmos (the world decay. of elementary particles and their fundamental interactions) and the macro-cosmos (the world of The field of astroparticle physics has quickly celestial objects and their evolution) and, as a result, established itself as an extremely successful endeavour. is well-placed to advance our understanding of the Since 2001 four Nobel Prizes (2002, 2006, 2011 and Universe beyond the Standard Model of particle physics 2015) have been awarded to astroparticle physics and and the Big Bang Model of cosmology. the recent – revolutionary – first direct detections of gravitational waves is literally opening an entirely new One of its paths is targeted at a better understanding and exhilarating window onto our Universe. We look of cataclysmic events such as: supernovas – the titanic forward to an equally exciting and productive future. explosions marking the final evolutionary stage of massive stars; mergers of multi-solar-mass black-hole Many of the next generation of astroparticle physics or neutron-star binaries; and, most compelling of all, research infrastructures require substantial capital the violent birth and subsequent evolution of our infant investment and, for Europe to remain competitive Universe.
    [Show full text]
  • FRW Type Cosmologies with Adiabatic Matter Creation
    Brown-HET-991 March 1995 FRW Type Cosmologies with Adiabatic Matter Creation J. A. S. Lima1,2, A. S. M. Germano2 and L. R. W. Abramo1 1 Physics Department, Brown University, Providence, RI 02912,USA. 2 Departamento de F´ısica Te´orica e Experimental, Universidade Federal do Rio Grande do Norte, 59072 - 970, Natal, RN, Brazil. Abstract Some properties of cosmological models with matter creation are inves- tigated in the framework of the Friedman-Robertson-Walker (FRW) line element. For adiabatic matter creation, as developed by Prigogine arXiv:gr-qc/9511006v1 2 Nov 1995 and coworkers, we derive a simple expression relating the particle num- ber density n and energy density ρ which holds regardless of the mat- ter creation rate. The conditions to generate inflation are discussed and by considering the natural phenomenological matter creation rate ψ = 3βnH, where β is a pure number of the order of unity and H is the Hubble parameter, a minimally modified hot big-bang model is proposed. The dynamic properties of such models can be deduced from the standard ones simply by replacing the adiabatic index γ of the equation of state by an effective parameter γ∗ = γ(1 β). The − thermodynamic behavior is determined and it is also shown that ages large enough to agree with observations are obtained even given the high values of H suggested by recent measurements. 1 Introduction The origin of the material content (matter plus radiation) filling the presently observed universe remains one of the most fascinating unsolved mysteries in cosmology even though many authors worked out to understand the matter creation process and its effects on the evolution of the universe [1-27].
    [Show full text]
  • Annual Report to Industry Canada Covering The
    Annual Report to Industry Canada Covering the Objectives, Activities and Finances for the period August 1, 2008 to July 31, 2009 and Statement of Objectives for Next Year and the Future Perimeter Institute for Theoretical Physics 31 Caroline Street North Waterloo, Ontario N2L 2Y5 Table of Contents Pages Period A. August 1, 2008 to July 31, 2009 Objectives, Activities and Finances 2-52 Statement of Objectives, Introduction Objectives 1-12 with Related Activities and Achievements Financial Statements, Expenditures, Criteria and Investment Strategy Period B. August 1, 2009 and Beyond Statement of Objectives for Next Year and Future 53-54 1 Statement of Objectives Introduction In 2008-9, the Institute achieved many important objectives of its mandate, which is to advance pure research in specific areas of theoretical physics, and to provide high quality outreach programs that educate and inspire the Canadian public, particularly young people, about the importance of basic research, discovery and innovation. Full details are provided in the body of the report below, but it is worth highlighting several major milestones. These include: In October 2008, Prof. Neil Turok officially became Director of Perimeter Institute. Dr. Turok brings outstanding credentials both as a scientist and as a visionary leader, with the ability and ambition to position PI among the best theoretical physics research institutes in the world. Throughout the last year, Perimeter Institute‘s growing reputation and targeted recruitment activities led to an increased number of scientific visitors, and rapid growth of its research community. Chart 1. Growth of PI scientific staff and associated researchers since inception, 2001-2009.
    [Show full text]
  • Introduction to General Relativity
    INTRODUCTION TO GENERAL RELATIVITY Gerard 't Hooft Institute for Theoretical Physics Utrecht University and Spinoza Institute Postbox 80.195 3508 TD Utrecht, the Netherlands e-mail: [email protected] internet: http://www.phys.uu.nl/~thooft/ Version November 2010 1 Prologue General relativity is a beautiful scheme for describing the gravitational ¯eld and the equations it obeys. Nowadays this theory is often used as a prototype for other, more intricate constructions to describe forces between elementary particles or other branches of fundamental physics. This is why in an introduction to general relativity it is of importance to separate as clearly as possible the various ingredients that together give shape to this paradigm. After explaining the physical motivations we ¯rst introduce curved coordinates, then add to this the notion of an a±ne connection ¯eld and only as a later step add to that the metric ¯eld. One then sees clearly how space and time get more and more structure, until ¯nally all we have to do is deduce Einstein's ¯eld equations. These notes materialized when I was asked to present some lectures on General Rela- tivity. Small changes were made over the years. I decided to make them freely available on the web, via my home page. Some readers expressed their irritation over the fact that after 12 pages I switch notation: the i in the time components of vectors disappears, and the metric becomes the ¡ + + + metric. Why this \inconsistency" in the notation? There were two reasons for this. The transition is made where we proceed from special relativity to general relativity.
    [Show full text]
  • "Eternal" Questions in the XX-Century Theoretical Physics V
    Philosophical roots of the "eternal" questions in the XX-century theoretical physics V. Ihnatovych Department of Philosophy, National Technical University of Ukraine “Kyiv Polytechnic Institute”, Kyiv, Ukraine e-mail: [email protected] Abstract The evolution of theoretical physics in the XX century differs significantly from that in XVII-XIX centuries. While continuous progress is observed for theoretical physics in XVII-XIX centuries, modern physics contains many questions that have not been resolved despite many decades of discussion. Based upon the analysis of works by the founders of the XX-century physics, the conclusion is made that the roots of the "eternal" questions by the XX-century theoretical physics lie in the philosophy used by its founders. The conclusion is made about the need to use the ideas of philosophy that guided C. Huygens, I. Newton, W. Thomson (Lord Kelvin), J. K. Maxwell, and the other great physicists of the XVII-XIX centuries, in all areas of theoretical physics. 1. Classical Physics The history of theoretical physics begins in 1687 with the work “Mathematical Principles of Natural Philosophy” by Isaac Newton. Even today, this work is an example of what a full and consistent outline of the physical theory should be. It contains everything necessary for such an outline – definition of basic concepts, the complete list of underlying laws, presentation of methods of theoretical research, rigorous proofs. In the eighteenth century, such great physicists and mathematicians as Euler, D'Alembert, Lagrange, Laplace and others developed mechanics, hydrodynamics, acoustics and nebular mechanics on the basis of the ideas of Newton's “Principles”.
    [Show full text]
  • The Universe Unveiled Given by Prof Carlo Contaldi
    Friends of Imperial Theoretical Physics We are delighted to announce that the first FITP event of 2015 will be a talk entitled The Universe Unveiled given by Prof Carlo Contaldi. The event is free and open to all but please register by visiting the Eventbrite website via http://tinyurl.com/fitptalk2015. Date: 29th April 2015 Venue: Lecture Theatre 1, Blackett Laboratory, Physics Department, ICL Time: 7-8pm followed by a reception in the level 8 Common room Speaker: Professor Carlo Contaldi The Universe Unveiled The past 25 years have seen our understanding of the Universe we live in being revolutionised by a series of stunning observational campaigns and theoretical advances. We now know the composition, age, geometry and evolutionary history of the Universe to an astonishing degree of precision. A surprising aspect of this journey of discovery is that it has revealed some profound conundrums that challenge the most basic tenets of fundamental physics. We still do not understand the nature of 95% of the matter and energy that seems to fill the Universe, we still do not know why or how the Universe came into being, and we have yet to build a consistent "theory of everything" that can describe the evolution of the Universe during the first few instances after the Big Bang. In this lecture I will review what we know about the Universe today and discuss the exciting experimental and theoretical advances happening in cosmology, including the controversy surrounding last year's BICEP2 "discovery". Biography of the speaker: Professor Contaldi gained his PhD in theoretical physics in 2000 at Imperial College working on theories describing the formation of structures in the universe.
    [Show full text]
  • Universe Model Multicomponent
    We can’t solve problems by using the same kind of thinking we used when we created them. Albert Einstein WORLD – UNIVERSE MODEL MULTICOMPONENT DARK MATTER COSMIC GAMMA-RAY BACKGROUND Vladimir S. Netchitailo Biolase Inc., 4 Cromwell, Irvine CA 92618, USA. [email protected] ABSTRACT World – Universe Model is based on two fundamental parameters in various rational exponents: Fine-structure constant α, and dimensionless quantity Q. While α is constant, Q increases with time, and is in fact a measure of the size and the age of the World. The Model makes predictions pertaining to masses of dark matter (DM) particles and explains the diffuse cosmic gamma-ray background radiation as the sum of contributions of multicomponent self-interacting dark matter annihilation. The signatures of DM particles annihilation with predicted masses of 1.3 TeV, 9.6 GeV, 70 MeV, 340 keV, and 3.7 keV, which are calculated independently of astrophysical uncertainties, are found in spectra of the diffuse gamma-ray background and the emission of various macroobjects in the World. The correlation between different emission lines in spectra of macroobjects is connected to their structure, which depends on the composition of the core and surrounding shells made up of DM particles. Thus the diversity of Very High Energy (VHE) gamma-ray sources in the World has a clear explanation. 1 1. INTRODUCTION In 1937, Paul Dirac proposed a new basis for cosmology: the hypothesis of a time varying gravitational “constant” [1]. In 1974, Dirac added a mechanism of continuous creation of matter in the World [2]: One might assume that nucleons are created uniformly throughout space, and thus mainly in intergalactic space.
    [Show full text]
  • Searches for Leptophilic Dark Matter with Astrophysical Experiments
    . Searches for leptophilic dark matter with astrophysical experiments . Von der Fakult¨atf¨urMathematik, Informatik und Naturwissenschaften der RWTH Aachen University zur Erlangung des akademischen Grades einer Doktorin der Naturwissenschaften genehmigte Dissertation vorgelegt von M. Sc. Leila Ali Cavasonza aus Finale Ligure, Savona, Italien Berichter: Universit¨atsprofessorDr. rer. nat. Michael Kr¨amer Universit¨atsprofessorDr. rer. nat. Stefan Schael Tag der m¨undlichen Pr¨ufung: 13.05.16 Diese Dissertation ist auf den Internetseiten der Universit¨atsbibliothekonline verf¨ugbar RWTH Aachen University Leila Ali Cavasonza Institut f¨urTheoretische Teilchenphysik und Kosmologie Searches for leptophilic dark matter with astrophysical experiments PhD Thesis February 2016 Supervisors: Prof. Dr. Michael Kr¨amer Prof. Dr. Stefan Schael Zusammenfassung Suche nach leptophilischer dunkler Materie mit astrophysikalischen Experimenten Die Natur der dunklen Materie (DM) zu verstehen ist eines der wichtigsten Ziele der Teilchen- und Astroteilchenphysik. Große experimentelle Anstrengungen werden un- ternommen, um die dunkle Materie nachzuweisen, in der Annahme, dass sie neben der Gravitationswechselwirkung eine weitere Wechselwirkung mit gew¨ohnlicher Materie hat. Die dunkle Materie in unserer Galaxie k¨onnte gew¨ohnliche Teilchen durch An- nihilationsprozesse erzeugen und der kosmischen Strahlung einen zus¨atzlichen Beitrag hinzuf¨ugen.Deswegen sind pr¨aziseMessungen der Fl¨ussekosmischer Strahlung ¨außerst wichtig. Das AMS-02 Experiment misst die
    [Show full text]
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]