Ion Transport and Methane Production in Methanobacterium Thermoautotrophicum FRANK D

Total Page:16

File Type:pdf, Size:1020Kb

Ion Transport and Methane Production in Methanobacterium Thermoautotrophicum FRANK D Proc. Natl. Acad. Sci. USA Vol. 91, pp. 4466-4470, May 1994 Biochemistry Ion transport and methane production in Methanobacterium thermoautotrophicum FRANK D. SAUER*t, BARBARA A. BLACKWELLO, AND JOHN K. G. KRAMER* *Centre for Food and Animal Research and *Plant Research Centre, Research Branch, Agriculture Canada, Ottawa, ON, Canada KlA 0C6 Communicated by Ralph T. Holman, January 3, 1994 (receivedfor review April 28, 1993) ABSTRACT In Methanobacterium thermoautotrophicum, contributed another 50 mV to Adi but without net HI extru- the protonmotive force for the HW-translocating ATPase con- sion. sists mainly of a transmembrane electrical gradient (A*r). These ceils do not establish a s cnt pH gradient (inside alkaline) and, in fact, if the suspending me- MATERIALS AND METHODS dium is of pH > 7.0, the pH gradient may be reversed-i.e., Measurement of Bacterial Cell Parameters. Cells of Mb. inside acid with respect to the extracellular pH. These studies thermoautotrophicum were grown and harvested as de- show by both 23Na NMR and =Na+ distribution that Na+ scribed (1, 5). Cell transfers were carried out in an anaerobic extrusion with the generation of Ad precedes methanogenesis chamber (Coy Laboratory Products, Ann Arbor, MI). Cells in Mb. thermoautotrophicum. It is calculated that the newly (-7.5 mg of protein) were incubated in 50 mM Tris/5 mM established Na+ gradients increase Ad by =50 mV (inside potassium phosphate buffer (pH 7.0) with 50 mM Tris car- negative). There is no detectable H+ extrusion during methane bonate (pH 7.0) under, H2 at 600C in a final volume of 1.5 ml synthesis; instead there is a high rate of H+ consumption for with constant shaking in 5-ml sealed rubber-stopped flasks. methane synthesis and an increase in internal pH. This was The ATP content of cells was assayed by the luciferin/ supported by 31P NMR experiments, which showed an internal luciferase assay (1, 6). pH shift from 6.8 to 7.6. With the cells maintain at an Aqd was determined by measuring the transmembrane dis- external pH of 7.2, the initial transmembrane pH gradient of tribution at equilibrium of either 86Rb+ (with 67 ,uM valino- -0.4 (inside acid) at 60VC is equivalent to Aeof +27 mV (inside positive); after 20 min of incubation, the membrane pH mycin) or tetraphenylphosphonium ion ([14C]Ph4P+), essen- gradient is +0.4 (inside alkali), which at 60°C is equivalent tially as described (7). Na+ transport was measured from the to Ad of -27 mV (inside negative). Actively respiring cells transmembrane distribution of 22Na+ as described (6). generated a protonmotive force of -198 mV. It is proposed that Cells loaded with oxidized benzyl viologen (BV2+) were energy for CO2 reduction to the level offormaldehyde (the first prepared by transferring cells (-50 mg ofprotein) into 50 mM step in methane synthesis) in Mb. thernmautotrophicum is Tris/5 mM potassium phosphate (pH 7.0) with 10 mM NaCl, derived from the Adgenerated by electrogenic Na+ extrusion. 10 mM KC1, and 5 mM BV2+ in a total volume of6.0 ml. The The protonmotive force required for ATP synthesis consists mixture was incubated in a 10-ml sealed vial for 10 mini at 600C primarily of Ad and appears to be the result of both an under H2 and chilled in ice, and the H2 replaced by Ar. These electrogenic Na+ extrusion and a pH gradient (inside alkale) cells had very active hydrogenase activity but were incapable which develops during methanogenesis. of synthesizing methane from CO2 and H2- 23Na and 31p NMR. 23Na and 31P NMR spectra were The mechanism for the generation ofprotonmotive force (Ap) recorded on a Bruker AM500 NMR spectrometer operating in methanobacteria remains controversial. There is no de- at 132.3 MHz and 202.5 MHz, respectively. 23Na NMR tectable proton translocation from inside to outside in Meth- spectra were acquired at "'600C in 10-mm NMR tubes using anobacterium thermoautotrophicum cells synthesizing meth- a 50-kHz sweep width, 900 (26-pusec) pulse, 8000 data points, ane at pH 2 7.0, but these cells are nonetheless competent to and 0.08-sec acquisition time. One thousand scans were generate ATP and establish an energy charge of 0.6 (1). collected, making the total time per spectrum 80 sec. The first Nonetheless, acid-pulse experiments indicate that ATP syn- spectrum represents an average time of 100 sec from the time thesis in Mb. thermoautotrophicum is catalyzed by a H+- the sample was inserted in the magnet. Spectra were acquired translocating ATPase (FoF1 ATPase) (2). While methanobac- in unlocked mode. Free-induction decays (FIDs) were pro- teria have been reported to translocate Na+ during metha- cessed by eliminating the first 18 points from each FID, nogenesis (3), these organisms do not appear to possess a zero-filling, and using a line broadening of4 Hz. NaCl at 100 Na+-translocating ATPase. Na+-pumping ATP synthase, mM was used as a chemical-shift standard (0 ppm). Spectra which responds specifically to Na+ but not to protons, has so were plotted in absolute intensity mode for integration. far been found only in Propionigenium modestum (4). It is The concentration of the paramagnetic-shift reagent dys- likely that methanobacteria must generate Ap required for prosium tripolyphosphate [Dy(P3010)1-] was adjusted to give ATP synthesis primarily from a transmembrane electrical a chemical-shift difference of =10 ppm between the intracel- potential (Aq*). lular and extracellular Na+ pools (8, 9). Na+ concentrations This paper confirms an earlier finding (1) that Mb. ther- were calculated by comparison ofintegrated peak intensity to moautotrophicum cells do not develop a large transmem- a resonance of 1 mM NaCl solution acquired under the same brane pH gradient (ApH) (inside alkaline) and shows that Na+ conditions. Intracellular Na+ concentrations were deter- efflux precedes the onset of methanogenesis and that this mined by correcting for average cell volume and cell con- increases Aqkby -50 mV. During methanogenesis, an internal centrations, assuming no "invisible" Na+ (10). pH shift toward alkaline was detected by 31P NMR, which Abbreviations: BV2+, oxidized benzyl viologen; TCS, 3,5,3',4'- The publication costs of this article were defrayed in part by page charge tetrachlorosalicylanilide; Ap, protonmotive force; ApH, transmem- payment. This article must therefore be hereby marked "advertisement" brane pH gradient; A*, transmembrane electrical gradient. in accordance with 18 U.S.C. §1734 solely to indicate this fact. tTo whom reprint requests should be addressed. 4466 Downloaded by guest on October 3, 2021 Biochemistry: Sauer et aL Proc. Natl. Acad. Sci. USA 91 (1994) 4467 31P NMR spectra were acquired in 10-mm tubes with 6000 There appears to be no net H+ extrusion in these cells once scans, 16,000 data points, 700 (15-,usec) pulse, 0.4-sec acqui- methane synthesis has been initiated. What happens to the sition time, and 20-kHz sweep width. Spectra were refer- internal pH is less clear. Attempts to monitor internal pH enced to 85% H3PO4 at 0 ppm. The probe was maintained at changes by radiolabeled marker distribution present techni- 40C to reduce the effects of the high concentration of para- cal difficulties, not the least of which is the maintenance of magnetic ions found in these cells. strict anaerobiosis during sampling. Changes in internal pH, however, can be measured noninvasively by 31P NMR. Fig. 2 shows the partial 31P NMR spectra of a cell suspension in RESULTS 5 mM potassium phosphate buffer before and after incubation Mb. thermoautotrophicum incubated under CO2/H2 (1:4) with Tris carbonate. The sample of Fig. 2B showed substan- showed a period of rapid H+ uptake once methane synthesis tial methane production. Before incubation, a resonance was initiated (Fig. 1). This raised the pH of the external bulk assigned to the cytoplasmic inorganic phosphate appeared at phase from 7.5 to >8.3. The pH change was equivalent to 105 2.12 ppm, corresponding to a pH of 6.8. This resonance ,umol of H+ taken up by the cells in 20 min. The addition of shifted downfield upon incubation to disappear under the TCS resulted in only a slight decrease in extracellular pH external inorganic phosphate resonance at 2.90 ppm, corre- (Fig. 1). Methane production after 30 min was 102.5 pmol. sponding to a pH of7.6. This internal pH shift of0.8 unit was These results indicate that during methanogenesis H+ flux is verified by repeating the experiment in the absence of exter- directed inward and, as was shown previously (1), there nal potassium phosphate in the buffer. Within experimental appears to be no net H+ extrusion. error, there was no shift in the external inorganic phosphate To show that the Mb. thermoautotrophicum cytoplasmic resonance. The other notable change upon incubation was membrane is impermeable to H+ and that H+ extrusion, if the appearance of a new sugar phosphate resonance at 4.0 present, would be detectable in the external bulk aqueous ppm. phase, BV2+-loaded cells were prepared. Only BV+ will In what appears to be the absence of an effective ApH cross the cytoplasmic membrane (11) as BV2+ is membrane- (inside alkaline), Mb. thermoautotrophicum depends on the impermeant. When exposed to H2, Mb. thermoautotrophi- generation of A*as the principal component of Ap. With this cum cells with 67 mM BV2+ inside rapidly reduce the in mind, the time course and magnitude of Na+ transmem- oxidized species according to reaction 1. brane gradients were measured either by cell filtration with 22Na+ or by 23Na NMR as described by Castle et al. (8, 10). H2 + 2BV2+ -- 2H+ + 2BV+ [1] 23Na NMR has been used to measure intracellular Na+ (12).
Recommended publications
  • Methane Production on Rock and Soil Substrates by Methanogens: Implications for Life on Mars
    Bioastronomy 2007: Molecules, Microbes, and Extraterrestrial Life ASP Conference Series, Vol. 420, 2009 K. J. Meech, J. V. Keane, M. J. Mumma, J. L. Siefert, and D. J. Werthimer, eds. Methane Production on Rock and Soil Substrates by Methanogens: Implications for Life on Mars H. A. Kozup and T. A. Kral 1West Virginia University, WV 26505 2Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville 72701 Abstract. In order to understand the methanogens as models for possible life on Mars, and some of the factors likely to be important in determining their abundance and distribution, we have measured their ability to produce methane on a few types of inorganic rock and soil substrates. Since organic ma- terials have not been detected in measurable quantities at the surface of Mars, there is no reason to believe that they would exist in the subsurface. Samples of three methanogens (Methanosarcina barkeri, Methanobacterium formicicum, and Methanothermobacter wolfeii) were placed on four substrates (sand, gravel, basalt, and a Mars soil simulant, JSC Mars-1) and methane production mea- sured. Glass beads were used as a control substrate. As in earlier experiments with JSC Mars-1 soil simulant, a crushed volcanic tephra, methane was pro- duced by all three methanogens when placed on the substrates, sand and gravel. None produced methane on basalt in these experiments, a mineral common in Martian soil. While these substrates do not represent the full range of materials likely to be present on the surface of Mars, the present results suggest that while some surface materials on Mars may not support this type of organism, others might.
    [Show full text]
  • Histone Variants in Archaea and the Evolution of Combinatorial Chromatin Complexity
    Histone variants in archaea and the evolution of combinatorial chromatin complexity Kathryn M. Stevensa,b, Jacob B. Swadlinga,b, Antoine Hochera,b, Corinna Bangc,d, Simonetta Gribaldoe, Ruth A. Schmitzc, and Tobias Warneckea,b,1 aMolecular Systems Group, Quantitative Biology Section, Medical Research Council London Institute of Medical Sciences, London W12 0NN, United Kingdom; bInstitute of Clinical Sciences, Faculty of Medicine, Imperial College London, London W12 0NN, United Kingdom; cInstitute for General Microbiology, University of Kiel, 24118 Kiel, Germany; dInstitute of Clinical Molecular Biology, University of Kiel, 24105 Kiel, Germany; and eDepartment of Microbiology, Unit “Evolutionary Biology of the Microbial Cell,” Institut Pasteur, 75015 Paris, France Edited by W. Ford Doolittle, Dalhousie University, Halifax, NS, Canada, and approved October 28, 2020 (received for review April 14, 2020) Nucleosomes in eukaryotes act as platforms for the dynamic inte- additional histone dimers can be taggedontothistetramertoyield gration of epigenetic information. Posttranslational modifications oligomers of increasing length that wrap correspondingly more DNA are reversibly added or removed and core histones exchanged for (3, 6–9). Almost all archaeal histones lack tails and PTMs have yet to paralogous variants, in concert with changing demands on tran- be reported. Many archaea do, however, encode multiple histone scription and genome accessibility. Histones are also common in paralogs (8, 10) that can flexibly homo- and heterodimerize in
    [Show full text]
  • Methanobacterium Paludis Sp. Nov. and a Novel Strain of Methanobacterium Lacus Isolated from Northern Peatlands
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of North Carolina at Greensboro Archived version from NCDOCKS Institutional Repository http://libres.uncg.edu/ir/asu/ Methanobacterium Paludis Sp. Nov. And A Novel Strain Of Methanobacterium Lacus Isolated From Northern Peatlands By: Suzanna L. Brauer, Hinsby Cadillo-Quiroz, Noah Goodson, Joseph B. Yavitt & Stephen H. Zinder Abstract Two mesophilic, hydrogenotrophic methanogens, designated strains SWAN1T and AL-21, were isolated from two contrasting peatlands: a near circumneutral temperate minerotrophic fen in New York State, USA, and an acidic boreal poor fen site in Alaska, USA, respectively. Cells of the two strains were rod-shaped, non- motile, stained Gram-negative and resisted lysis with 0.1 % SDS. Cell size was 0.6 1.5–2.8 mm for strain SWAN1T and 0.45–0.85 1.5–35 mm for strain AL-21. The strains used H2/CO2 but not formate or other substrates for methanogenesis, grew optimally around 32–37 6C, and their growth spanned through a slightly low to neutral pH range (4.7–7.1). Strain AL-21 grew optimally closer to neutrality at pH 6.2, whereas strain SWAN1T showed a lower optimal pH at 5.4–5.7. The two strains were sensitive to NaCl with a maximal tolerance at 160 mM for strain SWAN1T and 50 mM for strain AL-21. Na2S was toxic at very low concentrations (0.01–0.8 mM), resulting in growth inhibition above these values. The DNA G+C content of the genomes was 35.7 mol% for strain SWAN1T and 35.8 mol% for strain AL-21.
    [Show full text]
  • METHANOGENS AS MODELS for LIFE on MARS. R. L. Mickol1, W. H. Waddell2, and T
    Eighth International Conference on Mars (2014) 1005.pdf METHANOGENS AS MODELS FOR LIFE ON MARS. R. L. Mickol1, W. H. Waddell2, and T. A. Kral1,3, 1Arkansas Center for Space and Planetary Sciences, 202 Old Museum Building, University of Arkansas, Fayetteville, Arkansas, 72701, USA, [[email protected]], 2Dept. of Health, Human Performance, and Recreation, HPER 308, University of Arkansas, Fayetteville, Arkansas, 72701, USA, 3Dept. of Biological Sciences, SCEN 632, University of Arkansas, Fayetteville, Arkansas, 72701, USA. Introduction: The discovery of methane in the Sciences, University of Arkansas, Fayetteville, Arkan- martian atmosphere [1-4] has fueled the study of meth- sas. All four methanogen species were tested in these anogens as ideal candidates for life on Mars. Methano- experiments. Methanogens were grown in their respec- gens are chemoautotrophs from the domain Archaea. tive anaerobic growth media and placed into the cham- These microorganisms utilize hydrogen as an energy ber with a palladium catalyst box to remove residual source and carbon dioxide as a carbon source to pro- oxygen. The chamber was evacuated to a pre- duce methane. Methanogens can be considered ideal determined pressure and filled with 80:20 H2:CO2 gas. candidates for life on Mars because they are anaerobic, This procedure was repeated three times to ensure re- they do not require organic nutrients and are non- moval of the atmosphere. The chamber was then main- photosynthetic, indicating they could exist in sub- tained at the desired pressure (133-143 mbar, 67-72 surface environments. mbar, 33-38 mbar, 6-10 mbar, 7-20 mbar) for the dura- Our lab has studied methanogens as models for life tion of the experiments.
    [Show full text]
  • Large Carbon Isotope Variability During Methanogenesis Under Alkaline Conditions Hannah M
    Large carbon isotope variability during methanogenesis under alkaline conditions Hannah M. Millera Nabil Chaudhrya Mark E. Conradb Markus Billb Sebastian H. Kopfa Alexis S. Templetona Abstract 13 High carbon isotope values (δ CCH4 > −40‰) have widely been used as evidence that methane in alkaline rock-hosted fluids was formed abiotically, particularly in serpentinizing systems. However, isotope fractionation during microbial methanogenesis is relatively understudied at high pH. We isolated a hydrogenotrophic Methanobacterium sp. from hyperalkaline subsurface fluids in the Samail ophiolite to assess how carbon and hydrogen isotope values of CH4 varied depending upon pH and carbonate mineral source (NaHCO3 or CaCO3). The hydrogen isotope fractionation αH20/CH4 (1.46–1.66) did not vary across pH. In contrast, the expressed carbon isotope fractionation, αCO2/CH4, ranged from 1.028 to 1.089. Carbon isotope fractionation increased with pH, reaching a maximum 13C depletion of −85‰. However, the 13C depletion significantly diminished at pH ≥ 9 for 13 CaCO3-amended experiments, generating δ CCH4 as high as −28‰. To 13 evaluate the large variability in δ CCH4, we developed a steady-state model to assess how the rates of carbonate dissolution, cellular uptake of CO2 and irreversible CH4 production can affect the net isotope fractionation during 13 methanogenesis. Methanobacterium sp. can produce highly depleted δ CCH4 in simulated alkaline serpentinizing fluids when dissolved inorganic carbon levels are high and methanogenesis rates are slow. However, small carbon isotope fractionation occurs when rates of carbonate dissolution are slower 13 than cellular uptake, leading to relatively high δ CCH4 values (>∼−35‰) that are traditionally interpreted to be purely “abiotic”.
    [Show full text]
  • Nitrogen Fixation in Methanogens: the Archaeal Perspective
    Curr. Issues Mol. Biol. (2000) 2(4): 125-131. Nitrogen Fixation in Methanogens 125 Nitrogen Fixation In Methanogens: The Archaeal Perspective John A. Leigh rRNA sequence comparisons, the Euryarchaeota and the Crenarchaeota (6). The Euryarchaeota contain the Dept. Microbiology, University of Washington, Seattle, WA methanogens, the halophiles, and some extreme 98195, USA thermophiles, while the Crenarchaeota contain most of the extreme thermophiles. Within the Archaea, nitrogen fixation Abstract has been found only in the methanogenic Euryarchaeota. Within the methanogens, however, nitrogen fixation is The methanogenic Archaea bring a broadened widespread, extending to all three orders (7) (Table 1). In perspective to the field of nitrogen fixation. the Methanococcales, diazotrophic growth has been Biochemical and genetic studies show that nitrogen reported for Methanococcus thermolithotrophicus (3) and fixation in Archaea is evolutionarily related to nitrogen Methanococcus maripaludis (8). M. thermolithotrophicus fixation in Bacteria and operates by the same is the only organism demonstrated to fix nitrogen at 60°C fundamental mechanism. At least six nif genes present or above. Neither Methanococcus jannaschii (9) nor in Bacteria (nif H, D, K, E, N and X) are also found in Methanococcus voltae (10) fix nitrogen despite the the diazotrophic methanogens. Most nitrogenases in presence of nifH homologues (our unpublished results). In methanogens are probably of the molybdenum type. M. jannaschii it is clear that other nif genes are not present. However, differences exist in gene organization and Within the Methanomicrobiales, diazotrophic species regulation. All six known nif genes of methanogens, include Methanosarcina barkeri (2, 11) and plus two homologues of the bacterial nitrogen sensor- Methanospirillum hungatei (12).
    [Show full text]
  • Methanogens: Biochemical Background and Biotechnological Applications Franziska Enzmann1, Florian Mayer1 , Michael Rother2 and Dirk Holtmann1*
    Enzmann et al. AMB Expr (2018) 8:1 https://doi.org/10.1186/s13568-017-0531-x MINI-REVIEW Open Access Methanogens: biochemical background and biotechnological applications Franziska Enzmann1, Florian Mayer1 , Michael Rother2 and Dirk Holtmann1* Abstract Since fossil sources for fuel and platform chemicals will become limited in the near future, it is important to develop new concepts for energy supply and production of basic reagents for chemical industry. One alternative to crude oil and fossil natural gas could be the biological conversion of ­CO2 or small organic molecules to methane via metha‑ nogenic archaea. This process has been known from biogas plants, but recently, new insights into the methanogenic metabolism, technical optimizations and new technology combinations were gained, which would allow moving beyond the mere conversion of biomass. In biogas plants, steps have been undertaken to increase yield and purity of the biogas, such as addition of hydrogen or metal granulate. Furthermore, the integration of electrodes led to the development of microbial electrosynthesis (MES). The idea behind this technique is to use CO­ 2 and electrical power to generate methane via the microbial metabolism. This review summarizes the biochemical and metabolic background of methanogenesis as well as the latest technical applications of methanogens. As a result, it shall give a sufcient overview over the topic to both, biologists and engineers handling biological or bioelectrochemical methanogenesis. Keywords: Methanogens, Genetic tools, Biogas, Microbial electrosynthesis, Electroactivity Introduction process involving methanogens. Tese archaea use CO­ 2 Methanogens are biocatalysts, which have the potential and ­H2 and/or small organic molecules, such as acetate, to contribute to a solution for future energy problems by formate, and methylamine and convert it to methane.
    [Show full text]
  • Taxonomy and Ecology of Methanogens
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Horizon / Pleins textes FEMS Microbiology Reviews 87 (1990) 297-308 297 Pubfished by Elsevier FEMSRE 00180 Taxonomy and ecology of methanogens J.L. Garcia Laboratoire de Microbiologie ORSTOM, Université de Provence, Marseille, France Key words: Methanogens; Archaebacteria; Taxonomy; Ecology 1. INTRODUCTION methane from CO2 using alcohols as hydrogen donors; 2-propanol is oxidized to acetone, and More fhan nine reviews on taxonomy of 2-butanol to 2-butanone. Carbon monoxide may methanogens have been published during the last also be converted into methane; most hydro- decade [l-91, after the discovery of the unique genotrophic species (60%) will also use formate. biochemical and genetic properties of these Some aceticlastic species are incapable of oxidiz- organisms led to the concept of Archaebacteria at ing H,. The aceticlastic species of the genus the end of the seventies. Moreover, important Methanosurcina are the most metabolically diverse economic factors have ,placed these bacteria in the methanogens, whereas the obligate aceticlastic limelight [5], including the need to develop alter- Methanosaeta (Methanothrix) can use only acetate. native forms of energy, xenobiotic pollution con- The taxonomy of the methanogenic bacteria trol, the enhancement of meat yields in the cattle has been extensively revised in the light of new industry, the distinction between biological and information based on comparative studies of 16 S thermocatalytic petroleum generation, and the rRNA oligonucleotide sequences, membrane lipid global distribution of methane in the earth's atmo- composition, and antigenic fingerprinting data. sphere. The phenotypic characteristics often do not pro- vide a sufficient means of distinguishing among taxa or determining the phylogenetic position of a 2.
    [Show full text]
  • Archaea in Coastal Marine Environments (Achabaterla/Phyoey/Batwe Nt/N a Eclogu) EDWARD F
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 5685-5689, June 1992 Ecology Archaea in coastal marine environments (achabaterla/phyoey/batwe nt/n a eclogU) EDWARD F. DELONG* Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 Communicated by George N. Somero, March 17, 1992 (receivedfor review February 4, 1992) ABSTRACT Archaea (archaebacteria) are a phenotypi- macroaggregate samples, eubacterial- or archaeal-biased cally diverse group of microorganisms that share a common PCR primers were routinely used to exclude the amplification evolutionary history. There are four general phenotypic groups of eukaryotic ribosomal RNA-encoding DNA (rDNA). Sur- of archaea: the methanogens, the extreme halophiles, the prisingly, archaeal rDNA was detected in many samples. sulfate-reducing archaea, and the extreme thermophiles. In the This report describes the detection of two marine archaeal marine environment, archaeal habitats are generally limited to lineages and their preliminary phylogenetic and ecological shallow or deep-sea anaerobic sediments (free-living and en- characterization. dosymbiotic methanogens), hot springs or deep-sea hydrother- mal vents (methanogens, sulfate reducers, and extreme ther- mophiles), and highly saline land-locked seas (halophiles). This METHODS report provides evidence for the widespread occurrence of Bacterioplankton Collection. Coastal water samples were unusual archaea in oxygenated coasl surface waters of North collected and screened through a 10-L&m Nytex mesh prefil- America. Quantitative mates indicated that up to 2% ofthe ter. Bacterioplankton were concentrated from these 10-pm- total ribosomal RNA extracted fom coastal bacterioplankton filtered water samples by using a CH2PR filtration unit assemblages was archaeal. Archaeal small-subunit ribosomal (Amicon) fitted with a polysulfone hollow-fiber filter (30-kDa RNA-encoding DNAs (rDNAs) were coned from mixed bac- cutoff).
    [Show full text]
  • Methanogenic Microorganisms in Industrial Wastewater Anaerobic Treatment
    processes Review Methanogenic Microorganisms in Industrial Wastewater Anaerobic Treatment Monika Vítˇezová 1 , Anna Kohoutová 1, Tomáš Vítˇez 1,2,* , Nikola Hanišáková 1 and Ivan Kushkevych 1,* 1 Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic; [email protected] (M.V.); [email protected] (A.K.); [email protected] (N.H.) 2 Department of Agricultural, Food and Environmental Engineering, Faculty of AgriSciences, Mendel University, 61300 Brno, Czech Republic * Correspondence: [email protected] (T.V.); [email protected] (I.K.); Tel.: +420-549-49-7177 (T.V.); +420-549-49-5315 (I.K.) Received: 31 October 2020; Accepted: 24 November 2020; Published: 26 November 2020 Abstract: Over the past decades, anaerobic biotechnology is commonly used for treating high-strength wastewaters from different industries. This biotechnology depends on interactions and co-operation between microorganisms in the anaerobic environment where many pollutants’ transformation to energy-rich biogas occurs. Properties of wastewater vary across industries and significantly affect microbiome composition in the anaerobic reactor. Methanogenic archaea play a crucial role during anaerobic wastewater treatment. The most abundant acetoclastic methanogens in the anaerobic reactors for industrial wastewater treatment are Methanosarcina sp. and Methanotrix sp. Hydrogenotrophic representatives of methanogens presented in the anaerobic reactors are characterized by a wide species diversity. Methanoculleus
    [Show full text]
  • Microorganisms
    microorganisms Article Effect of Sub-Stoichiometric Fe(III) Amounts on LCFA Degradation by Methanogenic Communities 1, 1, 1 1 1 Ana J. Cavaleiro * , Ana P. Guedes y,Sérgio A. Silva , Ana L. Arantes , João C. Sequeira , Andreia F. Salvador 1 , Diana Z. Sousa 1,2, Alfons J. M. Stams 1,2 and M. Madalena Alves 1 1 Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; [email protected] (A.P.G.); [email protected] (S.A.S.); [email protected] (A.L.A.); [email protected] (J.C.S.); [email protected] (A.F.S.); [email protected] (D.Z.S.); [email protected] (A.J.M.S.); [email protected] (M.M.A.) 2 Laboratory of Microbiology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +35-1253604423 Present address: Agricultural Superior School of Ponte de Lima, Polytechnic Institute of Viana do Castelo, y Refóios do Lima, 4990-706 Ponte de Lima, Portugal. Received: 31 July 2020; Accepted: 4 September 2020; Published: 7 September 2020 Abstract: Long-chain fatty acids (LCFA) are common contaminants in municipal and industrial wastewater that can be converted anaerobically to methane. A low hydrogen partial pressure is required for LCFA degradation by anaerobic bacteria, requiring the establishment of syntrophic relationships with hydrogenotrophic methanogens. However, high LCFA loads can inhibit methanogens, hindering biodegradation. Because it has been suggested that anaerobic degradation of these compounds may be enhanced by the presence of alternative electron acceptors, such as iron, we investigated the effect of sub-stoichiometric amounts of Fe(III) on oleate (C18:1 LCFA) degradation by suspended and granular methanogenic sludge.
    [Show full text]
  • Complete Genome Sequence of Methanobacterium Thermoautotrophicum ⌬H: Functional Analysis and Comparative Genomics DOUGLAS R
    JOURNAL OF BACTERIOLOGY, Nov. 1997, p. 7135–7155 Vol. 179, No. 22 0021-9193/97/$04.0010 Copyright © 1997, American Society for Microbiology Complete Genome Sequence of Methanobacterium thermoautotrophicum DH: Functional Analysis and Comparative Genomics DOUGLAS R. SMITH,1* LYNN A. DOUCETTE-STAMM,1 CRAIG DELOUGHERY,1 HONGMEI LEE,1 JOANN DUBOIS,1 TYLER ALDREDGE,1 ROMINA BASHIRZADEH,1 DERRON BLAKELY,1 ROBIN COOK,1 KATIE GILBERT,1 DAWN HARRISON,1 LIEU HOANG,1 PAMELA KEAGLE,1 WENDY LUMM,1 BRYAN POTHIER,1 DAYONG QIU,1 ROB SPADAFORA,1 RITA VICAIRE,1 YING WANG,1 JAMEY WIERZBOWSKI,1 RENE GIBSON,1 NILOFER JIWANI,1 ANTHONY CARUSO,1 DAVID BUSH,1 1 1 1 1 HERSHEL SAFER, DONIVAN PATWELL, SHASHI PRABHAKAR, STEVE MCDOUGALL, GEORGE SHIMER,1 ANIL GOYAL,1 SHMUEL PIETROKOVSKI,2 GEORGE M. CHURCH,3 4 1 1 1 4 CHARLES J. DANIELS, JEN-I MAO, PHIL RICE, JO¨ RK NO¨ LLING, AND JOHN N. REEVE Genome Therapeutics Corporation, Collaborative Research Division, Waltham, Massachusetts 02154,1 Howard Hughes Medical Institute, Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115,3 Fred Hutchinson Cancer Research Center, Seattle, Washington 98109,2 and Department of Microbiology, The Ohio State University, Columbus, Ohio 432104 Received 2 July 1997/Accepted 3 September 1997 The complete 1,751,377-bp sequence of the genome of the thermophilic archaeon Methanobacterium thermo- autotrophicum DH has been determined by a whole-genome shotgun sequencing approach. A total of 1,855 open reading frames (ORFs) have been identified that appear to encode polypeptides, 844 (46%) of which have been assigned putative functions based on their similarities to database sequences with assigned functions.
    [Show full text]