ARM architecture From Wikipedia, the free encyclopedia

ARM is a family of instruction set architectures for ARM architectures processors based on a reduced instruction set (RISC) architecture developed by British company ARM Holdings.

A RISC-based computer design approach means ARM The ARM logo processors require significantly fewer transistors than typical Designer ARM Holdings CISC processors in most personal . This approach reduces costs, heat and power use. These are Bits 32-bit, 64-bit ​ desirable traits for light, portable, battery-powered devices— Introduced 1985 including , , tablet and notepad computers, and other embedded systems. A simpler design Design RISC facilitates more efficient multi-core CPUs and higher core Type Register-Register counts at lower cost, providing improved energy efficiency Branching Condition code for servers.[3][4][5] Open Proprietary ARM Holdings develops the instruction set and architecture for ARM-based products, but does not manufacture 64/32-bit architecture products. The company periodically releases updates to its Introduced 2011 cores. Current cores from ARM Holdings support a 32-bit address space and 32-bit arithmetic; the ARMv8-A Version ARMv8-A architecture, announced in October 2011,[6] adds support Encoding AArch64/A64 and AArch32/A32 use for a 64-bit address space and 64-bit arithmetic. Instructions 32-bit instructions, T32 (Thumb2) for ARM Holdings' cores have 32-bit-wide fixed-length uses mixed 16- and 32-bit instructions. instructions, but later versions of the architecture also support ARMv7 user-space compatibility[1] a variable-length instruction set that provides both 32-bit and 16-bit-wide instructions for improved code density. Some Bi (Little as default) cores can also provide hardware execution of Extensions All mandatory: Thumb-2, NEON, bytecodes. , VFPv4-D16, VFPv4 ARM Holdings licenses the designs and the ARM Registers instruction set architectures to third-parties, who design their General 31x 64-bit integer registers[1] plus PC ​ own products that implement one of those architectures— purpose including systems-on-chips (SoC) that incorporate memory, and SP, ELR, SPSR for exception interfaces, , etc. Currently, the widely used Cortex levels cores, older "classic" cores, and specialized SecurCore cores Floating 32× 128-bit registers,[1] scalar 32- and variants are available for each of these to include or exclude point 64-bit FP, SIMD 64- and 128-bit FP optional capabilities. Companies that produce ARM and integer products include Apple, , , , Electronics, and . Apple first implemented the ARMv8-A architecture in the 32-bit architectures (Cortex) chip in the iPhone 5S. Version ARMv8-R, ARMv7-A, ARMv7-R, ARMv7E-M, ARMv7-M, ARMv6-M In 2005, about 98% of all mobile phones sold used at least Encoding 32-bit except Thumb2 extensions use one ARM .[7] The low power consumption of mixed 16- and 32-bit instructions. ARM processors has made them very popular: 37 billion Endianness Bi (Little as default) ARM processors have been produced as of 2013, up from Extensions Thumb-2 (mandatory since ARMv7), 10 billion in 2008.[8] The ARM architecture (32-bit) is the most widely used architecture in mobile devices, and most NEON, Jazelle, FPv4-SP popular 32-bit one in embedded systems.[9] Registers General 16x 32-bit integer registers including According to ARM Holdings, in 2010 alone, producers of purpose PC and SP chips based on ARM architectures reported shipments of 6.1 billion ARM-based processors, representing 95% of Floating Up to 32× 64-bit registers,[2] smartphones, 35% of digital televisions and set-top boxes point SIMD/floating-point (optional) and 10% of mobile computers. It is the most widely used 32- bit instruction set architecture in terms of quantity 32-bit architectures (legacy) produced.[10][11] Version ARMv6, ARMv5, ARMv4T, ARMv3, ARMv2 Contents Encoding 32-bit except Thumb extension uses mixed 16- and 32-bit instructions. 1 History Endianness Bi (Little as default) in ARMv3 and 1.1 Acorn RISC Machine: ARM2 above 1.2 Apple, DEC, , Marvell: ARM6, Extensions Thumb, Jazelle StrongARM, XScale Registers 2 Licensing 2.1 Core license General 16x 32-bit integer registers including 2.2 Architectural licence purpose PC (26-bit addressing in older) and SP 3 Cores 3.1 Example applications of ARM cores 4 32-bit architecture 4.1 CPU modes 4.2 Instruction set 4.2.1 Arithmetic instructions 4.2.2 Registers 4.2.3 Conditional execution 4.2.4 Other features 4.2.5 Pipelines and other implementation issues 4.2.6 4.3 Debugging 4.4 DSP enhancement instructions 4.5 SIMD extensions for multimedia 4.6 Jazelle 4.7 Thumb 4.8 Thumb-2 4.9 Thumb Execution Environment (ThumbEE) (ThumbEE) 4.10 Floating-point (VFP) 4.11 Advanced SIMD (NEON) 4.12 Security extensions (TrustZone) 4.13 No-execute protection 4.14 ARMv8-R 5 64/32-bit architecture 5.1 ARMv8-A 5.1.1 AArch64 features 6 support 6.1 32-bit operating systems 6.2 64-bit operating systems 7 See also 8 References 9 Further reading 10 External links

History

The British computer manufacturer first developed ARM in the 1980s to use in its personal computers. Its first ARM-based products were modules for the BBC Micro series of computers. After the successful BBC Micro computer, Acorn Computers considered how to move on from the relatively simple MOS Technology 6502 processor to address business markets like the one that was soon dominated by the IBM PC, launched in 1981. The (ABC) plan required that a number of second processors be made to work with the BBC Micro platform, but processors such as the and National Semiconductor 32016 were considered unsuitable, and the 6502 was not powerful enough for a graphics based .[12]

After testing all available processors and finding them lacking, Acorn decided it needed a new architecture. Inspired by white papers on the Berkeley RISC project, Acorn considered designing its own processor.[13] A visit to -based the in Phoenix, where the 6502 was being updated by what was effectively a single-person company, showed Acorn engineers and they did not need massive resources and state-of-the-art research and development facilities.[14] Wilson developed the instruction set, writing a simulation of the processor in BBC Basic that ran on a BBC Micro with a second 6502 processor. This convinced Acorn engineers they were on the right track. Wilson approached Acorn's CEO, , and requested more resources. Once he had approval, he assembled a small team to implement Wilson's model in hardware.

Acorn RISC Machine: ARM2

The official Acorn RISC Machine project started in October 1983. They chose VLSI Technology as the silicon partner, as they were a source of ROMs and custom chips for Acorn. Wilson and Furber led the design. They implemented it with a similar efficiency ethos as the 6502.[15] A key design goal was achieving low-latency input/output () handling like the 6502. The 6502's memory access architecture had let developers produce fast machines without costly hardware. The ARM1 second processor for the BBC Micro VLSI produced the first ARM silicon on 26 April 1985. It worked the first time, and was known as ARM1 by April 1985.[3] The first production systems named ARM2 were available the following year.

The first ARM application was as a second processor for the BBC Micro, where it helped in developing simulation software to finish development of the support chips (VIDC, IOC, MEMC), and sped up the CAD software used in ARM2 development. Wilson subsequently rewrote BBC Basic in ARM . The in-depth knowledge gained from designing the instruction set enabled the code to be very dense, making ARM BBC Basic an extremely good test for any ARM emulator. The original aim of a principally ARM-based computer was achieved in 1987 with the release of the .[16] In 1992, Acorn once more won the Queen's Award for Technology for the ARM.

The ARM2 featured a 32-bit data , 26-bit address space and 27 32-bit registers. 8 bits from the program register were available for other purposes; the top 6 bits (available because of the 26-bit address space), served as status flags, and the bottom 2 bits (available because the was always word-aligned), were used for setting modes. The address bus was extended to 32 bits in the ARM6, but program code still had to lie within the first 64 MB of memory in 26-bit compatibility mode, due to the reserved bits for the status flags.[17] The ARM2 had a of just 30,000, compared to Motorola's six-year-older 68000 model with 68,000.[18] Much of this simplicity came from the lack of (which represents about one-quarter to one- third of the 68000) and from (like most CPUs of the day) not including any . This simplicity enabled low power consumption, yet better performance than the . A successor, ARM3, was produced with a 4 KB cache, which further improved performance.[19]

Apple, DEC, Intel, Marvell: ARM6, StrongARM, XScale

In the late 1980s Apple Computer and VLSI Technology started working with Acorn on newer versions of the ARM core. In 1990, Acorn spun off the design team into a new company named Acorn RISC Machines Ltd., which became ARM Ltd when its parent company, ARM Holdings plc, floated on the London Stock Exchange and NASDAQ in 1998.[20] The new Apple-ARM work would eventually evolve into the ARM6, first released in early 1992. Apple used the ARM6-based ARM610 as the basis for their PDA. In 1994, Acorn used the ARM610 as the main (CPU) in their RiscPC computers. DEC licensed the ARM6 architecture and produced the StrongARM. At 233 MHz, this CPU drew only one watt (newer versions draw far less). This work was later passed to Intel as a part of a lawsuit settlement, and Intel took the opportunity to supplement their i960 line with the StrongARM. Intel later developed its own high performance implementation named XScale, which it has since sold to Marvell. Transistor count of the ARM core remained essentially the same size throughout these changes; ARM2 had 30,000 transistors, while ARM6 grew only to 35,000.[citation needed] Licensing

See also: ARM Holdings#Licensees

Core license

ARM Holdings' primary business is selling IP cores, which licensees use to create (MCUs) and CPUs based on those cores. The original design manufacturer combines the ARM core with other parts to produce a complete CPU, typically one that can be built in existing semiconductor fabs at low cost and still deliver substantial performance. The most successful implementation has been the ARM7TDMI with hundreds of millions sold. has been a precursor design center in the ARM7TDMI-based .

The ARM architectures used in smartphones, PDAs and other mobile Die of a STM32F103VGT6 ARM devices range from ARMv5, used in low-end devices, through ARMv6, Cortex-M3 with to ARMv7 in current high-end devices. ARMv7 includes a hardware 1 by floating-point unit (FPU), with improved speed compared to software- STMicroelectronics. based floating-point.

In 2009, some manufacturers introduced based on ARM architecture CPUs, in direct competition with netbooks based on Intel .[21] According to analyst firm IHS iSuppli, by 2015, ARM ICs may be in 23% of all laptops.[22]

ARM Holdings offers a variety of licensing terms, varying in cost and deliverables. ARM Holdings provides to all licensees an integratable hardware description of the ARM core as well as complete toolset (, , ) and the right to sell manufactured silicon containing the ARM CPU.

SoC packages integrating ARM's core designs include Nvidia 's first three generations, CSR plc's Quatro family, ST-Ericsson's Nova and NovaThor, 's Precision32 MCU, Texas Instruments's OMAP products, Samsung's Hummingbird and products, Apple's A4, A5, and A5X, and Freescale's i.MX.

Fabless licensees, who wish to integrate an ARM core into their own chip design, are usually only interested in acquiring a ready-to-manufacture verified IP core. For these customers, ARM Holdings delivers a gate netlist description of the chosen ARM core, along with an abstracted simulation model and test programs to aid design integration and verification. More ambitious customers, including integrated device manufacturers (IDM) and foundry operators, choose to acquire the processor IP in synthesizable RTL () form. With the synthesizable RTL, the customer has the ability to perform architectural level optimisations and extensions. This allows the designer to achieve exotic design goals not otherwise possible with an unmodified netlist (high clock speed, very low power consumption, instruction set extensions, etc.). While ARM Holdings does not grant the licensee the right to resell the ARM architecture itself, licensees may freely sell manufactured product such as chip devices, evaluation boards and complete systems. Merchant foundries can be a special case; not only are they allowed to sell finished silicon containing ARM cores, they generally hold the right to re-manufacture ARM cores for other customers.

ARM Holdings prices its IP based on perceived value. Lower performing ARM cores typically have lower licence costs than higher performing cores. In implementation terms, a synthesizable core costs more than a hard macro (blackbox) core. Complicating price matters, a merchant foundry that holds an ARM licence, such as Samsung or , can offer fab customers reduced licensing costs. In exchange for acquiring the ARM core through the foundry's in-house design services, the customer can reduce or eliminate payment of ARM's upfront licence fee.

Compared to dedicated semiconductor foundries (such as TSMC and UMC) without in-house design services, Fujitsu/Samsung charge two- to three-times more per manufactured .[citation needed] For low to mid volume applications, a design service foundry offers lower overall pricing (through subsidisation of the licence fee). For high volume mass-produced parts, the long term cost reduction achievable through lower wafer pricing reduces the impact of ARM's NRE (Non-Recurring Engineering) costs, making the dedicated foundry a better choice.

Architectural licence

Companies can also obtain an ARM architectural licence for designing their own CPU cores using the ARM instruction sets. These cores must comply fully with the ARM architecture. Cores

Main article: List of ARM cores Cores Bit Architecture Cores designed by ARM Holdings designed by Cortex profile References width third parties ARMv1 32/26 ARM1 , ARMv2 32/26 ARM2, ARM3 STORM Open Soft Core[23] ARMv3 32 ARM6, ARM7 StrongARM, ARMv4 32 ARM8 FA526 ARMv4T 32 ARM7TDMI, ARM9TDMI XScale, FA626TE, ARMv5 32 ARM7EJ, ARM9E, ARM10E Feroceon, PJ1/Mohawk

ARMv6 32 ARM11 ARM Cortex-M0, ARM Cortex-M0+, ARMv6-M 32 Microcontroller ARM Cortex-M1 ARMv7-M 32 ARM Cortex-M3 Microcontroller ARMv7E-M 32 ARM Cortex-M4 Microcontroller ARM Cortex-R4, ARM Cortex-R5, ARM ARMv7-R 32 Real-time Cortex-R7 ARM Cortex-A5, ARM Cortex-A7, Krait, Scorpion, ARM Cortex-A8, ARM Cortex-A9, PJ4/Sheeva, ARMv7-A 32 Application ARM Cortex-A12, ARM Cortex-A15, Apple ARM Cortex-A17 A6/A6X (Swift) X-Gene, ARMv8-A 64/32 ARM Cortex-A53, ARM Cortex-A57[24] Denver, Apple Application [25][26] A7 (Cyclone) ARMv8-R 32 No announcements yet Real-time [27][28]

A list of vendors who implement ARM cores in their design (application specific standard products (ASSP), microprocessor and microcontrollers) is provided by ARM Holdings.[29]

Example applications of ARM cores

Main article: List of applications of ARM cores ARM cores are used in a number of products, particularly PDAs and smartphones. Some computing examples are the , Apple's iPad and Eee Pad Transformer. Others include Apple's iPhone and iPod , Canon PowerShot A470 , Nintendo DS and TomTom turn-by-turn navigation system.

In 2005, ARM Holdings took part in the development of Manchester University's computer, SpiNNaker, which used ARM cores to simulate the human brain.[30]

ARM chips are also used in , BeagleBoard, BeagleBone, PandaBoard and other single-board computers, because they are very Tronsmart MK908, a Rockchip-based small, inexpensive and consume very little power. quad-core Android "mini PC", with a microSD card next to it for a size 32-bit architecture comparison.

The 32-bit ARM architecture, such as ARMv7-A, is the most widely used architecture in mobile devices.[9]

From 1995, the ARM Architecture Reference Manual (http://infocenter.arm.com/help/index.jsp) has been the primary source of documentation on the ARM processor architecture and instruction set, distinguishing interfaces that all ARM processors are required to support (such as instruction ) from implementation details that may vary. The architecture has evolved over time, and version 7 of the architecture, ARMv7, that defines the architecture for the first of the Cortex series of cores, defines three architecture "profiles":

A-profile, the "Application" profile: Cortex-A series R-profile, the "Real-time" profile: Cortex-R series M-profile, the "Microcontroller" profile: Cortex-M series

Although the architecture profiles were first defined for ARMv7, ARM subsequently defined the ARMv6-M architecture (used by the Cortex M0/M0+/M1) as a subset of the ARMv7-M profile with fewer instructions.

CPU modes

Except in the M-profile, the 32-bit ARM architecture specifies several CPU modes, depending on the implemented architecture features. At any moment in time, the CPU can be in only one mode, but it can modes due to external events () or programmatically.[31]

User mode: The only non-privileged mode. FIQ mode: A privileged mode that is entered whenever the processor accepts an FIQ interrupt. IRQ mode: A privileged mode that is entered whenever the processor accepts an IRQ interrupt. Supervisor (svc) mode: A privileged mode entered whenever the CPU is reset or when an SVC instruction is executed. Abort mode: A privileged mode that is entered whenever a prefetch abort or data abort exception occurs. Undefined mode: A privileged mode that is entered whenever an undefined instruction exception occurs. System mode (ARMv4 and above): The only privileged mode that is not entered by an exception. It can only be entered by executing an instruction that explicitly writes to the mode bits of the CPSR. Monitor mode (ARMv6 and ARMv7 Security Extensions, ARMv8 EL3): A monitor mode is introduced to support TrustZone extension in ARM cores. Hyp mode (ARMv7 Virtualization Extensions, ARMv8 EL2): A mode that supports virtualization of the non-secure operation of the CPU.[32]

Instruction set

The original (and subsequent) ARM implementation was hardwired without microcode, like the much simpler 8-bit 6502 processor used in prior Acorn .

The 32-bit ARM architecture (and the 64-bit architecture for the most part) includes the following RISC features:

Load/store architecture. No support for unaligned memory accesses in the original version of the architecture. ARMv6 and later, except some microcontroller versions, support unaligned accesses for half-word and single-word load/store instructions with some limitations, such as no guaranteed atomicity.[33][34] Uniform 16× 32-bit register (including the Program Counter, Stack Pointer and the Link Register). Fixed instruction width of 32 bits to ease decoding and pipelining, at the cost of decreased code density. Later, the Thumb instruction set added 16-bit instructions and increased code density. Mostly single clock-cycle execution.

To compensate for the simpler design, compared with processors like the Intel 80286 and , some additional design features were used:

Conditional execution of most instructions reduces branch overhead and compensates for the lack of a . Arithmetic instructions alter condition codes only when desired. 32-bit can be used without performance penalty with most arithmetic instructions and address calculations. Has powerful indexed addressing modes. A link register supports fast leaf function calls. A simple, but fast, 2-priority-level interrupt subsystem has switched register banks.

Arithmetic instructions

The ARM supports add, subtract, and multiply instructions. The integer divide instructions are only implemented by ARM cores based on the following ARM architectures:

ARMv7-M and ARMv7E-M architectures always include divide instructions.[35] ARMv7-R architecture always includes divide instructions in the Thumb instruction set, but optionally in its 32-bit instruction set.[36] ARMv7-A architecture optionally includes the divide instructions. The instructions might not be implemented, or implemented only in the Thumb instruction set, or implemented in both the Thumb and ARM instructions sets, or implemented if the Virtualization Extensions are included.[36]

Registers Registers R0 through R7 are the same Registers across CPU modes across all CPU modes; they are never usr sys svc abt und irq fiq banked. R0 R13 and R14 are banked across all R1 privileged CPU modes except system mode. That is, each mode that can be R2 entered because of an exception has its R3 own R13 and R14. These registers R4 generally contain the stack pointer and the return address from function calls, R5 respectively. R6 Aliases: R7 R8 R8_fiq R13 is also referred to as SP, the Stack Pointer. R9 R9_fiq R14 is also referred to as LR, the R10 R10_fiq Link Register. R15 is also referred to as PC, the R11 R11_fiq Program Counter. R12 R12_fiq R13 R13_svc R13_abt R13_und R13_irq R13_fiq CPSR has the following 32 bits.[37] R14 R14_svc R14_abt R14_und R14_irq R14_fiq M (bits 0–4) is the processor mode R15 bits. CPSR T (bit 5) is the Thumb state bit. F (bit 6) is the FIQ disable bit. SPSR_svc SPSR_abt SPSR_und SPSR_irq SPSR_fiq I (bit 7) is the IRQ disable bit. A (bit 8) is the imprecise data abort disable bit. (bit 9) is the data endianness bit. IT (bits 10–15 and 25–26) is the if-then state bits. GE (bits 16–19) is the greater-than-or-equal-to bits. DNM (bits 20–23) is the do not modify bits. J (bit 24) is the Java state bit. Q (bit 27) is the sticky overflow bit. (bit 28) is the overflow bit. (bit 29) is the carry/borrow/extend bit. Z (bit 30) is the zero bit. N (bit 31) is the negative/less than bit.

Conditional execution

Almost every ARM instruction has a conditional execution feature called predication, which is implemented with a 4-bit condition code selector (the predicate). To allow for unconditional execution, one of the four-bit codes causes the instruction to be always executed. Most other CPU architectures only have condition codes on branch instructions. Though the predicate takes up 4 of the 32 bits in an instruction code, and thus cuts down significantly on the encoding bits available for displacements in memory access instructions, it avoids branch instructions when generating code for small if statements. Apart from eliminating the branch instructions themselves, this preserves the fetch/decode/execute pipeline at the cost of only one cycle per skipped instruction.

The standard example of conditional execution is the subtraction-based Euclidean algorithm:

In the C , the loop is:

while (i != j) { if (i > j) { i -= j; } else /* i < j (since i != j in while condition) */ { j -= i; } }

In ARM assembly, the loop is:

loop: CMP Ri, Rj ; set condition "NE" if (i != j), ; "GT" if (i > j), ; or "LT" if (i < j) SUBGT Ri, Ri, Rj ; if "GT" (Greater Than), i = i-j; SUBLT Rj, Rj, Ri ; if "LT" (Less Than), j = j-i; BNE loop ; if "NE" (Not Equal), then loop

which avoids the branches around the then and else clauses. If Ri and Rj are equal then neither of the SUB instructions will be executed, eliminating the need for a conditional branch to implement the while check at the top of the loop, for example had SUBLE (less than or equal) been used.

One of the ways that Thumb code provides a more dense encoding is to remove the four bit selector from non- branch instructions.

Other features

Another feature of the instruction set is the ability to fold shifts and rotates into the "data processing" (arithmetic, logical, and register-register move) instructions, so that, for example, the C statement

a += (j << 2); could be rendered as a single-word, single-cycle instruction:[38]

ADD Ra, Ra, Rj, LSL #2

This results in the typical ARM program being denser than expected with fewer memory accesses; thus the pipeline is used more efficiently.

The ARM processor also has features rarely seen in other RISC architectures, such as PC-relative addressing (indeed, on the 32-bit[1] ARM the PC is one of its 16 registers) and pre- and post-increment addressing modes.

The ARM instruction set has increased over time. Some early ARM processors (before ARM7TDMI), for example, have no instruction to store a two- quantity.

Pipelines and other implementation issues

The ARM7 and earlier implementations have a three-stage pipeline; the stages being fetch, decode and execute. Higher-performance designs, such as the ARM9, have deeper pipelines: Cortex-A8 has thirteen stages. Additional implementation changes for higher performance include a faster and more extensive branch prediction logic. The difference between the ARM7DI and ARM7DMI cores, for example, was an improved multiplier; hence the added "M".

Coprocessors

The ARM architecture provides a non-intrusive way of extending the instruction set using "coprocessors" that can be addressed using MCR, MRC, MRRC, MCRR, and similar instructions. The coprocessor space is divided logically into 16 coprocessors with numbers from 0 to 15, coprocessor 15 (cp15) being reserved for some typical control functions like managing the caches and MMU operation on processors that have one.

In ARM-based machines, peripheral devices are usually attached to the processor by mapping their physical registers into ARM memory space, into the coprocessor space, or by connecting to another device (a bus) that in turn attaches to the processor. Coprocessor accesses have lower latency, so some peripherals—for example an XScale interrupt controller—are accessible in both ways: through memory and through coprocessors.

In other cases, chip designers only integrate hardware using the coprocessor mechanism. For example, an image processing engine might be a small ARM7TDMI core combined with a coprocessor that has specialised operations to support a specific set of HDTV transcoding primitives.

Debugging

All modern ARM processors include hardware debugging facilities, allowing software to perform operations such as halting, stepping, and breakpointing of code starting from reset. These facilities are built using JTAG support, though some newer cores optionally support ARM's own two-wire "SWD" protocol. In ARM7TDMI cores, the "D" represented JTAG debug support, and the "I" represented presence of an "EmbeddedICE" debug module. For ARM7 and ARM9 core generations, EmbeddedICE over JTAG was a de facto debug standard, though not architecturally guaranteed.

The ARMv7 architecture defines debug facilities at an architectural level. These include breakpoints, watchpoints and instruction execution in a "Debug Mode"; similar facilities were also available with EmbeddedICE. Both "halt mode" and "monitor" mode debugging are supported. The actual transport mechanism used to access the debug facilities is not architecturally specified, but implementations generally include JTAG support.

There is a separate ARM "CoreSight" debug architecture, which is not architecturally required by ARMv7 processors.

DSP enhancement instructions

To improve the ARM architecture for digital signal processing and multimedia applications, DSP instructions were added to the set.[39] These are signified by an "E" in the name of the ARMv5TE and ARMv5TEJ architectures. E- variants also imply T,D,M and I.

The new instructions are common in architectures. They include variations on signed multiply–accumulate, saturated add and subtract, and count leading zeros.

SIMD extensions for multimedia

Introduced in ARMv6 architecture.[40]

Jazelle

Main article: Jazelle

Jazelle DBX (Direct Bytecode eXecution) is a technique that allows to be executed directly in the ARM architecture as a third execution state (and instruction set) alongside the existing ARM and Thumb-mode. Support for this state is signified by the "J" in the ARMv5TEJ architecture, and in ARM9EJ-S and ARM7EJ-S core names. Support for this state is required starting in ARMv6 (except for the ARMv7-M profile), though newer cores only include a trivial implementation that provides no hardware acceleration.

Thumb

To improve compiled code-density, processors since the ARM7TDMI (released in 1994[41]) have featured Thumb instruction set, which have their own state. (The "T" in "TDMI" indicates the Thumb feature.) When in this state, the processor executes the Thumb instruction set, a compact 16-bit encoding for a subset of the ARM instruction set.[42] Most of the Thumb instructions are directly mapped to normal ARM instructions. The space- saving comes from making some of the instruction operands implicit and limiting the number of possibilities compared to the ARM instructions executed in the ARM instruction set state.

In Thumb, the 16-bit have less functionality. For example, only branches can be conditional, and many opcodes are restricted to accessing only half of all of the CPU's general-purpose registers. The shorter opcodes give improved code density overall, even though some operations require extra instructions. In situations where the memory port or bus width is constrained to less than 32 bits, the shorter Thumb opcodes allow increased performance compared with 32-bit ARM code, as less program code may need to be loaded into the processor over the constrained memory bandwidth.

Embedded hardware, such as the , typically have a small amount of RAM accessible with a full 32-bit ; the majority is accessed via a 16-bit or narrower secondary datapath. In this situation, it usually makes sense to compile Thumb code and hand-optimise a few of the most CPU-intensive sections using full 32-bit ARM instructions, placing these wider instructions into the 32-bit bus accessible memory.

The first processor with a Thumb instruction decoder was the ARM7TDMI. All ARM9 and later families, including XScale, have included a Thumb instruction decoder.

Thumb-2

Thumb-2 technology was introduced in the ARM1156 core, announced in 2003. Thumb-2 extends the limited 16- bit instruction set of Thumb with additional 32-bit instructions to give the instruction set more breadth, thus producing a variable-length instruction set. A stated aim for Thumb-2 was to achieve code density similar to Thumb with performance similar to the ARM instruction set on 32-bit memory. In ARMv7 this goal can be said to have been met.[citation needed]

Thumb-2 extends the Thumb instruction set with bit-field manipulation, table branches and conditional execution. At the same time, the ARM instruction set was extended to maintain equivalent functionality in both instruction sets. A new "Unified Assembly Language" (UAL) supports generation of either Thumb or ARM instructions from the same source code; versions of Thumb seen on ARMv7 processors are essentially as capable as ARM code (including the ability to write interrupt handlers). This requires a bit of care, and use of a new "IT" (if-then) instruction, which permits up to four successive instructions to execute based on a tested condition, or on its inverse. When compiling into ARM code this is ignored, but when compiling into Thumb it generates an actual instruction. For example:

; if (r0 == r1) CMP r0, r1 ITE EQ ; ARM: no code ... Thumb: IT instruction ; then r0 = r2; MOVEQ r0, r2 ; ARM: conditional; Thumb: condition via ITE 'T' (then) ; else r0 = r3; MOVNE r0, r3 ; ARM: conditional; Thumb: condition via ITE 'E' (else) ; recall that the Thumb MOV instruction has no bits to encode "EQ" or "NE"

All ARMv7 chips support the Thumb instruction set. All chips in the Cortex-A series, Cortex-R series, and ARM11 series support both "ARM instruction set state" and "Thumb instruction set state", while chips in the Cortex-M series support only the Thumb instruction set.[43][44][45]

Thumb Execution Environment (ThumbEE)

ThumbEE (erroneously called Thumb-2EE in some ARM documentation), marketed as Jazelle RCT (http://www.arm.com/products/processors/technologies/jazelle.php) (Runtime Compilation Target), was announced in 2005, first appearing in the Cortex-A8 processor. ThumbEE is a fourth Instruction set state, making small changes to the Thumb-2 extended Thumb instruction set. These changes make the instruction set particularly suited to code generated at runtime (e.g. by JIT compilation) in managed Execution Environments. ThumbEE is a target for languages such as Java, C#, , and Python, and allows JIT to output smaller compiled code without impacting performance.

New features provided by ThumbEE include automatic null pointer checks on every load and store instruction, an instruction to perform an array bounds check, and special instructions that call a handler. In addition, because it utilises Thumb-2 technology, ThumbEE provides access to registers r8-r15 (where the Jazelle/DBX Java VM state is held).[46] Handlers are small sections of frequently called code, commonly used to implement high level languages, such as allocating memory for a new object. These changes come from repurposing a handful of opcodes, and knowing the core is in the new ThumbEE Instruction set state.

On 23 November 2011, ARM Holdings deprecated any use of the ThumbEE instruction set,[47] and ARMv8 removes support for ThumbEE.

Floating-point (VFP)

VFP (Vector Floating Point) technology is an FPU coprocessor extension to the ARM architecture. It provides low-cost single-precision and double-precision floating-point computation fully compliant with the ANSI/IEEE Std 754-1985 Standard for Binary Floating-Point Arithmetic. VFP provides floating-point computation suitable for a wide spectrum of applications such as PDAs, smartphones, voice compression and decompression, three- dimensional graphics and digital audio, printers, set-top boxes, and automotive applications. The VFP architecture was intended to support execution of short "vector mode" instructions but these operated on each vector element sequentially and thus did not offer the performance of true single instruction, multiple data (SIMD) vector parallelism. This vector mode was therefore removed shortly after its introduction,[48] to be replaced with the much more powerful NEON Advanced SIMD unit.

Some devices such as the ARM Cortex-A8 have a cut-down VFPLite module instead of a full VFP module, and require roughly ten times more clock cycles per float operation.[49] Other floating-point and/or SIMD coprocessors found in ARM-based processors include FPA, FPE, iwMMXt. They provide some of the same functionality as VFP but are not -compatible with it.

VFPv1 Obsolete. VFPv2 An optional extension to the ARM instruction set in the ARMv5TE, ARMv5TEJ and ARMv6 architectures. VFPv2 has 16 64-bit FPU registers. VFPv3 or VFPv3-D32 Implemented on the Cortex-A8 and A9 ARMv7 processors. It is backwards compatible with VFPv2, except that it cannot trap floating-point exceptions. VFPv3 has 32 64-bit FPU registers as standard, adds VCVT instructions to convert between scalar, float and double, adds immediate mode to VMOV such that constants can be loaded into FPU registers. VFPv3-D16 As above, but with only 16 64-bit FPU registers. Implemented on Cortex-R4 and R5 processors. VFPv3-F16 Uncommon; it supports IEEE754-2008 half-precision (16-bit) floating point. VFPv4 or VFPv4-D32 Implemented on the Cortex-A12 and A15 ARMv7 processors. VFPv4 has 32 64-bit FPU registers as standard, adds both half-precision extensions and fused multiply-accumulate instructions to the features of VFPv3. VFPv4-D16 As above, but it has only 16 64-bit FPU registers. Implemented on Cortex-A5 and A7 processors.

In and derivatives armhf (ARM hard float) refers to the ARMv7 architecture including the additional VFP3-D16 floating-point hardware extension (and Thumb-2) above.

Software packages and cross-compiler tools use the armhf vs. arm/armel suffixes to differentiate.[50]

Advanced SIMD (NEON)

The Advanced SIMD extension (aka NEON or "MPE" Media Processing Engine) is a combined 64- and 128-bit SIMD instruction set that provides standardized acceleration for media and signal processing applications. NEON is included in all Cortex-A8 devices but is optional in Cortex-A9 devices.[51] NEON can execute MP3 audio decoding on CPUs running at 10 MHz and can run the GSM adaptive multi-rate (AMR) speech codec at no more than 13 MHz. It features a comprehensive instruction set, separate register files and independent execution hardware.[52] NEON supports 8-, 16-, 32- and 64-bit integer and single-precision (32-bit) floating-point data and SIMD operations for handling audio and video processing as well as graphics and gaming processing. In NEON, the SIMD supports up to 16 operations at the same time. The NEON hardware shares the same floating-point registers as used in VFP. Devices such as the ARM Cortex-A8 and Cortex-A9 support 128-bit vectors but will execute with 64 bits at a time,[49] whereas newer Cortex-A15 devices can execute 128 bits at a time.

ProjectNe10 (http://projectne10.org) is ARM's first open source project (from its inception). The Ne10 library is a set of common, useful functions written in both NEON and C (for compatibility). The library was created to allow developers to use NEON optimizations without learning NEON but it also serves as a set of highly optimized NEON intrinsic and assembly code examples for common DSP, arithmetic and image processing routines. The code is available on GitHub (https://github.com/projectNe10/Ne10).

Security extensions (TrustZone)

The Security Extensions, marketed as TrustZone Technology, is in ARMv6KZ and later application profile architectures. It provides a low cost alternative to adding an additional dedicated security core to an SoC, by providing two virtual processors backed by hardware based access control. This lets the application core switch between two states, referred to as worlds (to reduce confusion with other names for capability domains), in order to prevent information from leaking from the more trusted world to the less trusted world. This world switch is generally orthogonal to all other capabilities of the processor, thus each world can operate independently of the other while using the same core. Memory and peripherals are then made aware of the operating world of the core and may use this to provide access control to secrets and code on the device.[53]

Typical applications of TrustZone Technology are to run a rich operating system in the less trusted world, and smaller security-specialized code in the more trusted world (named TrustZone Software, a TrustZone optimised version of the Trusted Foundations Software developed by Trusted Logic Mobility (http://www.tl-mobility.com)), allowing much tighter digital rights management for controlling the use of media on ARM-based devices,[54] and preventing any unapproved use of the device. Trusted Foundations Software was acquired by Gemalto. Giesecke & Devrient developed a rival implementation named Mobicore. In April 2012 ARM Gemalto and Giesecke & Devrient combined their TrustZone portfolios into a joint venture Trustonic.[55][56] Open Virtualization is an open source implementation of the trusted world architecture for TrustZone.[57]

In practice, since the specific implementation details of TrustZone are proprietary and have not been publicly disclosed for review, it is unclear what level of assurance is provided for a given threat model.[citation needed]

No-execute page protection

As of ARMv6, the ARM architecture supports no-execute page protection, which is referred to as XN, for eXecute Never.[58]

ARMv8-R

The ARMv8-R sub-architecture, announced after the ARMv8-A, shares some features except that it is not 64-bit. 64/32-bit architecture

ARMv8-A

Announced in October 2011,[6] ARMv8-A (often called ARMv8 although not all variants are 64-bit such as ARMv8-R) represents a fundamental change to the ARM architecture. It adds a 64-bit architecture, named "AArch64", and a new "A64" instruction set. AArch64 provides user-space compatibility with ARMv7-A ISA, the 32-bit architecture, therein referred to as "AArch32" and the old 32-bit instruction set, now named "A32". The Thumb instruction sets are referred to as "T32" and have no 64-bit counterpart. ARMv8-A allows 32-bit applications to be executed in a 64-bit OS, and a 32-bit OS to be under the control of a 64-bit hypervisor.[1] ARM announced their Cortex-A53 and Cortex-A57 cores on 30 October 2012.[24]

To both AArch32 and AArch64, ARMv8-A makes VFPv3/v4 and advanced SIMD (NEON) standard. It also adds cryptography instructions supporting AES and SHA-1/SHA-256.

AArch64 features

New instruction set, A64. Has 31 general-purpose 64-bit registers. Has dedicated SP or zero register. The program counter (PC) is no longer accessible as a register Instructions are still 32 bits long and mostly the same as A32 (with LDM/STM instructions and most conditional execution dropped). Has paired loads/stores (in place of LDM/STM). No predication for most instructions (except branches). Most instructions can take 32-bit or 64-bit arguments. Addresses assumed to be 64-bit. Advanced SIMD (NEON) enhanced. Has 32× 128-bit registers (up from 16), also accessible via VFPv4. Supports double-precision floating point. Fully IEEE 754 compliant. AES encrypt/decrypt and SHA-1/SHA-2 hashing instructions also use these registers. A new exception system. Fewer banked registers and modes. Memory translation from 48-bit virtual addresses based on the existing LPAE, which was designed to be easily extended to 64-bit.

Operating system support

32-bit operating systems

Historical operating systems The first ARM-based , the Acorn Archimedes, ran an interim operating system called Arthur, which evolved into RISC OS, used on later ARM-based systems from Acorn and other vendors. Some Acorn machines also had a port called RISC iX.

Embedded operating systems The ARM architecture is supported by a large number of embedded and real-time operating systems, including Linux, Windows CE, , ChibiOS/RT, FreeRTOS, eCos, Integrity, Nucleus PLUS, MicroC/OS-II, PikeOS,[59] QNX, RTEMS, RTXC Quadros, ThreadX, VxWorks, DRYOS, MQX, T-Kernel, OSE, SCIOPTA, OS-9,[60] and RISC OS.

Mobile device operating systems The ARM architecture is the primary hardware environment for most operating systems such as iOS, Android, , Windows RT, , Blackberry OS/Blackberry 10, MeeGo, OS, Android, a popular operating , Touch, Sailfish and webOS. system running on the ARM architecture. Desktop/ operating systems The ARM architecture is supported by RISC OS and multiple Unix-like operating systems including BSD (NetBSD), OpenSolaris[61] and various Linux distributions such as Ubuntu and Chrome OS.

64-bit operating systems

Mobile device operating systems iOS 7 on the 64-bit Apple A7 SOC has ARMv8-A application support.

Desktop/server operating systems Patches to the adding ARMv8-A support have been posted for review by Catalin Marinas of ARM Ltd. The patches have been included in kernel version 3.7 in late 2012.[62] ARMv8-A is supported by some Linux distributions.

See also

ARM big.LITTLE, ARM's architecture ARM Accredited Engineer certification program ARMulator Comparison of current ARM cores

Amber (processor core), an open-source ARM-compatible processor core AMULET microprocessor, an asynchronous implementation of the ARM architecture

Unicore, a 32-register architecture based heavily on a 32-bit ARM.

References

1. ^ a b c d e Grisenthwaite, Richard (2011). "ARMv8-A Technology Preview" (http://www.arm.com/files/downloads/ARMv8_Architecture.pdf). Retrieved 31 October 2011. 2. ^ "Procedure Call Standard for the ARM Architecture" (http://infocenter.arm.com/help/topic/com.arm.doc.ihi0042d/IHI0042D_aapcs.pdf). ARM Holdings. 30 November 2013. Retrieved 27 May 2013. 3. ^ a b "Some facts about the Acorn RISC Machine" (http://groups.google.com/group/comp.arch/msg/269fe7defd51f29e) Roger Wilson posting to comp.arch, 2 November 1988. Retrieved 25 May 2007. 4. ^ "ARM Cores Climb Into Territory" (http://www.extremetech.com/extreme/52180-arm-cores-climb-into-3g- territory) by Mark Hachman, 2002. 5. ^ "The Two Percent Solution" (http://www.embedded.com/electronics-blogs/significant-bits/4024488/The-Two- Percent-Solution) by Jim Turley 2002. 6. ^ a b "ARM Discloses Technical Details Of The Next Version Of The ARM Architecture" (http://www.arm.com/about/newsroom/arm-discloses-technical-details-of-the-next-version-of-the-arm- architecture.php) (Press release). ARM Holdings. 27 October 2011. Retrieved 20 September 2013. 7. ^ Krazit, Tom (3 April 2006). "ARMed for the living room" (http://news.cnet.com/ARMed-for-the-living- room/2100-1006_3-6056729.html). CNet.com. 8. ^ Grabham, Dan (19 July 2013). "From a small Acorn to 37 billion chips: ARM's ascent to tech superpower" (http://www.techradar.com/news/computing/from-a-small-acorn-to-37-billion-chips-arm-s-ascent-to-tech- superpower-1167034). TechRadar. Retrieved 8 November 2013. 9. ^ a b Fitzpatrick, J. (2011). "An interview with Steve Furber". Communications of the ACM 54 (5): 34. doi:10.1145/1941487.1941501 (http://dx.doi.org/10.1145%2F1941487.1941501). 10. ^ ARM Holdings eager for PC and server expansion (http://www.theregister.co.uk/2011/02/01/arm_holdings_q4_2010_numbers/), 1 Feb 2011 11. ^ Kerry McGuire Balanza (11 May 2010), ARM from zero to billions in 25 short years (http://blogs.arm.com/smart-connected-devices/204-arm-from-zero-to-billions-in-25-short-years/), ARM Holdings, retrieved 8 Nov 2012 12. ^ Manners, David (29 April 1998). "ARM's way" (http://www.electronicsweekly.com/Articles/29/04/1998/7242/ARM39s-way.htm). Electronics Weekly. Retrieved 26 October 2012. 13. ^ Chisnall, David (23 August 2010). "Understanding ARM Architectures" (http://www.informit.com/articles/article.aspx?p=1620207). Retrieved 26 May 2013. 14. ^ Furber, Stephen B. (2000). ARM system-on-chip architecture. Boston: Addison-Wesley. ISBN 0-201-67519-6. 14. ^ Furber, Stephen B. (2000). ARM system-on-chip architecture. Boston: Addison-Wesley. ISBN 0-201-67519-6. 15. ^ Goodwins, Rupert (4 December 2010). "Intel's victims: Eight would-be giant killers" (http://www.zdnet.co.uk/news/infrastructure/2010/12/04/-victims-eight-would-be-giant-killers-40091045/6/). ZDNet. Retrieved 7 March 2012. 16. ^ Acorn Archimedes Promotion from 1987 (https://www.youtube.com/watch?v=hrj-EEnsacQ) on YouTube 17. ^ Richard Murray. "32 bit operation" (http://www.heyrick.co.uk/assembler/32bit.html). 18. ^ Levy, Markus. "The History of The ARM Architecture: From Inception to IPO" (http://www.reds.ch/share/cours/ReCo/documents/TheHistoryOfTheArmArchitecture.pdf). Retrieved 14 March 2013. 19. ^ Santanu Chattopadhyay (1 January 2010). Embedded System Design (http://books.google.com/books? id=4Bir9Kw059gC&pg=PA9). PHI Learning Pvt. Ltd. p. 9. ISBN 978-81-203-4024-4. Retrieved 15 March 2013. 20. ^ "ARM Corporate Backgrounder" (http://www.arm.com/miscPDFs/3822.pdf), ARM Technology. 21. ^ Brown, Eric (2009). "ARM ships with detachable tablet" (http://archive.is/5e7tv). Archived from the original (http://www.linuxfordevices.com/c/a/News/Always-Innovating-Touch-Book/) on 3 January 2013. 22. ^ McGrath, Dylan (18 July 2011). "IHS: ARM ICs to be in 23% of laptops in 2015" (http://eetimes.com/electronics-news/4217951/IHS--ARM-ICs-to-be-in-23--of-laptops-in-2015). EE Times. Retrieved 20 July 2011. 23. ^ Nolting, Stephan. "STORM CORE Processor System" (http://opencores.org/websvn,filedetails? repname=storm_core&path=%2Fstorm_core%2Ftrunk%2Fdoc%2FSTORM+CORE+datasheet.pdf). .org. Retrieved 1 April 2014. 24. ^ a b "ARM Launches Cortex-A50 Series, the World’s Most Energy-Efficient 64-bit Processors" (http://www.arm.com/about/newsroom/arm-launches-cortex-a50-series-the-worlds-most-energy-efficient-64-bit- processors.php) (Press release). ARM Holdings. Retrieved 31 October 2012. 25. ^ ARMv8-A Architecture Webpage; ARM Holdings. (http://www.arm.com/products/processors/instruction-set- architectures/armv8-architecture.php) 26. ^ ARMv8 Architecture Technology Preview (Slides); ARM Holdings. (http://www.arm.com/files/downloads/ARMv8_Architecture.pdf) 27. ^ ARMv8-R Architecture Webpage; ARM Holdings. (http://www.arm.com/products/processors/instruction-set- architectures/armv8-r-architecture.php) 28. ^ "ARM Cortex-R Architecture" (http://arm.com/files/pdf/ARMv8R__Architecture_Oct13.pdf). ARM Holdings. October 2013. Retrieved February 1, 2014. 29. ^ "Line Card" (http://infocenter.arm.com/help/topic/com.arm.doc.faqs/attached/6745/0141_5linecard.pdf) (PDF). 2003. Retrieved 1 October 2012. 30. ^ Parrish, Kevin (14 July 2011). "One Million ARM Cores Linked to Simulate Brain" (http://www.eetimes.com/electronics-news/4217840/Million-ARM-cores-brain-simulator). EE Times. Retrieved 2 August 2011. 31. ^ "Processor mode" (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.dui0204j/Chdddhea.html). ARM Holdings. Retrieved 26 March 2013. 32. ^ "KVM/ARM" (http://www.linuxplumbersconf.org/2012/wp-content/uploads/2012/09/2012-lpc-arm-zyngier.pdf). Retrieved 3 April 2013. 33. ^ "How does the ARM Compiler support unaligned accesses?" (http://infocenter.arm.com/help/index.jsp? topic=/com.arm.doc.faqs/ka15414.html). 2011. Retrieved 5 October 2013. 34. ^ "Unaligned data access" (http://www.heyrick.co.uk/armwiki/Unaligned_data_access). Retrieved 5 October 2013. 35. ^ "ARMv7-M Architecture Reference Manual; ARM Holdings" (https://silver.arm.com/download/download.tm? pv=1111932). Silver.arm.com. Retrieved 19 January 2013. 36. ^ a b "ARMv7-A and ARMv7-R Architecture Reference Manual; ARM Holdings" (https://silver.arm.com/download/download.tm?pv=1199569). Silver.arm.com. Retrieved 19 January 2013. 37. ^ 2.14. The program status registers - Cortex-A8 Technical Reference Manual (http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0290g/I27695.html) 38. ^ "9.1.2. counts" (http://infocenter.arm.com/help/index.jsp? topic=/com.arm.doc.ddi0214b/ch09s01s02.html). 39. ^ "ARM DSP Instruction Set Extensions" (http://www.arm.com/products/CPUs/cpu-arch-DSP.html). Arm.com. Archived (http://web.archive.org/web/20090414011837/http://www.arm.com/products/CPUs/cpu-arch-DSP.html) Archived (http://web.archive.org/web/20090414011837/http://www.arm.com/products/CPUs/cpu-arch-DSP.html) from the original on 14 April 2009. Retrieved 18 April 2009. 40. ^ DSP & SIMD - ARM (http://www.arm.com/products/processors/technologies/dsp-.php) 41. ^ ARM7TDMI Technical Reference Manual (http://www.atmel.com/Images/DDI0029G_7TDMI_R3_trm.pdf) page ii 42. ^ Jaggar, Dave (1996). ARM Architecture Reference Manual. Prentice Hall. pp. 6–1. ISBN 978-0-13-736299-8. 43. ^ "ARM Processor Instruction Set Architecture" (http://www.arm.com/products/CPUs/architecture.html). Arm.com. Archived (http://web.archive.org/web/20090415171228/http://arm.com/products/CPUs/architecture.html) from the original on 15 April 2009. Retrieved 18 April 2009. 44. ^ "ARM aims son of Thumb at uCs, ASSPs, SoCs" (http://archive.is/1Lao). Linuxdevices.com. Archived from the original (http://www.linuxdevices.com/news/NS7814673959.html) on 9 December 2012. Retrieved 18 April 2009. 45. ^ "ARM Information Center" (http://infocenter.arm.com/help/index.jsp? topic=/com.arm.doc.ddi0290g/I1005458.html). Infocenter.arm.com. Retrieved 18 April 2009. 46. ^ "Arm strengthens Java compilers: New 16-Bit Thumb-2EE Instructions Conserve System Memory" (http://www.arm.com/miscPDFs/10069.pdf) by Tom R. Halfhill 2005. 47. ^ ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition, issue C.b, Section .10, 24 July 2012. 48. ^ "VFP directives and vector notation" (http://infocenter.arm.com/help/index.jsp? topic=/com.arm.doc.dui0204j/Chdehgeh.html). Arm.com. Retrieved 21 November 2011. 49. ^ a b "Differences between ARM Cortex-A8 and Cortex-A9" (http://www.shervinemami.info/armAssembly.html#cortex-a9). Shervin Emami. Retrieved 21 November 2011. 50. ^ "ArmHardFloatPort - Debian Wiki" (http://wiki.debian.org/ArmHardFloatPort). Wiki.debian.org. 20 August 2012. Retrieved 8 January 2014. 51. ^ "Cortex-A9 Processor" (http://www.arm.com/products/processors/cortex-a/cortex-a9.php). Arm.com. Retrieved 21 November 2011. 52. ^ "About the Cortex-A9 NEON MPE" (http://infocenter.arm.com/help/index.jsp? topic=/com.arm.doc.ddi0409f/Chdceejc.html). Arm.com. Retrieved 21 November 2011. 53. ^ An Exploration of ARM TrustZone Technology; .org (http://genode.org/documentation/articles/trustzone) 54. ^ "ARM Announces Availability of Mobile Consumer DRM Software Solutions Based on ARM T" (http://news.thomasnet.com/companystory/476887). News.thomasnet.com. Retrieved 18 April 2009. 55. ^ "Trustonic" (http://www.trustonic.com/). Trustonic. Retrieved 14 June 2013. 56. ^ "ARM, Gemalto and Giesecke & Devrient Form Joint Venture To" (http://www.arm.com/about/newsroom/arm- gemalto-giesecke-devrient-form-joint-venture-deliver-next-generation-security.php). ARM Holdings. 3 April 2012. Retrieved 19 January 2013. 57. ^ "ARM TrustZone and ARM Hypervisor Open Source Software" (http://www.openvirtualization.org). Open Virtualization. Retrieved 14 June 2013. 58. ^ "APX and XN (execute never) bits have been added in VMSAv6 [ System Architecture]", ARM Architecture Reference Manual (http://www.arm.com/miscPDFs/14128.pdf). Retrieved 2009/12/01. 59. ^ "PikeOS Safe and Secure Virtualization" (http://www.arm.com/community/partners/display_product/rw/ProductId/4201/). Retrieved 10 July 2013. 60. ^ "OS-9 Specifications" (http://www.microware.com/index.php/specifications). . 61. ^ ARM Platform Port (http://opensolaris.org/os/project/osarm/), .org, retrieved 29 December 2012 62. ^ Linus Torvalds (1 October 2012). "Re: [ PULL] arm64: Linux kernel port" (http://thread.gmane.org/gmane.linux.kernel/1367774/focus=1367868). Linux kernel mailing list. Retrieved 2 October 2012.

Further reading

Assembly Language Programming : ARM Cortex-M3; 1st Edition; Vincent Mahout; Wiley-ISTE; 256 pages; 2012; ISBN 978-1848213296. The Definitive Guide to the ARM Cortex-M3 and Cortex-M4 Processors; 3rd Edition; Joseph Yiu; Newnes; 600 pages; 2013; ISBN 978-0124080829. The Definitive Guide to the ARM Cortex-M3; 2nd Edition; Joseph Yiu; Newnes; 480 pages; 2009; ISBN 978-1-85617-963-8. (Online Sample) (http://books.google.com/books? id=mb5d_xeINZEC&printsec=frontcover&dq=isbn:9781856179638) The Definitive Guide to the ARM Cortex-M0; 1st Edition; Joseph Yiu; Newnes; 552 pages; 2011; ISBN 978-0-12-385477-3. (Online Sample) (http://books.google.com/books? id=5OZblBzjsJ0C&printsec=frontcover&dq=isbn:9780123854773) Yurichev, Dennis, "An Introduction To Reverse Engineering for Beginners" including ARM assembly. Online book: http://yurichev.com/writings/RE_for_beginners-en.pdf

External links

Official website (http://www.arm.com) , ARM Ltd. ARM Virtualization Extensions (http://www.futurechips.org/understanding-chips/arm-virtualization- extensions-introduction-part-1.html)

Quick Reference Cards

Instructions: Thumb (http://infocenter.arm.com/help/topic/com.arm.doc.qrc0006e/QRC0006_UAL16.pdf), ARM and Thumb-2 (http://infocenter.arm.com/help/topic/com.arm.doc.qrc0001m/QRC0001_UAL.pdf), Vector Floating Point (http://infocenter.arm.com/help/topic/com.arm.doc.qrc0007e/QRC0007_VFP.pdf) Opcodes: Thumb (http://re-eject.gbadev.org/files/ThumbRefV2-beta.pdf), Thumb (http://www.mechcore.net/files/docs/ThumbRefV2-beta.pdf), ARM (http://re- eject.gbadev.org/files/armref.pdf), ARM (http://www.mechcore.net/files/docs/armref.pdf), GNU Assembler Directives (http://re-eject.gbadev.org/files/GasARMRef.pdf).

Retrieved from "http://en.wikipedia.org/w/index.php?title=ARM_architecture&oldid=606493112" Categories: ARM architecture Instruction set architectures 1983 introductions Acorn Computers

This page was last modified on 30 April 2014 at 16:04. Text is available under the Creative Commons Attribution-ShareAlike License; additional terms may apply. By using this site, you agree to the Terms of Use and Privacy Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.