Abstract Quantum Cosmology

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Quantum Cosmology ABSTRACT QUANTUM COSMOLOGY: SOLUTIONS TO THE MODIFIED FRIEDMANN EQUATION In this work, a detailed analysis of Standard Cosmological Inflation is presented, which is then contrasted by Loop Quantum Cosmology (LQC), an application to cosmology from Loop Quantum Gravity (LQG). Specifically, the modified Friedmann equation of Loop Quantum Cosmology (LQC) is solved, in order to obtain expressions used to assess an Inflationary era in the early Universe. The expressions for the scale factor are derived when considering two regions associated with the behavior of the modified Friedmann equation, as well as the energy density and scalar field. The scale factor expression will then be used to provide a solution to the horizon problem that is related to the Big Bang model of the Universe, in contrast to what has been presented in the literature. James Anthony Rubio December 2016 QUANTUM COSMOLOGY: SOLUTIONS TO THE MODIFIED FRIEDMANN EQUATION by James Anthony Rubio A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Physics in the College of Science and Mathematics California State University, Fresno December 2016 APPROVED For the Department of Physics: We, the undersigned, certify that the thesis of the following student meets the required standards of scholarship, format, and style of the university and the student's graduate degree program for the awarding of the master's degree. James Anthony Rubio Thesis Author Gerardo Mu~noz(Chair) Physics Douglas Singleton Physics Frederick A. Ringwald Physics For the University Graduate Committee: Dean, Division of Graduate Studies AUTHORIZATION FOR REPRODUCTION OF MASTER'S THESIS I grant permission for the reproduction of this thesis in part or in its entirety without further authorization from me, on the condition that the person or agency requesting reproduction absorbs the cost and provides proper acknowledgment of authorship. X Permission to reproduce this thesis in part or in its entirety must be obtained from me. Signature of thesis author: ACKNOWLEDGMENTS I would like to thank my advisor, Dr. Gerardo Mu~noz,for his continued guidance, wisdom, unwavering patience, and willingness to pursue many topics that the research directed us towards. Most importantly, I would like to thank him for his ability to help me understand difficult topics and ideas in physics. I would also like to thank my thesis committee members, Dr. Douglas Singleton and Dr. Frederick A. Ringwald, for all of their support and enlightening discussions during the writing process. Finally, I would like to thank the physics department faculty and staff for all of the knowledge attained in my time as a student and Teaching Associate. TABLE OF CONTENTS Page LIST OF FIGURES . vi INTRODUCTION . 1 The Big Bang . 3 STANDARD COSMOLOGICAL INFLATION . 7 Friedmann{Lema^ıtre–Robertson{Walker Universe . 7 Cosmic Inflation . 14 Issues of Cosmic Inflation . 26 Loop Quantum Cosmology . 27 SOLUTIONS TO THE MODIFIED FRIEDMANN EQUATION FROM LOOP QUANTUM COSMOLOGY . 30 Region I: t0 ≤ t ≤ tmax .......................... 32 Region II: t > tmax ............................ 39 ANALYSIS OF SOLUTIONS IN REGIONS I AND II . 43 Inflation in LQC . 43 The Horizon Problem . 45 CONCLUSION AND SUMMARY . 47 REFERENCES . 49 LIST OF FIGURES Page Figure 1. Typical “flat” potential, in relation to an inflaton scalar field. 22 Figure 2. Graphical representation of two regions of solutions corre- sponding to H. Region I corresponds to t0 ≤ t ≤ tmax and Region II corresponds to t > tmax. ..................... 32 To my family, for their continued support of my education throughout the years. INTRODUCTION Over many years, cosmology has seen several advances made as a study of the Universe. Astrophysical observations have been made for centuries and with time, they have increased knowledge of large objects in the sky, as well as the nature of the light itself. In terms of the Universe as a whole, a very significant observational study of galaxy redshifts was made in the early twentieth century [1], which led to a new realization and understanding among scientists. The results of the study made it clear that the majority of the galaxies were redshifted from our location in the Universe receding from our position. It was clear that the Universe was expanding with time. This expansion rate was measured at the time, and presently, the value is known within a small uncertainty. Another conclusion is that if the Universe is expanding with time, it had a finite, hot, and dense beginning. This early period of the Universe is referred to as the Big Bang. The Big Bang model of the Universe has had both observations on and off Earth that have strongly supported it as a scientific model of the Universe [2]. Measurements of light observed through astronomical telescopes have led to a strongly supported theoretical era of nucleosynthesis in the early history of the Universe, which serves as an explanation of the particle and chemical history of elements. Along with nucleosynthesis is an understanding of the thermal signature of the Cosmic Microwave Background observed in the sky, as observed photons scattered off of electrons. However, there are shortcomings of the Big Bang model. Representative shortcomings of the Big 2 Bang model are the flatness and horizon problems. The flatness problem refers to the fact that all observations point to a spatially flat Universe, while the Big Bang model allows for open, closed or flat solutions without a natural mechanism that would select the flat solution from either initial conditions or dynamical evolution. And the horizon problem arises from the observational data showing that the temperature of widely separated regions of the Universe is the same, despite the prediction of the Big Bang model that causal contact between these regions is not possible. The Cosmological Inflationary model is a large scope of this work, and provides a solution to both the flatness and horizon problems. Inflation precedes the Big Bang era, and is the subject of much research currently around the world. Many aspects of Inflation will be discussed as well as an alternative model that also provides a solution to the horizon problem. In this work, solutions are obtained from the modified Friedmann equation. The modified Friedmann equation is derived from Loop Quantum Cosmology, an application of a proposed quantum gravity model, by which space and time are quantized. Loop Quantum Cosmology (LQC), and the solutions obtained from it, provides a new formalism to evaluate the accelerated expansion of the Universe, and a reinterpretation of the horizon problem. The scope of this work is limited to flat LQC models. The general case will be addressed in future work. 3 The Big Bang As mentioned previously, the Big Bang model came about mostly as a result of astrophysical observations by both Vesto Slipher and Edwin Hubble [1, 3, 4]. Redshift, z; is defined as the ratio of the difference of an observed (λ0) and emitted (λ) wavelength of light, over the emitted wavelength, λ − λ z ≡ 0 (1) λ where if z > 0; then the galaxy is redshifted, and if z < 0; the galaxy is blueshifted. What was evident after observations by Hubble was that the majority of galaxies were redshifted, as opposed to blueshifted, especially for galaxies at high redshift. Hubble plotted the redshifts, z; versus the estimated distance r, from the galaxies and obtained a linear relationship, H z = 0 r (2) c where H0 is the Hubble Constant, currently measured at H0 = 73:24 ± 1:74 km s−1Mpc−1[5], where a Megaparsec, Mpc, is equal to 3:09 × 1022 m , and c is the speed of light, 3:00 × 108 m/s. The values measured by Hubble were small, so the assumption of non-relativistic Doppler shifts applied, which v meant that z = c . Therefore, the recessional speed of galaxies is proportional to the estimated distance, v = H0r : (3) 4 With (3), known as Hubble's Law, inferred from the observational data, the implication was that the Universe was expanding, and therefore has a finite age. The best estimate currently is (13:799 ± 0:021) × 109 years [6]. The concept of an expanding Universe with time had been considered theoretically as a consequence of General Relativity by Albert Einstein [7], the details of which will be covered in the next section. The idea of a once tiny, hot, and dense Universe paved the way for research into the chemical nature and composition of how the elements formed, specifically light elements. The idea behind nucleosynthesis is that the light elements, such as hydrogen, were formed when the Universe cooled from an initially hotter, denser radiation at temperatures that would not allow the binding energies of atom formation. In sum, as science has become knowledgeable of the energies associated with particles, predictions as to the elemental abundances present within the Universe support the notion of nucleosynthesis with current estimates from observation [8]. This is called the era of Big Bang Nucleosynthesis (BBN) and occurred when the Universe was in a hot, dense gaseous form [9]. Along with nucleosynthesis, strong support for the Big Bang model comes from the detection and properties of the Cosmic Microwave Background (CMB) of the Universe. In 1964, two researchers from Bell Telephone Laboratory, Arno A. Penzias and Robert W. Wilson, initially measured the CMB radiation which from thermodynamics, resembled blackbody radiation [7, 10]. The observation of a blackbody distribution immediately corresponded to a temperature that is currently measured at 2:72548 ± 0:00057 K [11]. This CMB temperature corresponds to photons scattered off of electrons when the Universe was about 5 380; 000 years old. Further observational data of the Cosmic Microwave Background (CMB) were measured by the COBE satellite in 1992, which showed an almost perfect blackbody spectrum of photons, with a temperature of T0 = 2:725 ± 0:001 K [12].
Recommended publications
  • Galaxies 2013, 1, 1-5; Doi:10.3390/Galaxies1010001
    Galaxies 2013, 1, 1-5; doi:10.3390/galaxies1010001 OPEN ACCESS galaxies ISSN 2075-4434 www.mdpi.com/journal/galaxies Editorial Galaxies: An International Multidisciplinary Open Access Journal Emilio Elizalde Consejo Superior de Investigaciones Científicas, Instituto de Ciencias del Espacio & Institut d’Estudis Espacials de Catalunya, Faculty of Sciences, Campus Universitat Autònoma de Barcelona, Torre C5-Parell-2a planta, Bellaterra (Barcelona) 08193, Spain; E-Mail: [email protected]; Tel.: +34-93-581-4355 Received: 23 October 2012 / Accepted: 1 November 2012 / Published: 8 November 2012 The knowledge of the universe as a whole, its origin, size and shape, its evolution and future, has always intrigued the human mind. Galileo wrote: “Nature’s great book is written in mathematical language.” This new journal will be devoted to both aspects of knowledge: the direct investigation of our universe and its deeper understanding, from fundamental laws of nature which are translated into mathematical equations, as Galileo and Newton—to name just two representatives of a plethora of past and present researchers—already showed us how to do. Those physical laws, when brought to their most extreme consequences—to their limits in their respective domains of applicability—are even able to give us a plausible idea of how the origin of our universe came about and also of how we can expect its future to evolve and, eventually, how its end will take place. These laws also condense the important interplay between mathematics and physics as just one first example of the interdisciplinarity that will be promoted in the Galaxies Journal. Although already predicted by the great philosopher Immanuel Kant and others before him, galaxies and the existence of an “Island Universe” were only discovered a mere century ago, a fact too often forgotten nowadays when we deal with multiverses and the like.
    [Show full text]
  • Frame Covariance and Fine Tuning in Inflationary Cosmology
    FRAME COVARIANCE AND FINE TUNING IN INFLATIONARY COSMOLOGY A thesis submitted to the University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2019 By Sotirios Karamitsos School of Physics and Astronomy Contents Abstract 8 Declaration 9 Copyright Statement 10 Acknowledgements 11 1 Introduction 13 1.1 Frames in Cosmology: A Historical Overview . 13 1.2 Modern Cosmology: Frames and Fine Tuning . 15 1.3 Outline . 17 2 Standard Cosmology and the Inflationary Paradigm 20 2.1 General Relativity . 20 2.2 The Hot Big Bang Model . 25 2.2.1 The Expanding Universe . 26 2.2.2 The Friedmann Equations . 29 2.2.3 Horizons and Distances in Cosmology . 33 2.3 Problems in Standard Cosmology . 34 2.3.1 The Flatness Problem . 35 2.3.2 The Horizon Problem . 36 2 2.4 An Accelerating Universe . 37 2.5 Inflation: More Questions Than Answers? . 40 2.5.1 The Frame Problem . 41 2.5.2 Fine Tuning and Initial Conditions . 45 3 Classical Frame Covariance 48 3.1 Conformal and Weyl Transformations . 48 3.2 Conformal Transformations and Unit Changes . 51 3.3 Frames in Multifield Scalar-Tensor Theories . 55 3.4 Dynamics of Multifield Inflation . 63 4 Quantum Perturbations in Field Space 70 4.1 Gauge Invariant Perturbations . 71 4.2 The Field Space in Multifield Inflation . 74 4.3 Frame-Covariant Observable Quantities . 78 4.3.1 The Potential Slow-Roll Hierarchy . 81 4.3.2 Isocurvature Effects in Two-Field Models . 83 5 Fine Tuning in Inflation 88 5.1 Initial Conditions Fine Tuning .
    [Show full text]
  • Arxiv:2010.15629V2 [Gr-Qc] 10 Mar 2021 Gravity Models Contents
    Prepared for submission to JHEP Supersymmetric minisuperspace models in self-dual loop quantum cosmology K. Eder,1 H. Sahlmann,2 Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute for Quantum Gravity (IQG), Staudtstr. 7,D-91058 Erlangen, Germany E-mail: [email protected], [email protected] Abstract: In this paper, we study a class of symmetry reduced models of N = 1 super- gravity using self-dual variables. It is based on a particular Ansatz for the gravitino field as proposed by D’Eath et al. We show that the essential part of the constraint algebra in the classical theory closes. In particular, the (graded) Poisson bracket between the left and right supersymmetry constraint reproduces the Hamiltonian constraint. For the quantum theory, we apply techniques from the manifestly supersymmetric approach to loop quantum supergravity, which yields a graded analog of the holonomy-flux algebra and a natural state space. We implement the remaining constraints in the quantum theory. For a certain subclass of these models, we show explicitly that the (graded) commutator of the supersymmetry constraints exactly reproduces the classical Poisson relations. In particular, the trace of the commutator of left and right supersymmetry constraints reproduces the Hamilton con- straint operator. Finally, we consider the dynamics of the theory and compare it to a quantization using standard variables and standard minisuperspace techniques. Keywords: Cosmology of Theories beyond the SM, Models of Quantum Gravity, Super-
    [Show full text]
  • PDF Solutions
    Solutions to exercises Solutions to exercises Exercise 1.1 A‘stationary’ particle in anylaboratory on theEarth is actually subject to gravitationalforcesdue to theEarth andthe Sun. Thesehelp to ensure that theparticle moveswith thelaboratory.Ifstepsweretaken to counterbalance theseforcessothatthe particle wasreally not subject to anynet force, then the rotation of theEarth andthe Earth’sorbital motionaround theSun would carry thelaboratory away from theparticle, causing theforce-free particle to followacurving path through thelaboratory.Thiswouldclearly show that the particle didnot have constantvelocity in the laboratory (i.e.constantspeed in a fixed direction) andhence that aframe fixed in the laboratory is not an inertial frame.More realistically,anexperimentperformed usingthe kind of long, freely suspendedpendulum known as a Foucaultpendulum couldreveal the fact that a frame fixed on theEarth is rotating andthereforecannot be an inertial frame of reference. An even more practical demonstrationisprovidedbythe winds,which do not flowdirectly from areas of high pressure to areas of lowpressure because of theEarth’srotation. - Exercise 1.2 TheLorentzfactor is γ(V )=1/ 1−V2/c2. (a) If V =0.1c,then 1 γ = - =1.01 (to 3s.f.). 1 − (0.1c)2/c2 (b) If V =0.9c,then 1 γ = - =2.29 (to 3s.f.). 1 − (0.9c)2/c2 Notethatitisoften convenient to write speedsinterms of c instead of writingthe values in ms−1,because of thecancellation between factorsofc. ? @ AB Exercise 1.3 2 × 2 M = Theinverse of a matrix CDis ? @ 1 D −B M −1 = AD − BC −CA. Taking A = γ(V ), B = −γ(V )V/c, C = −γ(V)V/c and D = γ(V ),and noting that AD − BC =[γ(V)]2(1 − V 2/c2)=1,wehave ? @ γ(V )+γ(V)V/c [Λ]−1 = .
    [Show full text]
  • Arxiv:0804.0672V2 [Gr-Qc]
    Quantum Cosmology Claus Kiefer1 and Barbara Sandh¨ofer2 1 Institut f¨ur Theoretische Physik, Universit¨at zu K¨oln, Z¨ulpicher Straße 77, 50937 K¨oln, Germany. [email protected] 2 Institut f¨ur Theoretische Physik, Universit¨at zu K¨oln, Z¨ulpicher Straße 77, 50937 K¨oln, Germany. [email protected] Summary. We give an introduction into quantum cosmology with emphasis on its conceptual parts. After a general motivation we review the formalism of canonical quantum gravity on which discussions of quantum cosmology are usually based. We then present the minisuperspace Wheeler–DeWitt equation and elaborate on the problem of time, the imposition of boundary conditions, the semiclassical approxi- mation, the origin of irreversibility, and singularity avoidance. Restriction is made to quantum geometrodynamics; loop quantum gravity and string theory are discussed in other contributions to this volume. To appear in Beyond the Big Bang, edited by R. Vaas (Springer, Berlin, 2008). Denn wo keine Gestalt, da ist keine Ordnung; nichts kommt, nichts vergeht, und wo dies nicht geschieht, da sind ¨uberhaupt keine Tage, kein Wechsel von Zeitr¨aumen. Augustinus, Bekenntnisse, 12. Buch, 9. Kapitel 1 Why quantum cosmology? Quantum cosmology is the application of quantum theory to the universe as a whole. At first glance, this may be a purely academic enterprise, since quan- arXiv:0804.0672v2 [gr-qc] 22 Apr 2008 tum theory is usually considered to be of relevance only in the micoroscopic regime. And what is more far remote from this regime than the whole uni- verse? This argument is, however, misleading.
    [Show full text]
  • Some Aspects in Cosmological Perturbation Theory and F (R) Gravity
    Some Aspects in Cosmological Perturbation Theory and f (R) Gravity Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn von Leonardo Castañeda C aus Tabio,Cundinamarca,Kolumbien Bonn, 2016 Dieser Forschungsbericht wurde als Dissertation von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Bonn angenommen und ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. 1. Gutachter: Prof. Dr. Peter Schneider 2. Gutachter: Prof. Dr. Cristiano Porciani Tag der Promotion: 31.08.2016 Erscheinungsjahr: 2016 In memoriam: My father Ruperto and my sister Cecilia Abstract General Relativity, the currently accepted theory of gravity, has not been thoroughly tested on very large scales. Therefore, alternative or extended models provide a viable alternative to Einstein’s theory. In this thesis I present the results of my research projects together with the Grupo de Gravitación y Cosmología at Universidad Nacional de Colombia; such projects were motivated by my time at Bonn University. In the first part, we address the topics related with the metric f (R) gravity, including the study of the boundary term for the action in this theory. The Geodesic Deviation Equation (GDE) in metric f (R) gravity is also studied. Finally, the results are applied to the Friedmann-Lemaitre-Robertson-Walker (FLRW) spacetime metric and some perspectives on use the of GDE as a cosmological tool are com- mented. The second part discusses a proposal of using second order cosmological perturbation theory to explore the evolution of cosmic magnetic fields. The main result is a dynamo-like cosmological equation for the evolution of the magnetic fields.
    [Show full text]
  • Arxiv:Gr-Qc/0601085V1 20 Jan 2006 Loop Quantum Cosmology
    AEI–2005–185, IGPG–06/1–6 gr–qc/0601085 Loop Quantum Cosmology Martin Bojowald∗ Institute for Gravitational Physics and Geometry, The Pennsylvania State University, 104 Davey Lab, University Park, PA 16802, USA and Max-Planck-Institute for Gravitational Physics Albert-Einstein-Institute Am M¨uhlenberg 1, 14476 Potsdam, Germany Abstract Quantum gravity is expected to be necessary in order to understand situations where classical general relativity breaks down. In particular in cosmology one has to deal with initial singularities, i.e. the fact that the backward evolution of a classical space-time inevitably comes to an end after a finite amount of proper time. This presents a breakdown of the classical picture and requires an extended theory for a meaningful description. Since small length scales and high curvatures are involved, quantum effects must play a role. Not only the singularity itself but also the sur- rounding space-time is then modified. One particular realization is loop quantum cosmology, an application of loop quantum gravity to homogeneous systems, which arXiv:gr-qc/0601085v1 20 Jan 2006 removes classical singularities. Its implications can be studied at different levels. Main effects are introduced into effective classical equations which allow to avoid interpretational problems of quantum theory. They give rise to new kinds of early universe phenomenology with applications to inflation and cyclic models. To resolve classical singularities and to understand the structure of geometry around them, the quantum description is necessary. Classical evolution is then replaced by a difference equation for a wave function which allows to extend space-time beyond classical sin- gularities.
    [Show full text]
  • Loop Quantum Cosmology, Modified Gravity and Extra Dimensions
    universe Review Loop Quantum Cosmology, Modified Gravity and Extra Dimensions Xiangdong Zhang Department of Physics, South China University of Technology, Guangzhou 510641, China; [email protected] Academic Editor: Jaume Haro Received: 24 May 2016; Accepted: 2 August 2016; Published: 10 August 2016 Abstract: Loop quantum cosmology (LQC) is a framework of quantum cosmology based on the quantization of symmetry reduced models following the quantization techniques of loop quantum gravity (LQG). This paper is devoted to reviewing LQC as well as its various extensions including modified gravity and higher dimensions. For simplicity considerations, we mainly focus on the effective theory, which captures main quantum corrections at the cosmological level. We set up the basic structure of Brans–Dicke (BD) and higher dimensional LQC. The effective dynamical equations of these theories are also obtained, which lay a foundation for the future phenomenological investigations to probe possible quantum gravity effects in cosmology. Some outlooks and future extensions are also discussed. Keywords: loop quantum cosmology; singularity resolution; effective equation 1. Introduction Loop quantum gravity (LQG) is a quantum gravity scheme that tries to quantize general relativity (GR) with the nonperturbative techniques consistently [1–4]. Many issues of LQG have been carried out in the past thirty years. In particular, among these issues, loop quantum cosmology (LQC), which is the cosmological sector of LQG has received increasing interest and has become one of the most thriving and fruitful directions of LQG [5–9]. It is well known that GR suffers singularity problems and this, in turn, implies that our universe also has an infinitely dense singularity point that is highly unphysical.
    [Show full text]
  • Open Sloan-Dissertation.Pdf
    The Pennsylvania State University The Graduate School LOOP QUANTUM COSMOLOGY AND THE EARLY UNIVERSE A Dissertation in Physics by David Sloan c 2010 David Sloan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2010 The thesis of David Sloan was reviewed and approved∗ by the following: Abhay Ashtekar Eberly Professor of Physics Dissertation Advisor, Chair of Committee Martin Bojowald Professor of Physics Tyce De Young Professor of Physics Nigel Higson Professor of Mathematics Jayanth Banavar Professor of Physics Head of the Department of Physics ∗Signatures are on file in the Graduate School. Abstract In this dissertation we explore two issues relating to Loop Quantum Cosmology (LQC) and the early universe. The first is expressing the Belinkskii, Khalatnikov and Lifshitz (BKL) conjecture in a manner suitable for loop quantization. The BKL conjecture says that on approach to space-like singularities in general rela- tivity, time derivatives dominate over spatial derivatives so that the dynamics at any spatial point is well captured by a set of coupled ordinary differential equa- tions. A large body of numerical and analytical evidence has accumulated in favor of these ideas, mostly using a framework adapted to the partial differential equa- tions that result from analyzing Einstein's equations. By contrast we begin with a Hamiltonian framework so that we can provide a formulation of this conjecture in terms of variables that are tailored to non-perturbative quantization. We explore this system in some detail, establishing the role of `Mixmaster' dynamics and the nature of the resulting singularity. Our formulation serves as a first step in the analysis of the fate of generic space-like singularities in loop quantum gravity.
    [Show full text]
  • The Cosmological Constant Einstein’S Static Universe
    Some History TEXTBOOKS FOR FURTHER REFERENCE 1) Physical Foundations of Cosmology, Viatcheslav Mukhanov 2) Cosmology, Michael Rowan-Robinson 3) A short course in General Relativity, J. Foster and J.D. Nightingale DERIVATION OF FRIEDMANN EQUATIONS IN A NEWTONIAN COSMOLOGY THE COSMOLOGICAL PRINCIPAL Viewed on a sufficiently large scale, the properties of the Universe are the same for all observers. This amounts to the strongly philosophical statement that the part of the Universe which we can see is a fair sample, and that the same physical laws apply throughout. => the Hubble expansion is a natural property of an expanding universe which obeys the cosmological principle Distribution of galaxies on the sky Distribution of 2.7 K microwave radiation on the sky vA = H0. rA vB = H0. rB v and r are position and velocity vectors VBA = VB – VA = H0.rB – H0.rA = H0 (rB - rA) The observer on galaxy A sees all other galaxies in the universe receding with velocities described by the same Hubble law as on Earth. In fact, the Hubble law is the unique expansion law compatible with homogeneity and isotropy. Co-moving coordinates: express the distance r as a product of the co-moving distance x and a term a(t) which is a function of time only: rBA = a(t) . x BA The original r coordinate system is known as physical coordinates. Deriving an equation for the universal expansion thus reduces to determining a function which describes a(t) Newton's Shell Theorem The force acting on A, B, C, D— which are particles located on the surface of a sphere of radius r—is the gravitational attraction from the matter internal to r only, acting as a point mass at O.
    [Show full text]
  • Hubble's Evidence for the Big Bang
    Hubble’s Evidence for the Big Bang | Instructor Guide Students will explore data from real galaxies to assemble evidence for the expansion of the Universe. Prerequisites ● Light spectra, including graphs of intensity vs. wavelength. ● Linear (y vs x) graphs and slope. ● Basic measurement statistics, like mean and standard deviation. Resources for Review ● Doppler Shift Overview ● Students will consider what the velocity vs. distance graph should look like for 3 different types of universes - a static universe, a universe with random motion, and an expanding universe. ● In an online interactive environment, students will collect evidence by: ○ using actual spectral data to calculate the recession velocities of the galaxies ○ using a “standard ruler” approach to estimate distances to the galaxies ● After they have collected the data, students will plot the galaxy velocities and distances to determine what type of model Universe is supported by their data. Grade Level: 9-12 Suggested Time One or two 50-minute class periods Multimedia Resources ● Hubble and the Big Bang WorldWide Telescope Interactive ​ Materials ● Activity sheet - Hubble’s Evidence for the Big Bang Lesson Plan The following represents one manner in which the materials could be organized into a lesson: Focus Question: ● How does characterizing how galaxies move today tell us about the history of our Universe? Learning Objective: ● SWBAT collect and graph velocity and distance data for a set of galaxies, and argue that their data set provides evidence for the Big Bang theory of an expanding Universe. Activity Outline: 1. Engage a. Invite students to share their ideas about these questions: i. Where did the Universe come from? ii.
    [Show full text]
  • Formation of Structure in Dark Energy Cosmologies
    HELSINKI INSTITUTE OF PHYSICS INTERNAL REPORT SERIES HIP-2006-08 Formation of Structure in Dark Energy Cosmologies Tomi Sebastian Koivisto Helsinki Institute of Physics, and Division of Theoretical Physics, Department of Physical Sciences Faculty of Science University of Helsinki P.O. Box 64, FIN-00014 University of Helsinki Finland ACADEMIC DISSERTATION To be presented for public criticism, with the permission of the Faculty of Science of the University of Helsinki, in Auditorium CK112 at Exactum, Gustaf H¨allstr¨omin katu 2, on November 17, 2006, at 2 p.m.. Helsinki 2006 ISBN 952-10-2360-9 (printed version) ISSN 1455-0563 Helsinki 2006 Yliopistopaino ISBN 952-10-2961-7 (pdf version) http://ethesis.helsinki.fi Helsinki 2006 Helsingin yliopiston verkkojulkaisut Contents Abstract vii Acknowledgements viii List of publications ix 1 Introduction 1 1.1Darkenergy:observationsandtheories..................... 1 1.2Structureandcontentsofthethesis...................... 6 2Gravity 8 2.1Generalrelativisticdescriptionoftheuniverse................. 8 2.2Extensionsofgeneralrelativity......................... 10 2.2.1 Conformalframes............................ 13 2.3ThePalatinivariation.............................. 15 2.3.1 Noethervariationoftheaction..................... 17 2.3.2 Conformalandgeodesicstructure.................... 18 3 Cosmology 21 3.1Thecontentsoftheuniverse........................... 21 3.1.1 Darkmatter............................... 22 3.1.2 Thecosmologicalconstant........................ 23 3.2Alternativeexplanations............................
    [Show full text]