The Main Controlling Factors of Glutenite Development and Their Impacts on Oil Energy Extraction

Total Page:16

File Type:pdf, Size:1020Kb

The Main Controlling Factors of Glutenite Development and Their Impacts on Oil Energy Extraction energies Article The Main Controlling Factors of Glutenite Development and Their Impacts on Oil Energy Extraction Yuping Wang 1,* , Chunmei Dong 1, Chengyan Lin 1 and Qingjie Hou 2,3 1 School of Geosciences, China University of Petroleum, Qingdao 266580, China; [email protected] (C.D.); [email protected] (C.L.) 2 Geophysical Research Institute, Sinopec Shengli Oilfield Company, Dongying 257022, China; [email protected] 3 Working Station for Postdoctoral Scientific Research, Shengli Oilfield, Dongying 257000, China * Correspondence: [email protected] Abstract: The glutenite reservoirs discovered in the Jiyang depression in Bohai Bay contribute greatly to proven oil and gas resources, which have reached 1.27 billion cubic meters. Both insufficient studies on the glutenite distribution and incomplete understanding of the corresponding geology restrict further oil energy extraction. Hence, it is necessary to study the controlling factors of glutenite development. Sedimentation, tectonic faults, geophysical data, etc., was used in this paper to study these factors. Four main controlling factors involved in the development of glutenite fan bodies have been studied and summarized: the fault ramp controls the glutenite fan, the fault characteristics control the glutenite acreage, the fault throw controls the thickness of the glutenite, and the dimensions of the incised valleys control the glutenite transport capacity. Based on this geological understanding, this paper analyzes the relationship between oil productivity data and the factors controlling conglomerate development. With this, the reservoir in the study area is divided into a high production area, medium production area, and low production area. The C913 well was Citation: Wang, Y.; Dong, C.; Lin, C.; deployed in the predicted high production area. The daily oil production reached 88 t/d, and the Hou, Q. The Main Controlling Factors energy exploitation effect was good. Therefore, this study provides important guidance for the of Glutenite Development and Their further extraction of oil energy. Impacts on Oil Energy Extraction. Energies 2021, 14, 1807. https://doi. Keywords: main controlling factors; incised valley; fault throw; glutenite; oil production org/10.3390/en14071807 Academic Editor: Hemanta Sarma 1. Introduction Received: 20 February 2021 The glutenite body is a kind of block-like geological rock body, which is composed Accepted: 23 March 2021 Published: 24 March 2021 of sandstone or conglomerate [1,2]. The glutenite reservoirs have a variety of rock types, such as sandstone, conglomerate, muddy conglomerate, sandy mudstone, etc. It can be Publisher’s Note: MDPI stays neutral developed as a single fan body or a group of fans superimposed together, and is usually with regard to jurisdictional claims in developed in the steep slope zone of a continental faulted. The genetic types of glutenite published maps and institutional affil- include nearshore subaqueous fan, alluvial fan, turbidite fan, fan delta, etc. The seismic iations. reflection of glutenite is strong amplitude in the top surface boundary, low frequency inside, and no obvious stratification. Glutenite oil and gas reservoirs are generally close to their provenance and have many development stages [3]. The reservoirs usually have large thicknesses, high productivity per unit area, and great exploration potential [4]. The lithol- ogy of glutenite reservoirs changes rapidly, the reservoir connectivity is difficult to describe, Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. and exploration and development are difficult [5–8]. Therefore, to predict the distribution This article is an open access article of glutenite bodies, it is first necessary to systematically study the characteristics and distributed under the terms and control factors of glutenite development. conditions of the Creative Commons The Chezhen Sag has the characteristics of a typical continental faulted lake basin in Attribution (CC BY) license (https:// China. Its steep slope zone glutenite is extremely well developed. The oil and gas resources creativecommons.org/licenses/by/ are approximately 150 million tons and form the main target for the next exploration [9]; 4.0/). however, since exploration began in 1996, only a few exploratory wells have obtained Energies 2021, 14, 1807. https://doi.org/10.3390/en14071807 https://www.mdpi.com/journal/energies Energies 2021, 14, 1807 2 of 16 economical oil production, which forms a large contrast with the excellent accumulation background. For example, the actual average daily oil production of the failed wells CD3 and GX13 is only 0.1 t/d.This may be due to the unclear distribution of glutenite bodies and unclear factors controlling development. Many scholars have analyzed the con- trolling factors for the development of glutenite fans and determined that the distribution of glutenite fans is mainly influenced by factors such as paleostructure, paleoclimate, fluc- tuations in lake level, and hydrodynamic forces [10,11]. At present, the control mechanism of these conventional factors on the development of glutenite bodies is relatively clear, but research work has found that the Chezhen Sag is rich in fault assemblages and fan types, and their controlling factors have not been systematically studied by scholars. This paper takes the glutenite body in the Guojuzi area of the Chezhen Sag as an example, studies the correlations of various characteristic parameters of the glutenite body distribution with the fault fan combination type, incised valley thickness and depth, and systematically explains the development of the glutenite. On the basis of the geological study, this paper links the main control factors of glutenite with the actual production of petroleum energy, and also provides a guidance to promote the oil production. 2. Geological Background 2.1. Location and Strata The Chezhen Sag is a secondary depression in the northern part of the Jiyang De- pression in the Bohai Bay Basin; to the east is the Zhanhua Depression, to the west is the Qingyun Uplift, to the south are the Wudi Uplift and Yihezhuang Uplift, and to the north is the Chengzikou Uplift (Figure1). The Chezhen Sag is a rift-like continental basin with a narrow distribution from north to south and extends from east to west. The Guojuzi Sag is located in the Northeastern Chezhen Sag. The main faults include the Da 34 fault, Dawang Beida 35 nose structure, Guo 6 East fault, Chengdong Uplift, and secondary Energies 2021, 14, x FOR PEER REVIEW 3 of 16 depressions divided by the Guo 4 and Guo 2 faults; Guojuzi is one of the three sub-sags in the Chezhen Sag. Figure 1. TheFigure geographical 1. The geographical location and location geological and geological structure structure of the study of the studyarea. area. The Paleogene strata in this area are divided into the Kongdian Formation, Shahejie Formation, and Dongying Formation from bottom to top (Figure2). The glutenite mainly developed in the Shahejie Formation. The Shahejie Formation is divided into members 1, 2, 3, and 4 vertically. The fourth member is dominated by beach bar sand deposits in shallow lakes, the third member is dominated by nearshore underwater fans in deep lake and semideep lake environments, the second member is dominated by shallow beach bar Figure 2. Stratigraphic development characteristics (Es1, Es2, Es3, and Es4 are short for members 1, 2, 3, and 4 in Shahejie Formation Eocene). 2.2. Types of Glutenite Fans In the northern steep slope zone of the Guojuzi area, various types of glutenite fans, such as alluvial fans, fan deltas, nearshore underwater fans, and turbidite fans, are widely developed (Figure 3). The remaining resources were approximately 220 million cubic meters, which were suitable for exploration. Important targets are alluvial fans, which are the products of weathering and denudation of parent rock carried by seasonal currents. They are fan-shaped deposits formed in locations where the slope of the terrain becomes gentler [12,13]. The alluvial fan is divided into fan root, fan middle, and outer Energies 2021, 14, 1807 3 of 16 deposits, and the first member is mainly developed in semideep lakes. Most submarine fans are deposited near the shore. The 2nd and 3rd members of the Shahejie Formation are the main layers where nearshore subaqueous fans of glutenite have developed. Figure 2. Stratigraphic development characteristics (Es1, Es2, Es3, and Es4 are short for members 1, 2, 3, and 4 in Shahejie Formation Eocene). 2.2. Types of Glutenite Fans In the northern steep slope zone of the Guojuzi area, various types of glutenite fans, such as alluvial fans, fan deltas, nearshore underwater fans, and turbidite fans, are widely developed (Figure3). The remaining resources were approximately 220 million cubic meters, which were suitable for exploration. Important targets are alluvial fans, which are the products of weathering and denudation of parent rock carried by seasonal currents. They are fan-shaped deposits formed in locations where the slope of the terrain becomes gentler [12,13]. The alluvial fan is divided into fan root, fan middle, and outer fan. The braided rivers are present in the middle fan, where the reservoir with high porosity and permeability [14–16]. Fan deltas are fan-shaped deposits formed from high sediment inputs into stable water bodies. They are mainly composed of fan delta plains, fronts, and front fan deltas. Fan delta plains and fronts develop branch channels with high porosity and permeability; front fan deltas are mainly composed of silty clay, which consists of sandy clay and has poor physical properties [17–19]. Nearshore underwater fans are gravity flow fans in which sediments directly enter the deeper waters of lakes, and most of their deposits are close to steep banks [20,21]. According to the differences in the provenance supply capacity, these fans can be divided into thick layers and thin layers. The thick layers have well-developed fan roots but poorly developed fan middle sections and fan margins; thin-layered fan bodies have well-developed interlayers, while glutenite has Energies 2021, 14, x FOR PEER REVIEW 4 of 16 fan.
Recommended publications
  • Alluvial Fans in the Death Valley Region California and Nevada
    Alluvial Fans in the Death Valley Region California and Nevada GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 Alluvial Fans in the Death Valley Region California and Nevada By CHARLES S. DENNY GEOLOGICAL SURVEY PROFESSIONAL PAPER 466 A survey and interpretation of some aspects of desert geomorphology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publications as follows: Denny, Charles Storrow, 1911- Alluvial fans in the Death Valley region, California and Nevada. Washington, U.S. Govt. Print. Off., 1964. iv, 61 p. illus., maps (5 fold. col. in pocket) diagrs., profiles, tables. 30 cm. (U.S. Geological Survey. Professional Paper 466) Bibliography: p. 59. 1. Physical geography California Death Valley region. 2. Physi­ cal geography Nevada Death Valley region. 3. Sedimentation and deposition. 4. Alluvium. I. Title. II. Title: Death Valley region. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Page Abstract.. _ ________________ 1 Shadow Mountain fan Continued Introduction. ______________ 2 Origin of the Shadow Mountain fan. 21 Method of study________ 2 Fan east of Alkali Flat- ___-__---.__-_- 25 Definitions and symbols. 6 Fans surrounding hills near Devils Hole_ 25 Geography _________________ 6 Bat Mountain fan___-____-___--___-__ 25 Shadow Mountain fan..______ 7 Fans east of Greenwater Range___ ______ 30 Geology.______________ 9 Fans in Greenwater Valley..-----_____. 32 Death Valley fans.__________--___-__- 32 Geomorpholo gy ______ 9 Characteristics of fans.._______-___-__- 38 Modern washes____.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Fan-Deltas and Braid Deltas: Varieties of Coarse-Grained Deltas
    Fan-deltas and braid deltas: Varieties of coarse-grained deltas John g. Mcpherson \ ,,,.,„ , , GANAPATHY SHANMUGAM > Mob" Research and Development Corporation, Dallas Research Laboratory, P.O. Box 819047 RICHARD J. MOIOLA J Dallas, Texas 75381 ABSTRACT delta sediments; they lack a muddy matrix; ening of the definition of fan-delta to the point of they display size grading and bar migration; confusion over its meaning and sedimentologic Two types of coarse-grained deltas are they commonly have a sheet geometry with implications. The term "fan-delta" is widely recognized: fan-deltas and braid deltas. Fan- high lateral continuity (tens to hundreds of used to describe depositional settings embracing deltas are gravel-rich deltas formed where an square kilometres); and they exhibit moderate a range of coarse-grained delta types other than alluvial fan is deposited directly into a stand- to high porosity and permeability. Valuable that of the fan-delta originally described by ing body of water from an adjacent highland. paleogeographic and tectonic information Holmes (1965). Many descriptions in the litera- They occupy a space between the highland concerning the proximity of highlands and ture of ancient fan-delta sequences contain no (usually a fault-bounded margin) and the major fault zones may be misinterpreted or evidence of the required presence of an alluvial standing body of water. In contrast, braid lost if these two coarse-grained deltaic sys- fan; instead they consist of deltaic deposits com- deltas (here introduced) are gravel-rich deltas tems are not differentiated. prising multilateral channel conglomerates and that form where a braided fluvial system pro- sandstones deposited from braided fluvial dis- grades into a standing body of water.
    [Show full text]
  • Hydrogeomorphic Processes and Torrent Control Works on a Large Alluvial Fan in the Eastern Italian Alps
    Nat. Hazards Earth Syst. Sci., 10, 547–558, 2010 www.nat-hazards-earth-syst-sci.net/10/547/2010/ Natural Hazards © Author(s) 2010. This work is distributed under and Earth the Creative Commons Attribution 3.0 License. System Sciences Hydrogeomorphic processes and torrent control works on a large alluvial fan in the eastern Italian Alps L. Marchi1, M. Cavalli1, and V. D’Agostino2 1Consiglio Nazionale delle Ricerche – Istituto di Ricerca per la Protezione Idrogeologica (CNR IRPI), Padova, Italy 2Dipartimento Territorio e Sistemi Agroforestali, Universita` di Padova, Legnaro (Padova), Italy Received: 17 November 2009 – Revised: 26 February 2010 – Accepted: 8 March 2010 – Published: 23 March 2010 Abstract. Alluvial fans are often present at the outlet of 1 Introduction small drainage basins in alpine valleys; their formation is due to sediment transport associated with flash floods and Alluvial fans at the outlet of small, high-gradient drainage debris flows. Alluvial fans are preferred sites for human set- basins are a common feature of alpine valleys. Although de- tlements and are frequently crossed by transport routes. In bris flows commonly dominate the formation and develop- order to reduce the risk for economic activities located on or ment of these alluvial fans, also bedload and hyperconcen- near the fan and prevent loss of lives due to floods and de- trated flows contribute to the transfer of sediment from the bris flows, torrent control works have been extensively car- drainage basin to the alluvial fan and its distribution on the ried out on many alpine alluvial fans. Hazard management fan surface. These flow processes result in major risk when on alluvial fans in alpine regions is dependent upon reliable they encroach settlements and transport routes, which are of- procedures to evaluate variations in the frequency and sever- ten present on the alluvial fans of the European Alps.
    [Show full text]
  • Moving Water Shapes Land
    KEY CONCEPT Moving water shapes land. BEFORE, you learned NOW, you will learn •Erosion is the movement of • How moving water shapes rock and soil Earth’s surface • Gravity causes mass movements • How water moving under- of rock and soil ground forms caves and other features VOCABULARY EXPLORE Divides drainage basin p. 579 How do divides work? divide p. 579 floodplain p. 580 PROCEDURE MATERIALS alluvial fan p. 581 •sheet of paper 1 Fold the sheet of paper in thirds and tape delta p. 581 • tape it as shown to make a “ridge.” sinkhole p. 583 •paper clips 2 Drop the paper clips one at a time directly on top of the ridge from a height of about 30 cm. Observe what happens and record your observations. WHAT DO YOU THINK? How might the paper clips be similar to water falling on a ridge? Streams shape Earth’s surface. If you look at a river or stream, you may be able to notice something about the land around it. The land is higher than the river. If a river is running through a steep valley, you can easily see that the river is the low point. But even in very flat places, the land is sloping down to the river, which is itself running downhill in a low path through the land. NOTE-TAKING STRATEGY Running water is the major force shaping the landscape over most A main idea and detail of Earth. From the broad, flat land around the lower Mississippi River notes chart would be a good strategy to use for to the steep mountain valleys of the Himalayas, water running downhill taking notes about streams changes the land.
    [Show full text]
  • Alluvial Fans
    GY 111 Lecture Notes D. Haywick (2008-09) 1 GY 111 Lecture Note Series Sedimentary Environments 1: Alluvial Fans Lecture Goals A) Depositional/Sedimentary Environments B) Alluvial fan depositional environments C) Sediment and rocks that form on alluvial fans Reference: Press et al., 2004, Chapter 7; Grotzinger et al., 2007, Chapter 18, p 449 GY 111 Lab manual Chapter 3 Note: At this point in the course, my version of GY 111 starts to diverge a bit from my colleagues. I tend to focus a bit more on sedimentary processes then they do mostly because we live in an area that is dominated by sedimentation and I figure that you should be as familiar as possible with the subject. As it turns out, the web notes are also more comprehensive than what you'll find in your text book A) Depositional/sedimentary environments Last time we met, we discussed how sediment moved from one place to another. Remember that sediment is produced in a lot of different locations, but it seldom stays where it is produced. The action of water, wind and ice transport it from the sediment source to the sediment sink. The variety of sediment sinks that exist on the planet is truly amazing. There are river basins, lakes, deserts, lagoons, swamps, deltas, beaches, barrier islands, reefs, continental shelves, the abyssal plains (very deep!), trenches (even deeper!) etc. As we discussed last time, these places are called depositional environments (also known as sedimentary environments). Each depositional environment may also have several subdivisions. For example, there are open beaches, sheltered beaches, shingle beaches, sand beaches, strandline beaches, even mud beaches.
    [Show full text]
  • Flooding Dynamics in a Large Low-Gradient Alluvial Fan, the Okavango Delta, Botswana, from Analysis and Interpretation of a 30-Year Hydrometric Record
    Hydrology and Earth System Sciences, 10, 127–137, 2006 www.copernicus.org/EGU/hess/hess/10/127/ Hydrology and SRef-ID: 1607-7938/hess/2006-10-127 Earth System European Geosciences Union Sciences Flooding dynamics in a large low-gradient alluvial fan, the Okavango Delta, Botswana, from analysis and interpretation of a 30-year hydrometric record P. Wolski and M. Murray-Hudson Harry Oppenheimer Okavango Research Centre, Maun, Botswana Received: 11 August 2005 – Published in Hydrology and Earth System Sciences Discussions: 6 September 2005 Revised: 29 November 2005 – Accepted: 3 January 2006 – Published: 21 February 2006 Abstract. The Okavango Delta is a flood-pulsed wetland, tem, and the flood frequency distribution itself can change, which supports a large tourism industry and the subsistence compared to that at upstream locations (Wolff and Burges, of the local population through the provision of ecosystem 1994). The ecological role of the channel-floodplain interac- services. In order to obtain insight into the influence of var- tion is expressed by the flood pulse concept (Junk et al., 1989; ious environmental factors on flood propagation and distri- Middleton, 1999). According to this concept, floodplain wet- bution in this system, an analysis was undertaken of a 30- lands and riparian ecosystems adjust to, and are maintained, year record of hydrometric data (discharges and water lev- by the pulsing of water, sediment and nutrients that occurs els) from one of the Delta distributaries. The analysis re- during over-bank flow conditions. Odum (1994) addition- vealed that water levels and discharges at any given channel ally identifies flood pulsing at various spatial and temporal site in this distributary are influenced by a complex interplay scales as an energy subsidy to wetland ecosystems, explain- of flood wave and local rainfall inputs, modified by channel- ing in part the high ecological productivity associated with floodplain interactions, in-channel sedimentation and techni- such systems.
    [Show full text]
  • Alluvial Fan Hazards & Design Issues for Design
    Presentation Program Outline Overview Countermeasures / Planning Process Levees / Dikes / Diversions Channelization / Conveyance Grade Control Structures Detention Basin / Debris Basin Case Study – Localized Subdivision Protection (THOUSAND PALMS, CA) Case Study – Whole Fan Facilities (INDIAN WELLS, CA) Structural Countermeasures Overview / Planning Process & Design Considerations Alluvial Fan Hazards & Design Issues for Design • Uncertainty of flow depths (R&U analysis) • Inundation extents / flow direction / impingement • Sediment deposition • Scouring and undermining • Impact forces • Channel avulsions and entrenchments • Hydrostatic and buoyant forces • High velocities • Unpredictable flow path (R&U analysis) • Flooding from both debris and water flows “Riverine” vs. “Alluvial Fan” - Structural Countermeasure Design Issues / Considerations • Flow uncertainty • Velocity • Flow duration • Sediment deposition • Seepage control • Impingement • Flow direction and path uncertainty Alluvial Fan Riverine “Whole Fan” Solutions vs. Localized Protection – Structural Countermeasures “Whole Fan” Solutions vs. Localized Protection – Structural Countermeasures Structural Countermeasures for Alluvial Fans – Basic Building Blocks Collection Channels Conveyance Channels Dispersion Channels Structural Countermeasures for Alluvial Fans – Basic Building Blocks - Example Standard Alluvial Fan Structural Countermeasures Effectiveness of Alluvial Fan Structural Countermeasures for Different Hazards Structural Countermeasure – General Design Considerations
    [Show full text]
  • Flooding Dynamics in a Large Low-Gradient Alluvial Fan, the Okavango Delta, Botswana, from Analysis and Interpretation of a 30-Year Hydrometric Record
    Hydrol. Earth Sys. Sci. Discuss., 2, 1865–1892, 2005 Hydrology and www.copernicus.org/EGU/hess/hessd/2/1865/ Earth System SRef-ID: 1812-2116/hessd/2005-2-1865 Sciences European Geosciences Union Discussions Papers published in Hydrology and Earth System Sciences Discussions are under open-access review for the journal Hydrology and Earth System Sciences Flooding dynamics in a large low-gradient alluvial fan, the Okavango Delta, Botswana, from analysis and interpretation of a 30-year hydrometric record P. Wolski and M. Murray-Hudson Harry Oppenheimer Okavango Research Centre, Maun, Botswana Received: 11 August 2005 – Accepted: 22 August 2005 – Published: 6 September 2005 Correspondence to: P. Wolski ([email protected]) © 2005 Author(s). This work is licensed under a Creative Commons License. 1865 Abstract The Okavango Delta is a flood-pulsed wetland, the resources of which support a large tourism industry and subsistence of the local population. In order to obtain an insight into the influence of various environmental factors on flood propagation and distribution 5 in this system, an analysis was undertaken of a 30-year record of hydrometric data (dis- charges and water levels) from one of the Delta distributaries. The analysis revealed that water levels and discharges at any given channel site in the analysed distributary are influenced by a complex interplay of flood wave and local rainfall input modified by channel-floodplain interactions, in-channel sedimentation and technical interventions, 10 both at the given site and upstream. Additionally, cyclical variation of channel margin vegetation due to nutrients recycling might play a role. It was shown that data from channels do not adequately represent flood dynamics and its change at the distribu- tary level.
    [Show full text]
  • Geomorphology, Hydrology, and Ecology of Great Basin Meadow
    Chapter 2: Controls on Meadow Distribution and Characteristics Dru Germanoski, Jerry R. Miller, and Mark L. Lord Introduction precipitation values are recorded in the central and southern Toiyabe and southern Toquima Mountains (fig. 1.4) and, as eadow complexes are located in distinct geomorphic expected, meadow complexes are abundant in those areas. Mand hydrologic settings that allow groundwater to be In contrast, basins located in sections of mountain ranges at or near the ground surface during at least part of the year. that do not have significant area at high elevation (greater Meadows are manifestations of the subsurface flow system, than approximately 2500 m) and that are characterized by and their distribution is controlled by factors that cause lo- limited annual precipitation contain relatively few meadows. calized zones of groundwater discharge. Knowledge of the For example, much of the Shoshone Range and the north- factors that serve as controls on groundwater discharge and ern and southernmost portions of the Toiyabe, Toquima, and formation of meadow complexes is necessary to understand Monitor Ranges are lower in elevation and receive less pre- why meadows occur where they do and how anthropogenic cipitation. Therefore, meadow complexes are uncommon in activities might affect their persistence and ecological condi- these regions. Analyses of color-enhanced satellite images tion. In this chapter, we examine physical factors that lead to of the region reveal that meadow complexes also are uncom- the formation of meadow complexes in upland watersheds mon in low-elevation mountain ranges in the surrounding of the central Great Basin. We then describe variations in area, including the Pancake Range, Antelope Range, the meadow characteristics across the region and parameters Park Range, and Simpson Park Mountains.
    [Show full text]
  • Fact Sheet 2: What Is an Alluvial
    FEMA Risk MAP Style Guide What Is An Alluvial Fan? FOR NEFF’S CREEK MAY 2016 WHAT IS AN ALLUVIAL FAN? An alluvial fan is a fan-shaped area where silt, sand, gravel, boulders, and woody debris are deposited by rivers and streams over a long period of time. Alluvial fans are created as flowing water interacts with mountains, hills, or steep canyon walls. Sediment and debris can be deposited over time by powerful rivers or small creeks. The top, or narrow point, of the alluvial fan is called the “apex,” and the wider portion is called the “apron” or “cone.” Alluvial fans can be small or large, depending on the historical water flows. Alluvial fans formed on a steep slope, like the one at Neff’s Creek, are narrow, and thus more cone than fan-shaped. 8 Canyon Apex Cone Alluvial Fan (Potential Flow Paths) COMMON IN THE WESTERN UNITED STATES In the United States, alluvial fans are typically found along the base of mountain fronts in Utah, California, Arizona, Nevada, Colorado, Idaho, New Mexico, Wyoming, Montana, Oregon, and Washington. Here, infrequent but intense storms typical of arid climates, plus abrupt changes in topography, create the necessary conditions for alluvial fan formation. FEMA Risk MAP Style Guide HOW ALLUVIAL FANS ARE IDENTIFIED Alluvial fans can be difficult to identify by the untrained eye. Many homeowners don’t realize the panoramic views of the valley below are due to their elevated location on an alluvial fan. They may also be unaware that the large boulders which dot their landscape were once carried downhill by powerful floodwaters.
    [Show full text]
  • Effects of Post-Wildfire Erosion on Channel Environments, Boise River, Idaho
    Effects of Post-Wildfire Erosion on Channel Environments, Boise River, Idaho Lee Benda1, Daniel Miller2, Paul Bigelow1, Kevin Andras1 Manuscript accepted to Forest Ecology and Management, to be cited as “in press” Prepublication copy subject to some correction or change. 1 Earth Systems Institute, California Office 310 N Mt Shasta Blvd, Suite 6, Mt Shasta, CA 96067, USA 530-926-1066 phone [email protected] 2 Earth Systems Institute, Washington Office 3040 NW 57th St., Seattle, WA 98107, USA 1 Abstract What is the geological or ecological context that earth scientists, biologists, and resource managers use to understand large-scale watershed disturbances, such as fires, mass wasting, and floods? We address this question using a field study of post-fire channel changes in the Boise River basin in central Idaho based on surveys of over 27 km of channels. Intense rill and gully erosion from the Rabbit Creek fire (1995) greatly increased sediment supply to numerous third- through sixth-order valley floors. We concentrated our field study where recently aggraded and enlarged alluvial fans impinged on channels in drainage areas of 100 - 350 km2. Alluvial fans that had enlarged because of post-fire sedimentation triggered a number of morphological changes in channels and valley floors. Alluvial fans created nick points in receiving channels that caused an increase in channel gradient immediately downstream of fans and a decrease in channel gradients upstream of fans for distances up to 4 km. Wide floodplains, side channels, and the beginning of terrace construction were associated with increased sediment storage in proximity to aggraded fans.
    [Show full text]