(12) Patent Application Publication (10) Pub. No.: US 2006/0172023 A1 Heimerikx Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2006/0172023 A1 Heimerikx Et Al US 2006O172023A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0172023 A1 Heimerikx et al. (43) Pub. Date: Aug. 3, 2006 (54) USE OF PINOLENIC ACID (30) Foreign Application Priority Data (75) Inventors: Jos Heimerikx, Vormerveer (NL); Jan. 31, 2005 (EP)........................................ O5250517.9 Ulrike Schmid, Wormerveer (NL); Jul. 14, 2005 (GB)......................................... O514463.9 Alexandra Einerhand, Wormerveer Publication Classification (NL); Wiro Stam, Wormerveer (NL); Luisa Gambelli, Wormerveer (NL) (51) Int. Cl. A6IR 36/3 (2006.01) A6II 3L/22 (2006.01) Correspondence Address: A6II 3L/202 (2006.01) MORGAN LEWIS & BOCKUS LLP (52) U.S. Cl. ........................... 424/770; 514/547: 514/560 1111 PENNSYLVANIAAVENUE NW WASHINGTON, DC 20004 (US) (57) ABSTRACT Method of managing weight by administering a composition including pinolenic acid or derivative such as a glyceride (73) Assignee: LODERS CROKLAAN B.V., Worm thereof. The composition may be pine nut oil or a derivative erveer (NL) thereof and may be used as a food Supplement or food product such as margarine or as a pharmaceutical compo (21) Appl. No.: 11/341,517 sition, e.g. in tablet form. The composition may also include other components such as linoleic acid or other fatty acid or (22) Filed: Jan. 30, 2006 derivative thereof. Patent Application Publication Aug. 3, 2006 Sheet 1 of 5 US 2006/0172023 A1 rN N NYN NYNY. A NYNYNYNYNYNY- - % NYS NYNYSYNYSYNY % NNNNN & R | | | RNNN NYN NNN & % H - 8. SYNYNYNYNYNYNYNY YNYNYNYNYN NYNYNYS NYNNYNYNYNY % NYNYSYNYN 6 N & & N NYNYNY % - NSN -& % SYNYNY *% NY & s 3 3 3 s O Patent Application Publication Aug. 3, 2006 Sheet 2 of 5 US 2006/0172023 A1 O 30 60 90 120 180 240 O 30 60 90 120 180 240 Patent Application Publication Aug. 3, 2006 Sheet 3 of 5 US 2006/0172023 A1 O 30 60 90 120 180 240 Patent Application Publication Aug. 3, 2006 Sheet 4 of 5 US 2006/0172023 A1 20 18 16 14. 1.2 10 08 06 04 02 00 O 30 60 90 120 180 240 80 30 20 O O 30 60 90 120 180 240 Fig. 7 Patent Application Publication Aug. 3, 2006 Sheet 5 of 5 US 2006/0172023 A1 70 60 50 l,0 30 20 10 O 30 60 90 120 180 240 Fig. 8 US 2006/0172023 A1 Aug. 3, 2006 USE OF PINOLENIC ACID 0007 Matsuo et al. Prostaglandins, Leukotrienes and 0001. This invention relates to compositions that may be Essential Fatty Acids, (1996), 55(4), 223-229 describes the used for weight management, for controlling food intake and effects of Y-linolenic and pinolenic acid on immune param appetite, and for controlling and/or reducing body weight. eters of Brown-Norway rats. The compositions contain pinolenic acid or a derivative 0008 However, none of the prior art documents indicate thereof. that pinolenic acid or a derivative thereof could be used to 0002 Obesity is becoming increasingly prevalent in indi treat or prevent obesity and/or for weight management. viduals in developed Societies. Generally, an overweight 0009 U.S. Pat. No. 6,429,190, US 2002/01 19948 and US condition and obesity result from an imbalance in energy 2002/01 19915 describe compositions for extending satiety intake and utilisation. The cause of energy imbalance for comprising a calcium source, protein and a C12 to C18 fatty each individual may be due to a combination of several acid. Oleic acid is the fatty acid described in the documents. factors and stems from a myriad of both environmental and genetic determinants. Obesity may be a contributing factor 0010 WO 02/088159 discloses pharmaceutically active in the increased incidence of various diseases including uridine esters, and combinations comprising their constitu coronary artery disease, hypertension, stroke, diabetes and ent acid and uridine compound, and their use in a wide certain cancers. variety of medical applications. There is no disclosure of the use of free fatty acids alone nor is any example given of the 0003 Weight reduction is often recommended as the first treatment of obesity. course of action for patients suffering from these obesity related diseases. In an attempt to control total body weight, 0.011 EP-A-1504778, published on 9 Feb. 2005, an individual may undertake weight management, the objec describes an implantable pump for the treatment of obesity. tives of which may differ depending on the needs of the The pump may comprise a fatty acid but there is no individual. For example, whereas obese or overweight indi disclosure of pinolenic acid. viduals may wish to lose body weight, other individuals may 0012 CN-A-1377673 relates to the use of a pine nut oil wish to maintain a body weight at a Substantially constant for treating cardiac and cerebral vascular diseases and level. Even once a person has lost body weight, weight adiposity caused by hyperlipemia as well as diabetes caused management is often required to prevent that person regain by hyperglycemia. ing the body weight previously lost. The most effective weight loss programmes typically include a reduced calorie 0013 The present invention provides the use of pinolenic diet and/or increased energy expenditure. Over time, many acid or a derivative thereof in the manufacture of a compo people undertaking weight management experience sition for weight management by reducing the feeling of increased hunger levels and/or cravings for high Sugar hunger and/or increasing Satiety. The invention also provides foods. This can lead individuals to stray from their weight the use of pinolenic acid or a derivative thereof for reducing management regime. There is, therefore, a need to develop the feeling of hunger and/or increasing satiety. Thus, com new and effective ways to Support weight management and positions of the invention are Suitable for treating or pre to help individuals continue with their weight management venting obesity and/or for weight management and comprise regime. It is an object of the present invention to provide a pinolenic acid or a derivative thereof. Derivatives of pino new means for providing this Support. lenic acid, which can be used in the present invention, 0004 Pinolenic acid (i.e., 5, 9, 12 C18:3 fatty acid, a fatty include salts of pinolenic acid and alkyl esters. Other deriva acid with 18 C atoms having three double bonds in the tives of pinolenic acid which can be used in the invention are positions 5, 9 and 12) is present in, for example, pine nut oil isomers of pinolenic acid such as, for example, geometric and fractions thereof (J Am Oil Chem Soc 1998, 75, p. isomers (having one or more trans double bonds; the double 45-50). It is known that pine nut oil, and thus pinolenic acid, bonds in pinolenic acid are all cis) and/or compounds having can be applied in food products, see for example, FR-A- 18 carbon atoms and three double bonds with one or more 2756465 wherein the use of a concentrate with 15% pino of the three double bonds at a different position in the alkyl lenic acid in food additives is disclosed. The presence of chain compared to pinolenic acid, including, for example, pinolenic acid is described as providing a hypolipemic effect gamma linolenic acid, alpha linolenic acid, punicic acid, to the composition. eleoStearic acid, and their salts and alkyl esters. 0005 WO98/.43513 discloses that nail files can be coated 0014. The invention also covers, therefore: the use of with pinolenic acid and that this inhibits the occurrence of alpha-linolenic acid or a derivative thereof for weight man infections upon use of the files. agement by reducing the feeling of hunger and/or increasing Satiety; the use of gamma-linolenic acid or a derivative 0006. According to JP-A-61238729, pine nut oil can be thereof for weight management by reducing the feeling of used as an anticholesteric agent. Other documents wherein hunger and/or increasing Satiety; the use of punicic acid or health effects of pinolenic acid are disclosed include JP-A- a derivative thereof for weight management by reducing the 61058536, wherein a very generic activity beneficial for feeling of hunger and/or increasing Satiety; and the use of human health is disclosed. This health activity is not dis eleoStearic acid (also termed alpha-eleostearic acid) or a closed in further detail. Sugano, Brit J. of Nutr 72 (1994) derivative thereof for weight management by reducing the 775-783, discloses a number of health effects of diets feeling of hunger and/or increasing Satiety. containing pinolenic acid. The health effects mentioned are hypocholesterolaemic effects, effects on ADP-induced plate 0015 The invention also contemplates pinolenic acid or let aggregation, on aortic prostacylic production and on a derivative thereof for treating or preventing obesity and/or blood pressure. EP-A-1088552 describes the use of pino for weight management. The pinolenic acid or derivative lenic acid as an anti-inflammatory agent. thereof may be used alone or may be one component of a US 2006/0172023 A1 Aug. 3, 2006 composition which comprises other edible and/or pharma 0021. The pinolenic acid used in the present invention ceutically acceptable components. Preferably, the composi may be in the form of a free fatty acid, a derivative of tion further comprises from 10 to 60 wt % of linoleic acid pinolenic acid or mixtures thereof, including mixtures of and/or from 5 to 52wt % oleic acid, either as free acids or different derivatives. Derivatives are non-toxic and edible glycerides (e.g., mono-, di- or tri-glycerides). Additionally and preferably include, for example, salts and esters. Other or alternatively, the composition may comprise from 0.5 to derivatives of pinolenic acid which can be used in the 5 wt % of taxoleic acid.
Recommended publications
  • Pinus Koraiensis Seed Oil (Pinnothintm) Supplementation Reduces Body Weight Gain and Lipid Concentration in Liver and Plasma of Mice
    Journal of Animal and Feed Sciences, 17, 2008, 621–630 Pinus koraiensis seed oil (PinnoThinTM) supplementation reduces body weight gain and lipid concentration in liver and plasma of mice A. Ferramosca1, V. Savy1, A.W.C. Einerhand2 and V. Zara1,3 1Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce Via Prov.le Lecce-Monteroni, I-73100 Lecce, Italy 2Lipid Nutrition BV, PO Box 4, 1520 AA Wormerveer, The Netherlands (Received 3 March 2008; revised version 7 July 2008; accepted 27 October 2008) ABSTRACT Pinus koraiensis seed oil (pine nut oil), containing pinolenic acid, has been proposed as a benefi cial fat by virtue of its effects on some lipid variables. In this study the effects of a pine nut oil-supplemented diet in mice, in comparison to control animals fed with a maize oil enriched diet, were investigated. Pine nut oil caused a signifi cant reduction in body weight gain and liver weight (37.4 and 13.7%, respectively). An impressive decrease in plasma triglycerides and total cholesterol (31.8 and 28.5%, respectively) was also found in pine nut oil-fed animals. Liver lipids were also positively infl uenced by pine nut oil. The mitochondrial and cytosolic enzyme activities involved in hepatic fatty acid synthesis were strongly reduced both in pine nut oil and maize oil-fed animals, thus suggesting that the benefi cial effects of pine nut oil are not due to an inhibition of hepatic lipogenesis. KEY WORDS: body weight, liver lipids, plasma lipids, fatty acid synthesis, pine nut oil (PinnoThinTM), mice INTRODUCTION Vegetable oils from the seeds of some conifers (Wolff et al., 2000), such as Pinus pinaster and Pinus koraiensis, are currently under investigation for their use in the feed industry and/or as dietary supplements (Sugano et al., 1994; Asset et 3 Corresponding author: e-mail: [email protected] 622 HYPOLIPIDEMIC PROPERTIES OF PINE NUT OIL (PINNOTHINTM) al., 1999; Lee et al., 2004).
    [Show full text]
  • British Journal of Nutrition (2015), 113, 1677–1688 Doi:10.1017/S000711451500118X Q the Authors 2015
    Downloaded from British Journal of Nutrition (2015), 113, 1677–1688 doi:10.1017/S000711451500118X q The Authors 2015 https://www.cambridge.org/core Activity of dietary fatty acids on FFA1 and FFA4 and characterisation of pinolenic acid as a dual FFA1/FFA4 agonist with potential effect against metabolic diseases . IP address: Elisabeth Christiansen1, Kenneth R. Watterson2, Claire J. Stocker3, Elena Sokol4, Laura Jenkins2, 5 5 6 3 2 Katharina Simon , Manuel Grundmann , Rasmus K. Petersen , Edward T. Wargent , Brian D. Hudson , 170.106.40.219 Evi Kostenis5, Christer S. Ejsing4, Michael A. Cawthorne3, Graeme Milligan2 and Trond Ulven1* 1Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark , on 2 Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and 30 Sep 2021 at 02:14:54 Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK 3Buckingham Institute of Translational Medicine, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK 4Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark 5Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, D-53115 Bonn, Germany 6Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200, Copenhagen N, Denmark , subject to the Cambridge Core terms of use, available at (Submitted 14 January 2015 – Final revision received 11 March 2015 – Accepted 16 March 2015 – First published online 28 April 2015) Abstract Various foods are associated with effects against metabolic diseases such as insulin resistance and type 2 diabetes; however, their mech- anisms of action are mostly unclear.
    [Show full text]
  • Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes
    nutrients Review Changes in Plasma Free Fatty Acids Associated with Type-2 Diabetes Amélie I. S. Sobczak 1, Claudia A. Blindauer 2,* and Alan J. Stewart 1,* 1 School of Medicine, University of St Andrews, St Andrews KY16 9TF, UK 2 Department of Chemistry, University of Warwick, Coventry CV4 7EQ, UK * Correspondence: [email protected] (C.A.B.); [email protected] (A.J.S.); Tel.: +44-(0)24-765-28264 (C.A.B.); +44-(0)1334-463-546 (A.J.S.) Received: 2 August 2019; Accepted: 24 August 2019; Published: 28 August 2019 Abstract: Type 2 diabetes mellitus (T2DM) is associated with increased total plasma free fatty acid (FFA) concentrations and an elevated risk of cardiovascular disease. The exact mechanisms by which the plasma FFA profile of subjects with T2DM changes is unclear, but it is thought that dietary fats and changes to lipid metabolism are likely to contribute. Therefore, establishing the changes in concentrations of specific FFAs in an individual’s plasma is important. Each type of FFA has different effects on physiological processes, including the regulation of lipolysis and lipogenesis in adipose tissue, inflammation, endocrine signalling and the composition and properties of cellular membranes. Alterations in such processes due to altered plasma FFA concentrations/profiles can potentially result in the development of insulin resistance and coagulatory defects. Finally, fibrates and statins, lipid-regulating drugs prescribed to subjects with T2DM, are also thought to exert part of their beneficial effects by impacting on plasma FFA concentrations. Thus, it is also interesting to consider their effects on the concentration of FFAs in plasma.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,479,070 B1 Cain Et Al
    USOO647907OB1 (12) United States Patent (10) Patent No.: US 6,479,070 B1 Cain et al. (45) Date of Patent: Nov. 12, 2002 (54) COMPOSITIONS CONTAINING PINOLENIC (56) References Cited ACID AND ITS USE ASA HEALTH COMPONENT U.S. PATENT DOCUMENTS 4.425,371. A 1/1984 Stratmann et al. .......... 426/603 (75) Inventors: Frederick William Cain, Wormerveer 5,567,751 A * 10/1996 Hoch ......................... 524/181 (NL); Preyesh Parmar, Sharnbrook Bedford (GB); Jonathan Richard FOREIGN PATENT DOCUMENTS Powell, Sharnbrook Bedford (GB); FR 2 756 465 6/1998 Julia Sarah Rogers, Sharnbrook Bedford (GB) OTHER PUBLICATIONS Sugano et al, British Journal of Nutrition, 72:775–783 (73) Assignee: Unilever Patent Holdings, Vlaardingen (1994). (NL) Matsuo et al., ProStaglandins Leukotrienes and ESSential (*) Notice: Subject to any disclaimer, the term of this Fatty Acids, 55(4):223–229 (1996). patent is extended or adjusted under 35 Derwent Publications, AN 1986–117166, XP002134074 (JP U.S.C. 154(b) by 0 days. 61-058536. * cited by examiner (21) Appl. No.: 09/672,487 Primary Examiner-Christopher R. Tate ASSistant Examiner-Kailash C. Srivastava (22) Filed: Sep. 29, 2000 (74) Attorney, Agent, or Firm Morgan, Lewis & Bockius (30) Foreign Application Priority Data LLP Sep. 30, 1999 (EP) ............................................ 993O7752 (57) ABSTRACT Oct. 13, 1999 (EP) ............................................ 993O8062 Pinolenic acid can be used in the form of a food Supplement, (51) Int. Cl. .......................... A61K 47/00; A23D 7/06; a pharmacentical composition or as part of a food compo A23D 9/00; CO8K 5/58; CO8K 5/06 Sition as anti-inflammatory agent. The pinolenic acid used (52) U.S.
    [Show full text]
  • Salicylic Acid and Aspirin Stimulate Growth of Chlamydomonas and Inhibit Lipoxygenase and Chloroplast Desaturase Pathways
    Journal Pre-proof Salicylic acid and aspirin stimulate growth of Chlamydomonas and inhibit lipoxygenase and chloroplast desaturase pathways Nahid Awad, Samuel Vega-Estévez, Gareth Griffiths PII: S0981-9428(20)30073-5 DOI: https://doi.org/10.1016/j.plaphy.2020.02.019 Reference: PLAPHY 6053 To appear in: Plant Physiology and Biochemistry Received Date: 7 November 2019 Revised Date: 12 February 2020 Accepted Date: 12 February 2020 Please cite this article as: N. Awad, S. Vega-Estévez, G. Griffiths, Salicylic acid and aspirin stimulate growth of Chlamydomonas and inhibit lipoxygenase and chloroplast desaturase pathways, Plant Physiology et Biochemistry (2020), doi: https://doi.org/10.1016/j.plaphy.2020.02.019. This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2020 Published by Elsevier Masson SAS. Contribution Nahid Awad and Samuel Vega-Estévez undertook the practical work on the growth of algae treated with phenolics, assays on MDA and fatty acid profiling. Gareth Griffiths undertook the lipoxygenase inhibitor work and was responsible for the overall direction the research. 1 2 3 4 5 6 7 8 Salicylic acid and aspirin stimulate growth of Chlamydomonas and 9 inhibit lipoxygenase and chloroplast desaturase pathways 10 11 Nahid Awad, Samuel Vega-Estévez, Gareth Griffiths * 12 13 Chemical Engineering and Applied Chemistry, Energy and Bioproducts Research 14 Institute, Aston University, B4 7ET Birmingham, United Kingdom.
    [Show full text]
  • Uptake and Incorporation of Pinolenic Acid Reduces N-6 Polyunsaturated Fatty Acid and Downstream Prostaglandin Formation in Murine Macrophage
    Lipids (2009) 44:217–224 DOI 10.1007/s11745-008-3276-0 ORIGINAL ARTICLE Uptake and Incorporation of Pinolenic Acid Reduces n-6 Polyunsaturated Fatty Acid and Downstream Prostaglandin Formation in Murine Macrophage Lu-Te Chuang Æ Po-Jung Tsai Æ Chia-Long Lee Æ Yung-Sheng Huang Received: 10 July 2008 / Accepted: 19 November 2008 / Published online: 8 January 2009 Ó AOCS 2008 Abstract Many reports have shown the beneficial effects from dihomo-c-linolenic acid (DGLA, D8,11,14–20:4) and of consumption of pine seeds and pine seed oil. However, PGE2 from arachidonic acid (ARA, D5,8,11,14–20:4) were few studies have examined the biological effect of pino- also suppressed by the presence of PNA and its metabolite. lenic acid (PNA; D5,9,12–18:3), the main fatty acid in As the expression of COX-2 was not suppressed, the pine seed oil. In this study, using murine macrophage inhibitory effect of PNA on PG activity was attributed in RAW264.7 cells as a model, we examined the effect of part to substrate competition between the PNA metabolite PNA on polyunsaturated fatty acid (PUFA) metabolism, (i.e., D7,11,14–20:3) and DGLA (or ARA). prostaglandin (PG) biosynthesis and cyclooxygenase-2 (COX-2) expression. Results showed that PNA was readily Keywords Non-methylene interrupted fatty acids Á taken up, incorporated and elongated to form eicosatrienoic Sciadonic acid Á Gamma-linolenic acid Á Cyclooxygenase 2 acid (ETrA, D7,11,14–20:3) in macrophage cells. A small portion of this elongated metabolite was further elongated Abbreviations to form D9,13,16–22:3.
    [Show full text]
  • Gamma-Linolenic and Pinolenic Acids Exert Anti-Inflammatory Effects in Cultured Human Endothelial Cells Through Their Elongation Products
    Gamma-linolenic and pinolenic acids exert anti-inflammatory effects in cultured human endothelial cells through their elongation products Article Published Version Creative Commons: Attribution 4.0 (CC-BY) Open Access Baker, E. J., Valenzuela, C. A., van Dooremalen, W. T. M., Martinez-Fernandez, L., Yaqoob, P., Miles, E. A. and Calder, P. C. (2020) Gamma-linolenic and pinolenic acids exert anti- inflammatory effects in cultured human endothelial cells through their elongation products. Molecular Nutrition and Food Research, 64 (20). 2000382. ISSN 1613-4133 doi: https://doi.org/10.1002/mnfr.202000382 Available at http://centaur.reading.ac.uk/92603/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . To link to this article DOI: http://dx.doi.org/10.1002/mnfr.202000382 Publisher: Wiley All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online RESEARCH ARTICLE www.mnf-journal.com Gamma-Linolenic and Pinolenic Acids Exert Anti-Inflammatory Effects in Cultured Human Endothelial Cells Through Their Elongation Products Ella J. Baker,* Carina A. Valenzuela, Wies T.M. van Dooremalen, Leyre Martínez-Fernández, Parveen Yaqoob, Elizabeth A. Miles, and Philip C. Calder Scope: Omega-3 fatty acids (FAs) from oily fish reduce cardiovascular 1. Introduction disease. This may be partly due to modulation of endothelial cell (EC) Atherosclerosis is considered to be an inflammation.
    [Show full text]
  • FOOD TECHNOLOGY FACT SHEET Adding Value to OKLAHOMA
    FAPC-196 Robert M. Kerr Food & Agricultural Products Center FOOD TECHNOLOGY FACT SHEET Adding Value to OKLAHOMA 405-744-6071 • www.fapc.biz • [email protected] Lipid Glossary Nurhan Turgut Dunford FAPC Oil/oilseed Specialist This fact sheet covers lipid-related terminology com- Caproleic acid: Trivial name for the monounsaturated monly used in industry and the scientific literature. See fatty acid 9-decenoic acid (C10:1). Figure 1 and Table 1 for fatty acid chemical structure and naming systems, respectively. Caprylic acid: Trivial name for the fatty acid octanoic acid (C8:0). Acylglycerol: A systematic name for all types of fatty acids esterified to a glycerol molecule. Examples in- Ceramide: Trivial name for the lipid class N-acyl- clude mono, di- and triacylglycerols. sphingosines, the building block of the complex sphin- golipids. They are widely used in cosmetics. Amphiphilic: A molecule with a polar head group and one or more lipophilic carbon tails. Surfactants and Cholesterol: The most common animal sterol. It may emulsifiers are good examples for this group of com- occur in free or esterified form. Cholesterol concentra- pounds. tion in vegetable oils is very low, maximum 10-20 mg/ kg oil. Animal fats contain higher amounts of choles- Behenic acid: Trivial name for the saturated fatty acid terol, i.e. 3700-4200 mg/kg in lard, 2300-3100 mg/kg docosanoic acid (C22:0). in mutton tallow, 800-1400 mg/kg in beef, and about 300 mg of cholesterol per egg or about 5 percent of Brassica sterol: A phytosterol (plant sterol) mainly total lipids in hen eggs.
    [Show full text]
  • Sciadonic Acid Derived from Pine Nuts As a Food Component to Reduce
    www.nature.com/scientificreports OPEN Sciadonic acid derived from pine nuts as a food component to reduce plasma triglycerides by inhibiting the rat hepatic Δ9-desaturase Frédérique Pédrono 1,2*, Nathalie Boulier-Monthéan1,2, Françoise Boissel1,3, Jordane Ossemond2, Roselyne Viel4, Alain Fautrel4, Justine Marchix5 & Didier Dupont 2 Sciadonic acid (Scia) is a Δ5-olefnic fatty acid that is particularly abundant in edible pine seeds and that exhibits an unusual polymethylene-interrupted structure. Earlier studies suggested that Scia inhibited the in vitro expression and activity of the Stearoyl-CoA Desaturase 1 (SCD1), the hepatic Δ9-desaturase involved in the formation of mono-unsaturated fatty acids. To confrm this hypothesis, rats were given 10% Scia in diets balanced out with n-6 and n-3 fatty acids. In those animals receiving the Scia supplement, monoene synthesis in the liver was reduced, which was partly attributed to the inhibition of SCD1 expression. As a consequence, the presence of Scia induced a 50% decrease in triglycerides in blood plasma due to a reduced level of VLDL-secreted triglycerides from the liver. In non-fasting conditions, results showed that Scia-induced inhibition of SCD1 led to a decrease in the proportions of 16:1n-7 and 18:1n-7 in the liver without impacting on the level of 18:1n-9, suggesting that only triglycerides with neosynthesized monoenes are marked out for release. In conclusion, this in vivo study confrms that Scia highly inhibits SCD1 expression and activity. The work was performed on normo- triglyceride rats over six weeks, suggesting promising efects on hyper-triglyceridemic models.
    [Show full text]
  • View on Medical History, Physical Exam- Capsules Was Provided
    Lipids in Health and Disease BioMed Central Research Open Access The effect of Korean pine nut oil on in vitro CCK release, on appetite sensations and on gut hormones in post-menopausal overweight women Wilrike J Pasman*1, Jos Heimerikx2, Carina M Rubingh3, Robin van den Berg1,5, Marianne O'Shea2, Luisa Gambelli2, Henk FJ Hendriks1, Alexandra WC Einerhand2,5, Corey Scott2, Hiskias G Keizer2 and Louise I Mennen2,4,5 Address: 1Businessunit Biosciences, TNO Quality of Life, PO box 360, 3700 AJ Zeist, The Netherlands, 2Lipid Nutrition B.V., PO box 4, 1520 AA Wormerveer, The Netherlands, 3Businessunit Quality and Safety, TNO Quality of Life, PO box 360, 3700 AJ Zeist, The Netherlands, 4Mennen Training & Consultancy, Junoplantsoen 127, 2024 RP Haarlem, The Netherlands and 5LM currently works for Mennen training & Consultancy. RvdB and AWCE changed jobs after having contributed to this paper Email: Wilrike J Pasman* - [email protected]; Jos Heimerikx - [email protected]; Carina M Rubingh - [email protected]; Robin van den Berg - [email protected]; Marianne O'Shea - [email protected]; Luisa Gambelli - [email protected]; Henk FJ Hendriks - [email protected]; Alexandra WC Einerhand - [email protected]; Corey Scott - [email protected]; Hiskias G Keizer - [email protected]; Louise I Mennen - [email protected] * Corresponding author Published: 20 March 2008 Received: 20 December 2007 Accepted: 20 March 2008 Lipids in Health and Disease 2008, 7:10 doi:10.1186/1476-511X-7-10 This article is available from: http://www.lipidworld.com/content/7/1/10 © 2008 Pasman et al; licensee BioMed Central Ltd.
    [Show full text]
  • WO 2018/005552 Al 04 January 2018 (04.01.2018) W!P O PCT
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/005552 Al 04 January 2018 (04.01.2018) W!P O PCT (51) International Patent Classification: Published: A61K 31/517 (2006.01) C07D 401/14 (2006.01) — with international search report (Art. 21(3)) A61K 31/395 (2006.01) — before the expiration of the time limit for amending the (21) International Application Number: claims and to be republished in the event of receipt of PCT/US2017/039587 amendments (Rule 48.2(h)) (22) International Filing Date: 27 June 2017 (27.06.2017) (25) Filing Language: English (26) Publication Language: English (30) Priority Data: 62/355,273 27 June 2016 (27.06.2016) 62/471,799 15 March 20 17 (15.03.20 17) (71) Applicant: ACHILLION PHARMACEUTICALS, INC. [US/US]; 300 George Street, New Haven, CT 065 11 (US). (72) Inventors: WILES, Jason Allan; c/o Achillion Pharma ceuticals, Inc., 300 George Street, New Haven, CT 065 11 (US). PHADKE, Avinash; c/o Achillion Pharmaceuticals, Inc., 300 George Street, New Haven, CT 065 11 (US). (74) Agent: BELLOWS, Brent R. et al; Knowles Intellectu al Property Strategies, LLC, 400 Perimeter Center Terrace, Suite 200, Atlanta, GA 30346 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Unsaturated Fatty Acids Omega-3 Omega-3 Fatty Acids Omega-6
    Unsaturated Fatty Acids Omega-3 Omega-3 fatty acids Common name Lipid name Chemical name 16:3 (n-3) all-cis 7,10,13-hexadecatrienoic acid Alpha-linolenic acid (ALA) 18:3 (n-3) all-cis-9,12,15-octadecatrienoic acid Stearidonic acid (SDA) 18:4 (n-3) all-cis-6,9,12,15,-octadecatetraenoic acid Eicosatrienoic acid (ETE) 20:3 (n-3) all-cis-11,14,17-eicosatrienoic acid Eicosatetraenoic acid (ETA) 20:4 (n-3) all-cis-8,11,14,17-eicosatetraenoic acid Eicosapentaenoic acid (EPA) 20:5 (n-3) all-cis-5,8,11,14,17-eicosapentaenoic acid Docosapentaenoic acid (DPA, 22:5 (n-3) all-cis-7,10,13,16,19-docosapentaenoic acid Clupanodonic acid) Docosahexaenoic acid (DHA) 22:6 (n-3) all-cis-4,7,10,13,16,19-docosahexaenoic acid Tetracosapentaenoic acid 24:5 (n-3) all-cis-9,12,15,18,21-tetracosapentaenoic acid Tetracosahexaenoic acid (Nisinic acid) 24:6 (n-3) all-cis-6,9,12,15,18,21-tetracosahexaenoic acid Omega-6 Omega-6 fatty acids Common name Lipid name Chemical name Linoleic acid 18:2 (n-6) all-cis-9,12-octadecadienoic acid Gamma-linolenic acid (GLA) 18:3 (n-6) all-cis-6,9,12-octadecatrienoic acid Eicosadienoic acid 20:2 (n-6) all-cis-11,14-eicosadienoic acid Dihomo-gamma-linolenic acid 20:3 (n-6) all-cis-8,11,14-eicosatrienoic acid (DGLA) Arachidonic acid (AA) 20:4 (n-6) all-cis-5,8,11,14-eicosatetraenoic acid Docosadienoic acid 22:2 (n-6) all-cis-13,16-docosadienoic acid Adrenic acid 22:4 (n-6) all-cis-7,10,13,16-docosatetraenoic acid Docosapentaenoic acid (Osbond acid) 22:5 (n-6) all-cis-4,7,10,13,16-docosapentaenoic acid Omega-9 Omega-9 fatty acids, mono-
    [Show full text]