Planetary Defense at NASA Press Kit

Total Page:16

File Type:pdf, Size:1020Kb

Planetary Defense at NASA Press Kit National Aeronautics and Space Administration Planetary Defense at NASA Press Kit www.nasa.gov April 2019 Media Contacts NASA Headquarters Planetary Defense Coordination Office 300 E Street, SW Washington, DC 20546 JoAnna Wendel 202.358.1003 [email protected] Dwayne Brown 202.358.1726 [email protected] Key Organization Contacts Center for NEO Studies Paul Chodas – [email protected] Minor Planet Center Matthew Holman – [email protected] International Asteroid Warning Network James Bauer – [email protected] PLANETARY DEFENSE COORDINATION OFFICE Planetary Defense Coordination Office (PDCO) Hosted by the Planetary Science Division of the Science Mission Directorate at NASA Headquarters, Washington, DC PDCO’S ROLE • Characterizing those objects to • Provides early detection of Potentially determine their orbit trajectory, size, Hazardous Objects (PHOs)—the shape, mass, composition, rotational subset of Near-Earth Objects (NEOs), dynamics and other parameters, so both asteroids and comets, whose that experts can determine the severity orbits come within 5 million miles of the potential impact event, warn of of Earth’s orbit; and of a size large its timing and potential effects, and enough (larger than 30 to 50 meters) determine the means to mitigate the to do damage at Earth’s surface; impact; and • Tracks and characterizes PHO’s and • Planning and implementation of issues warnings of the possible effects measures to deflect or disrupt an of potential impacts; object on an impact course with Earth, • Provides timely and accurate informa- or to mitigate the effects of an impact tion on PHO’s to governments and the that cannot be prevented. Mitigation public; and measures that can be taken on Earth • Leads efforts in coordinating U.S. to protect lives and property include government planning for response evacuation of the impact area and to an actual impact threat. movement of critical infrastructure. WHAT IS PLANETARY DEFENSE? WHAT IS A NEAR-EARTH OBJECT? Planetary defense is the term used to A Near-Earth Object (NEO) is an asteroid encompass all the capabilities needed to or comet whose orbit periodically brings detect the possibility and warn of poten- it within approximately 121 million miles tial asteroid or comet impacts with Earth, (195 million kilometers) of the Sun—that’s and then either prevent them or mitigate within about 30 million miles (50 million their possible effects on Earth. Planetary kilometers), of Earth’s orbit. defense involves: • Finding and tracking near-Earth Like the planets, all asteroids and comets objects that pose of hazard of orbit the Sun, although some asteroids impacting Earth; are also in orbit about planets or even 3 PLANETARY DEFENSE COORDINATION OFFICE larger asteroids. Some of the smaller sponsored NEO surveys have provided moons of other planets may be captured 98 percent of all NEO detections. asteroids. Most asteroids are in what is called “the main belt” between Mars and In 1992, NASA began conducting Jupiter. The vast majority of near-Earth scientific workshops and research into asteroids have come from the inner part the identification, characterization, and of the main belt where, over tens of tracking of NEOs, as well as into potential millions of years, their orbits were altered mitigation strategies. NASA reported that by the gravitational influence of Jupiter NEOs with a diameter greater than 0.62 and Mars, and some by mutual collisions. miles (1 kilometer) posed the greatest hazard to life on Earth and predicted that Although the vast majority of NEOs that an organized survey could identify most enter Earth’s atmosphere are so small NEOs of this size within a decade. they disintegrate before reaching the surface, those that are larger than around In 1998, Congress directed NASA to find, 98 to 164 feet (30 to 50 meters) in size characterize, and monitor 90 percent of may survive the descent and could cause the estimated 2000 asteroids and comets widespread damage in and around their that approach the Earth that are larger impact sites. than about 1 kilometer (about 2/3-mile) in size. This goal was met in 2011. A BRIEF HISTORY OF NASA’S PLANETARY DEFENSE COORDINATION OFFICE In 2005, Congress extended that goal to NASA established the Planetary Defense include 90% of the NEOs larger than 140 Coordination Office in January 2016 to meters in size by the end of 2020. A near- coordinate planetary defense efforts by impact of an asteroid this size could across NASA, with other US agencies, devastate a state-wide area. As of and with international partners, and to November 2018, 8,382 of those NEOs administer NASA’s Near-Earth Object have been found, but this is only one Observation Program which dates back third of the estimated total population to 1998. However, NASA has been study- of 25,000. ing near Earth objects (NEOs) since the 1970s. The agency now participates as a HOW WE SEARCH FOR NEOS key member in the International Asteroid Observers find and track NEOs using Warning Network (IAWN), recommend- ground-based, wide sky survey tele- ed by the United Nations Committee scopes around the world, along with on the Peaceful Uses of Outer Space contribution from NASA’s space-based (UN-COPUOS) as the unified response NEOWISE telescope. The basic method for all space-capable nations to address of finding NEOs is to look for objects the NEO impact hazard. To date, NASA- moving against the background of 4 PLANETARY DEFENSE COORDINATION OFFICE relatively fixed stars. Observers provide MINOR PLANET CENTER their data to a global database main- The Minor Planet Center (MPC) is the tained by the Minor Planet Center (MPC), internationally recognized public archive which is sanctioned by the International of small-body orbit data submitted by Astronomical Union for world-wide col- observers from around the world. The lection of observations and tracking of MPC notifies observers worldwide about asteroids and comets, and funded by NEO discoveries so that timely follow-up NASA’s NEO Observations Program. observations can be collected for identi- The Center of Near-Earth Object Studies fication and orbit computation. The MPC (CNEOS) uses the position data reported is sanctioned by the International Astro- to the MPC to calculate high precision nomical Union and supported by NASA’s orbits decades into the future and are NEO Observations Program as a tasked with warning PDCO of any subnode of NASA’s Planetary Data potential impacts. System Small Bodies Node. https://www.minorplanetcenter.net/iau/mpc.html Key Organizations Involved with PDCO CENTER FOR NEAR-EARTH OBJECTS IAWN—INTERNATIONAL ASTEROID STUDIES (CNEOS) WARNING NETWORK The Center for Near-Earth Object Studies The IAWN was established (in 2013) (CNEOS) computes high-precision orbit to foster an international group of paths for NEOs from positions reported astronomy and space institutions involved to the Minor Planet Center. CNEOS in exchange of data and information for computes orbits for new asteroid discov- detecting, tracking, and characterizing eries and performs long-term analyses NEOs. The IAWN is tasked with develop- of possible future positions of hazardous ing a strategy using well-defined asteroids relative to Earth to determine communication plans and protocols to and warn of any impact hazard. CNEOS assist Governments in the analysis of computes impact time and location in the asteroid impact consequences and in event of a predicted impact threat. The the planning of mitigation responses. Jet Propulsion Laboratory hosts CNEOS http://iawn.net/ for NASA’s NEO Observations Program, and its website makes all orbit computation information public. https://cneos.jpl.nasa.gov/ 5 PLANETARY DEFENSE COORDINATION OFFICE NEO Population—140 Meters and Larger > = 1 km > = 1 km Not Found Found 0.2% 3.7% 0.30 – 1 km 140 – 300 m Not Found Not Found 8.0% 57.2% 0.30 – 1 km Found 14.3% 140 – 300 m Found 16.6% NEO Survey Status Jan 2019 PlanetaryPlanetary Defense Defense Coordination Coordination Of Officefice Science Mission Directorate Planetary Science Division Center for NEO Studies Planetary Science Officer Program Administrator (Jet Propulsion Laboratory) Lindley Johnson LaJuan Moore Small Bodies Node (University of Maryland) Minor Planet Center (Smithsonian Astrophysical Observatory) Public Communications Professional/Public Outreach JoAnna Wendel Doris Daou Linda Billings Patricia Talbert NEO Observations Program Detection & Characterization Interagency Partnerships International Partnerships Kelly Fast, Program Manager Victoria Andrews, PE Rob Landis, PE Mike Kelley, Lead PS International Asteroid Warning Network (IAWN) Space Mission Planning Advisory Group (SMPAG) PE=Program Executive PS=Program Scientist Flight Projects Double Asteroid Redirection Test (DART) Gordon Johnston, PE Tom Statler, PS 6 PLANETARY DEFENSE COORDINATION OFFICE Fast Facts 7 .
Recommended publications
  • Guide to the Extended Versions of MPC Data Files Based on the MPCORB Format
    Guide to the Extended Versions of MPC Data Files Based on the MPCORB Format Last updated: 2016/04/19 by J.L. Galache Introduction The Minor Planet Center (MPC) has been providing the orbits of minor planets in the form of a file, MPCORB.DAT, since the mid '90s (1990s, not 1890s). Back then there were only a few thousand known asteroids, compared to the several hundred thousand of today, so a flat text file was the appropriate way to circulate these data. It was also a time when most orbit computations were programmed in Fortran, which ingested data no other way. MPCORB.DAT has therefore always been, and continues to be, a fixed-width file (see Table 1 for the current format description1). In fact, all original data files available on the MPC website are flat text files (even the orbits files provided for planetarium-type/sky simulation software packages are simply text files of varying format2). In the early years of the 2010s, possibly due to the rising popularity of the scripting language Python amongst astronomers, and an increased interest from developers wanting to write asteroid-themed tools, requests were received to provide data in other, easier to parse formats, e.g., JSON, CSV, SQL, etc. At the same time, astronomers and developers alike wanted more information than was currently been provided in MPCORB.DAT; information that did exist on the MPC website in other, often hard to find, files. Here was an opportunity to add some new data to existing files, while also making them available in other formats.
    [Show full text]
  • 1 Resonant Kuiper Belt Objects
    Resonant Kuiper Belt Objects - a Review Renu Malhotra Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ, USA Email: [email protected] Abstract Our understanding of the history of the solar system has undergone a revolution in recent years, owing to new theoretical insights into the origin of Pluto and the discovery of the Kuiper belt and its rich dynamical structure. The emerging picture of dramatic orbital migration of the planets driven by interaction with the primordial Kuiper belt is thought to have produced the final solar system architecture that we live in today. This paper gives a brief summary of this new view of our solar system's history, and reviews the astronomical evidence in the resonant populations of the Kuiper belt. Introduction Lying at the edge of the visible solar system, observational confirmation of the existence of the Kuiper belt came approximately a quarter-century ago with the discovery of the distant minor planet (15760) Albion (formerly 1992 QB1, Jewitt & Luu 1993). With the clarity of hindsight, we now recognize that Pluto was the first discovered member of the Kuiper belt. The current census of the Kuiper belt includes more than 2000 minor planets at heliocentric distances between ~30 au and ~50 au. Their orbital distribution reveals a rich dynamical structure shaped by the gravitational perturbations of the giant planets, particularly Neptune. Theoretical analysis of these structures has revealed a remarkable dynamic history of the solar system. The story is as follows (see Fernandez & Ip 1984, Malhotra 1993, Malhotra 1995, Fernandez & Ip 1996, and many subsequent works).
    [Show full text]
  • The Orbital Distribution of Near-Earth Objects Inside Earth’S Orbit
    Icarus 217 (2012) 355–366 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The orbital distribution of Near-Earth Objects inside Earth’s orbit ⇑ Sarah Greenstreet a, , Henry Ngo a,b, Brett Gladman a a Department of Physics & Astronomy, 6224 Agricultural Road, University of British Columbia, Vancouver, British Columbia, Canada b Department of Physics, Engineering Physics, and Astronomy, 99 University Avenue, Queen’s University, Kingston, Ontario, Canada article info abstract Article history: Canada’s Near-Earth Object Surveillance Satellite (NEOSSat), set to launch in early 2012, will search for Received 17 August 2011 and track Near-Earth Objects (NEOs), tuning its search to best detect objects with a < 1.0 AU. In order Revised 8 November 2011 to construct an optimal pointing strategy for NEOSSat, we needed more detailed information in the Accepted 9 November 2011 a < 1.0 AU region than the best current model (Bottke, W.F., Morbidelli, A., Jedicke, R., Petit, J.M., Levison, Available online 28 November 2011 H.F., Michel, P., Metcalfe, T.S. [2002]. Icarus 156, 399–433) provides. We present here the NEOSSat-1.0 NEO orbital distribution model with larger statistics that permit finer resolution and less uncertainty, Keywords: especially in the a < 1.0 AU region. We find that Amors = 30.1 ± 0.8%, Apollos = 63.3 ± 0.4%, Atens = Near-Earth Objects 5.0 ± 0.3%, Atiras (0.718 < Q < 0.983 AU) = 1.38 ± 0.04%, and Vatiras (0.307 < Q < 0.718 AU) = 0.22 ± 0.03% Celestial mechanics Impact processes of the steady-state NEO population.
    [Show full text]
  • The Minor Planets
    The Minor Planets Swinburne Astronomy Online 3D PDF c SAO 2012 The Minor Planets c Swinburne Astronomy Online 2012 1 Description 1.1 Minor planets Our view of the Solar System has changed dramatically over the past 15 years with the discovery of new classes of small bodies. Mi- nor planets are another name for asteroids, or celestial bodies that orbit the Sun that are not otherwise classed as planets or comets. Generally, minor planets are relatively small rocky bodies, while comets are icy bodies that become active when their orbits carry them close to the Sun. (An \active" comet exhibits a large coma and a long tail.) The minor planets can be classified by their orbital characteristics. In this 3D PDF, we have included 5 classes of minor planets: (1) the Near Earth Asteroids (NEAs), (2) the main belt asteroids, (3) the Trojan asteroids of Jupiter, (4) the Centaurs, and (5) the Trans-Neptunian Objects (TNOs). The dataset used comes from the Minor Planets Centre. As of 19 November 2012, there were 9,346 NEAs (comprising 732 Atens, 4686 Apollos and 3928 Amors); 581,613 main belt asteroids; 5,407 jovian Trojans; 330 Centaurs; and 1,150 TNOs. (Note than in this 3D PDF, we have only included 11,678 main belt asteroids.) • The Near Earth Asteroids have perihelion distances of less than 1.3 AU, and include the following sub-classes: { Atens have aphelion distances greater than 0.983 AU, and semi-major axes less than 1 AU { Apollos have perihelion distances less than 1.017 AU, and semi-major axes greater than 1 AU { Amors have perihelion distances between 1.017 and 1.3 AU and semi-major axes greater than 1 AU • The main belt asteroids reside between the orbits of Mars and Jupiter, with most of the asteroids orbiting between about 2.1 AU and 3.3 AU.
    [Show full text]
  • Col-OSSOS: Colors of the Interstellar Planetesimal 1I/Oumuamua
    DRAFT VERSION DECEMBER 7, 2017 Typeset using LATEX twocolumn style in AASTeX61 COL-OSSOS: COLORS OF THE INTERSTELLAR PLANETESIMAL 1I/‘OUMUAMUA MICHELE T. BANNISTER,1 MEGAN E. SCHWAMB,2 WESLEY C. FRASER,1 MICHAEL MARSSET,1 ALAN FITZSIMMONS,1 SUSAN D. BENECCHI,3 PEDRO LACERDA,1 ROSEMARY E. PIKE,4 J. J. KAVELAARS,5, 6 ADAM B. SMITH,2 SUNNY O. STEWART,2 SHIANG-YU WANG,7 AND MATTHEW J. LEHNER7, 8, 9 1Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, United Kingdom 2Gemini Observatory, Northern Operations Center, 670 North A’ohoku Place, Hilo, HI 96720, USA 3Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719, USA 4Institute for Astronomy and Astrophysics, Academia Sinica; 11F AS/NTU, National Taiwan University, 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan 5Herzberg Astronomy and Astrophysics Research Centre, National Research Council of Canada, 5071 West Saanich Rd, Victoria, British Columbia V9E 2E7, Canada 6Department of Physics and Astronomy, University of Victoria, Elliott Building, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada 7Institute of Astronomy and Astrophysics, Academia Sinica; 11F of AS/NTU Astronomy-Mathematics Building, Nr. 1 Roosevelt Rd., Sec. 4, Taipei 10617, Taiwan 8Department of Physics and Astronomy, University of Pennsylvania, 209 S. 33rd St., Philadelphia, PA 19104, USA 9Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA (Received 2017 November 16; Revised 2017 December 4; Accepted 2017 December 6) Submitted to ApJL ABSTRACT The recent discovery by Pan-STARRS1 of 1I/2017 U1 (‘Oumuamua), on an unbound and hyperbolic orbit, offers a rare oppor- tunity to explore the planetary formation processes of other stars, and the effect of the interstellar environment on a planetesimal surface.
    [Show full text]
  • Why Pluto Is Not a Planet Anymore Or How Astronomical Objects Get Named
    3 Why Pluto Is Not a Planet Anymore or How Astronomical Objects Get Named Sethanne Howard USNO retired Abstract Everywhere I go people ask me why Pluto was kicked out of the Solar System. Poor Pluto, 76 years a planet and then summarily dismissed. The answer is not too complicated. It starts with the question how are astronomical objects named or classified; asks who is responsible for this; and ends with international treaties. Ultimately we learn that it makes sense to demote Pluto. Catalogs and Names WHO IS RESPONSIBLE for naming and classifying astronomical objects? The answer varies slightly with the object, and history plays an important part. Let us start with the stars. Most of the bright stars visible to the naked eye were named centuries ago. They generally have kept their old- fashioned names. Betelgeuse is just such an example. It is the eighth brightest star in the northern sky. The star’s name is thought to be derived ,”Yad al-Jauzā' meaning “the Hand of al-Jauzā يد الجوزاء from the Arabic i.e., Orion, with mistransliteration into Medieval Latin leading to the first character y being misread as a b. Betelgeuse is its historical name. The star is also known by its Bayer designation − ∝ Orionis. A Bayeri designation is a stellar designation in which a specific star is identified by a Greek letter followed by the genitive form of its parent constellation’s Latin name. The original list of Bayer designations contained 1,564 stars. The Bayer designation typically assigns the letter alpha to the brightest star in the constellation and moves through the Greek alphabet, with each letter representing the next fainter star.
    [Show full text]
  • Ice Ontnos: Focus on 136108 Haumea
    Ice onTNOs: Focus on 136108 Haumea C. Dumas Collaborators: A. Alvarez, A. Barucci, C. deBergh, B. Carry, A. Guilbert, D. Hestroffer, P. Lacerda, F. deMeo, F. Merlin, C. Snodgrass, P. Vernazza, … Haumea Pluto (dwarf planets) DistribuTon of TNOs Largest TNOs Icy bodies in the OPSII context • Reservoir of volales in the solar system (H2O, N2, CH4, CO, CO2, C2H6, NH3OH, etc) • Small bodies populaon more hydrated than originally pictured – Main-belt comets (Hsieh and JewiZ 2006) – Themis asteroids family (Campins et al. 2010, Rivkin and Emery 2010) • Transport of water to the inner terrestrial planets (e.g. talk by Paul Hartogh) Paranal Observatory 6 SINFONI at UT4 7 SINFONI + NACO at UT4 8 SINFONI = MACAO + SPIFFI (SINFONI=Spectrograph for INtegral Field Observations in the Near Infrared) • AO SYSTEM: MACAO (Multi-Application Curvature Adaptive Optics): – Similar to UTs AO system for VLTI – 60 elements curvature sensing bimorph mirror – NGS or LGS – Developed by ESO • NEAR-IR SPECTRO: SPIFFI (SPectrometer for Infrared Faint Field Imaging): – 3-D spectrograph, 32 image slices, 1-2.5µm – Developed by MPE:Max Planck Institute for Extraterrestrial Physics + NOVA: Netherlands Research School for Astronomy SINFONI - Main characteristics • Location UT4 Cassegrain • Wavelength range 1-2.5µm • Detector 2048 x 2048 HAWAII array • Gratings J,H,K,H+K • Spectral resolution 1500 (H+K-filter) to 4000 (K-band) (outside OH lines) • Limiting magnitude (0.1”/spaxel) K~18.2, H+K~19.2 in hr, SNR~10 • FoV sampling 32 slices • Spatial resolution 0.25”/slice (no-AO), 0.1”(AO), 0.025” (AO) • Resulting FoV 8”x8”, 3”x3”, 0.8”x0.8” • Modes noAO, NGS-AO, LGS-AO SINFONI - IFS Principles SINFONI - IFS Principles (Cont’d) SINFONI - products Reconstructed image PSF spectrum H+K TNOs spectroscopy Orcus (Carry et al.
    [Show full text]
  • Colours of Minor Bodies in the Outer Solar System II - a Statistical Analysis, Revisited
    Astronomy & Astrophysics manuscript no. MBOSS2 c ESO 2012 April 26, 2012 Colours of Minor Bodies in the Outer Solar System II - A Statistical Analysis, Revisited O. R. Hainaut1, H. Boehnhardt2, and S. Protopapa3 1 European Southern Observatory (ESO), Karl Schwarzschild Straße, 85 748 Garching bei M¨unchen, Germany e-mail: [email protected] 2 Max-Planck-Institut f¨ur Sonnensystemforschung, Max-Planck Straße 2, 37 191 Katlenburg- Lindau, Germany 3 Department of Astronomy, University of Maryland, College Park, MD 20 742-2421, USA Received —; accepted — ABSTRACT We present an update of the visible and near-infrared colour database of Minor Bodies in the outer Solar System (MBOSSes), now including over 2000 measurement epochs of 555 objects, extracted from 100 articles. The list is fairly complete as of December 2011. The database is now large enough that dataset with a high dispersion can be safely identified and rejected from the analysis. The method used is safe for individual outliers. Most of the rejected papers were from the early days of MBOSS photometry. The individual measurements were combined so not to include possible rotational artefacts. The spectral gradient over the visible range is derived from the colours, as well as the R absolute magnitude M(1, 1). The average colours, absolute magnitude, spectral gradient are listed for each object, as well as their physico-dynamical classes using a classification adapted from Gladman et al., 2008. Colour-colour diagrams, histograms and various other plots are presented to illustrate and in- vestigate class characteristics and trends with other parameters, whose significance are evaluated using standard statistical tests.
    [Show full text]
  • Nomenclature in the Outer Solar System 43
    Gladman et al.: Nomenclature in the Outer Solar System 43 Nomenclature in the Outer Solar System Brett Gladman University of British Columbia Brian G. Marsden Harvard-Smithsonian Center for Astrophysics Christa VanLaerhoven University of British Columbia We define a nomenclature for the dynamical classification of objects in the outer solar sys- tem, mostly targeted at the Kuiper belt. We classify all 584 reasonable-quality orbits, as of May 2006. Our nomenclature uses moderate (10 m.y.) numerical integrations to help classify the current dynamical state of Kuiper belt objects as resonant or nonresonant, with the latter class then being subdivided according to stability and orbital parameters. The classification scheme has shown that a large fraction of objects in the “scattered disk” are actually resonant, many in previously unrecognized high-order resonances. 1. INTRODUCTION 1.2. Classification Outline Dynamical nomenclature in the outer solar system is For small-a comets, historical divisions are rather arbi- complicated by the reality that we are dealing with popu- trary (e.g., based on orbital period), although recent classi- lations of objects that may have orbital stability times that fications take relative stability into account by using the Tis- are either moderately short (millions of years or less), ap- serand parameter (Levison, 1996) to separate the rapidly preciable fractions of the age of the solar system, or ex- depleted Jupiter-family comets (JFCs) from the longer-lived tremely stable (longer than the age of the solar
    [Show full text]
  • The Kuiper Belt and the Primordial Evolution of the Solar System
    Morbidelli and Brown: Kuiper Belt and Evolution of Solar System 175 The Kuiper Belt and the Primordial Evolution of the Solar System A. Morbidelli Observatoire de la Côte d’Azur M. E. Brown California Institute of Technology We discuss the structure of the Kuiper belt as it can be inferred from the first decade of observations. In particular, we focus on its most intriguing properties — the mass deficit, the inclination distribution, and the apparent existence of an outer edge and a correlation among inclinations, colors, and sizes — which clearly show that the belt has lost the pristine structure of a dynamically cold protoplanetary disk. Understanding how the Kuiper belt acquired its present structure will provide insight into the formation of the outer planetary system and its early evolution. We critically review the scenarios that have been proposed so far for the pri- mordial sculpting of the belt. None of them can explain in a single model all the observed properties; the real history of the Kuiper belt probably requires a combination of some of the proposed mechanisms. 1. INTRODUCTION A primary goal of this chapter is to present the orbital structure of the Kuiper belt as it stands based on the current When Edgeworth and Kuiper conjectured the existence observations. We start in section 2 by presenting the various of a belt of small bodies beyond Neptune — now known subclasses that constitute the transneptunian population. as the Kuiper belt — they certainly were imagining a disk Then in section 3 we describe some striking properties of of planetesimals that preserved the pristine conditions of the the population, such as its mass deficit, inclination excita- protoplanetary disk.
    [Show full text]
  • 11000 Scientists Around the World Have the Final Say on What's a Planet
    International Astronomical Union (IAU) members vote on a new planet definition during a meeting in Prague Aug. 24, 2006. The vote redefined Pluto as a dwarf planet. MICHAL CIZEK/AFP/GETTY IMAGES DEFINITION: PLANET 11,000 scientists around the world have the final say on what’s a planet — or not By Mary Helen Berg a planet is a planet or just an orbiting ice of planetary scientists, academics and ball. Right now, the worlds that make historians support research, confirm HE NUMBER OF PLANETS IN OUR the cut are Mercury, Venus, Earth, Mars, celestial discoveries, document and solar system is … well, it depends Jupiter, Saturn, Uranus and Neptune. preserve data and even track potentially on who you ask. Pluto fans, sporting The IAU is “responsible for managing the dangerous asteroids. T-shirts that read “Never Forget,” astronomical world,” said Gareth Williams, Tstill say there are nine. Meanwhile, some associate director of the NASA-funded IAU PLUTO OUT astronomers say the tally should be 13. But Minor Planet Center (MPC). “They define Most of these working groups fly under the arbiter on all things astronomical, the everything that astronomers need to talk the radar. But in 2006, one committee International Astronomical Union (IAU), about objects in a consistent way. So, if I’m found itself under global scrutiny when, for recognizes only eight planets. talking about an object at a certain point the first time, the astronomy community As the world’s largest professional in the sky, some other astronomer knows demanded an official definition of “planet.” organization for astronomers, the IAU exactly what I am talking about.” The seven-member Planet Definition represents 11,000 scientists from 95 In other words, the IAU controls cosmic countries and has the final say on whether chaos on Earth.
    [Show full text]
  • Ceres and Pluto: Dwarf Planets As a New Way of Thinking About an Old Solar System
    Ceres and Pluto: Dwarf Planets as a New Way of Thinking about an Old Solar System TEACHER GUIDE BACKGROUND The decision by the International Astronomical Union (IAU) in 2006 to define the terms “planet” and “dwarf planet” has caught the attention of the public and students from grade school to graduate school. The IAU’s decision has not changed the structure of the solar system; it has merely presented a different way of classifying the bodies that make it up. Planets are the Greek word for “wanderers” that were known as lights that moved in the sky. This middle school activity, developed for NASA’s Dawn mission, utilizes a researched-based instructional strategy called direct vocabulary instruction to help students understand the new definitions of planet and dwarf planet. Many of us have grown up with an understanding that our solar system is comprised of remnants from its early formation 4.5 billion years ago, primarily: bodies such as the Sun, planets, asteroids and comets; gas and dust, as well as a large volume of space. Many school children have learned the names and locations of the planets relative to the Sun using a mnemonic such as My Very Exceptional Mother Just Sat Upon Nine Porcupines (Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto). The last of these bodies to be discovered, Pluto, has recently been reclassified as a dwarf planet. Pluto’s reduced status has even resulted in a new term as we enter 2007: someone or something has been “Plutoed” if that person or thing has been downsized in its prominence.
    [Show full text]