AGN-Selected Clusters As Revealed by Weak Lensing 3

Total Page:16

File Type:pdf, Size:1020Kb

AGN-Selected Clusters As Revealed by Weak Lensing 3 Mon. Not. R. Astron. Soc. 000, 000–000 (2002) Printed 28 October 2018 (MN LATEX style file v2.2) AGN-selected clusters as revealed by weak lensing Margrethe Wold1,2, Mark Lacy2, H˚akon Dahle3, Per B. Lilje4, Susan E. Ridgway5 1Stockholm Observatory, SCFAB, Roslagstullsbacken 21, SE-106 91 Stockholm, Sweden 2SIRTF Science Center, Caltech, MS 220-6, 1200 California Bl., Pasadena, CA 91125, U.S.A. 3NORDITA, Blegdamsvej 17, DK-2100 Copenhagen, Denmark 4Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway 5Department of Physics & Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686, U.S.A. ABSTRACT As a pilot study to investigate the distribution of matter in the fields of powerful AGN, we present weak lensing observations of deep fields centered on the radio-quiet quasar E1821+643, the radio galaxy 3C 295, and the two radio-loud quasars, 3C 334 and 3C 254. The host clusters of E1821+643 and 3C 295 are comfortably detected via their weak lensing signal, and we report the detection of a cluster-sized mass concentration in the field of the z = 0.734 quasar 3C 254. The data for the 3C 334 field are so far inconclusive. We find that the clusters are massive and have smooth mass distributions, although one shows some evidence of past merger activity. The mass-to-light ratios are found to be moderately high. We discuss the results in light of the cooling flow and the merger/interaction scenarios for triggering and fuelling AGN in clusters, but find that the data do not point unambiguously to neither of the two. Instead, we speculate that sub-cluster mergers may be responsible for generating close encounters or mergers of galaxies with the central cluster member, which could trigger the AGN. Key words: galaxies:clusters – galaxies:active – galaxies: interactions – clus- ters:gravitational lensing 1 INTRODUCTION merger/interaction scenario when they made multi-object arXiv:astro-ph/0205336v1 20 May 2002 spectroscopy of galaxies associated with optically luminous The causes of the dramatic cosmic evolution of AGN (e.g. quasars. They found that the richest quasar host clusters Dunlop & Peacock 1990; Hartwick & Schade 1990) remain have abnormally low velocity dispersions compared to those unclear, we have little knowledge of how and why AGN form, of clusters in general with similar optical richness. This is how quasar activity is triggered and sustained in a galaxy, consistent with the idea that galaxy-galaxy interactions are and what extinguishes the activity. The findings that AGN related to the quasar phenomenon, (e.g. Hutchings, Cramp- are often associated with other galaxies is believed to in- ton & Campbell 1984), since in dynamically young clusters dicate that interactions between galaxies may play a role, where the galaxies have low velocities, the encounters be- since interactions are more likely to occur in a dense en- tween galaxies will be disruptive and perhaps trigger or fuel vironment. Host galaxies and their close companions have quasar activity in one of the interacting galaxies. been found to display disturbed morphology (e.g. Bahcall et al. 1997; Canalizo & Stockton 2001), also taken as a sign Further support for this was found by Yee & Green that interactions have taken place. Even in cases where com- (1987) and Ellingson et al. (1991b) in their studies of quasar panion galaxies appear undisturbed in the optical, radio im- environments. Optically luminous quasars were found more & ages taken at redshifted 21cm (of nearby AGN) show long frequently in rich environments at z 0.6 than at lower bridges or tidal tails of HI gas connecting the AGN with a redshifts, suggesting that by z ∼ 0.3–0.4, the quasars in rich close neighbour (Lim & Ho 1999). clusters have faded. Since the time elapsed between z ∼ 0.4 and z ∼ 0.6 corresponds to the dynamical time scales of clus- These observations have raised the question of the ex- ter cores, they proposed that dynamical changes in the clus- istence and the nature of a physical link between the AGN ter environments were responsible for the fading of quasars, and its environment. Two very different scenarios for this perhaps as a result of lack of gaseous fuel after the clusters link have been suggested, the merger/interaction and the virialize. Accordingly, highly luminous AGN should there- cooling flow scenario. fore not exist in rich clusters at low redshifts, but there are Ellingson, Green & Yee (1991a) found evidence for the several examples which contradict this, demonstrating that c 2002 RAS 2 Wold et al. the requirement of non-virialized clusters is not sufficient. methods. The weak lensing technique allows us to probe the One example is Cygnus A, a powerful FRII radio galaxy in distribution of total mass (dark + luminous) in the AGN a rich cluster at z = 0.056. Two other examples, which we fields, and the mass distributions can be used to test the study in this paper, are 3C 295 and E1821+643. 3C 295 is merger/interaction and the cooling flow scenarios. The two a powerful FRII radio galaxy in a cluster at z = 0.46, and scenarios make very different predictions about the dynami- E1821+643 is an optically luminous quasar at z = 0.297 cal state of AGN host clusters, and by investigating the clus- situated in a very rich cluster. ter dynamics, it may be possible to find which, if any, of these The cooling flow scenario has been discussed by e.g. two mechanisms are responsible for the AGN–environment Fabian et al. (1986), Fabian & Crawford (1990) and Bremer, link. Fabian & Crawford (1997). In this picture, cooling flows in sub-clusters at earlier epochs provide fuel for the AGN, but A cooling flow is expected to be associated with a single as sub-clusters merge toward the present epoch, the cool- deep potential well in an evolved, virialized cluster (Edge et ing flows are disrupted and the quasar activity switched off. al. 1992), and in this case we expect a strong weak lensing Alternatively, the quasar may switch off when the cooling signal and a mass distribution characterized by only a single flow gas is exhausted (Fabian & Crawford 1990). Several peak. In contrast, if the AGN activity is related to galaxy observations have been made of extended emission-line gas interactions, these will be much more disruptive if the en- around powerful quasars which seem to support the cooling counter velocities are relatively low and comparable to the flow model (e.g. Crawford & Fabian 1989; Forbes et al. 1990; internal velocity dispersions of the galaxies involved. Conse- Bremer et al. 1992). quently, a cluster that is still forming will be preferred, as However, it is not established yet whether extended in such a cluster there is an increased probability for low- emission line gas indicates the presence of a cooling flow. velocity encounters. A dynamically young cluster is expected For instance, the emission lines could be produced by ra- to have an irregular mass distribution, possibly with several dio source shocks instead of gas cooling out of the flow (e.g. sub-clumps (Schindler 2001). Tadhunter et al. 2000). The standard cooling flow model Our method of cluster selection is based on the detec- (Fabian 1994 and references therein) has received some crit- tion of weak gravitational shear and the presence of an AGN. XMM icism lately since observations of cooling flow clusters This is different from the usual methods of detecting clus- do not show emission lines at temperatures below 1 keV as ters, by optical richness or X-ray luminosity. Whereas op- predicted (Peterson et al. 2001; Tamura et al. 2001; Kaastra tical and X-ray cluster surveys are biased toward the most et al. 2001). This suggests that the cooling flow model may baryon-rich systems, clusters selected by their weak shear need to be re-evaluated, and in many cases mass deposi- signal are biased toward the most massive systems in terms tion rates may turn out to be lower than originally thought. of dark+luminous mass. If there is a large range in the Heating by AGN has been proposed as a possible cause of baryonic-to-dark matter ratio in clusters, clusters with high Chandra the apparent lack of cold gas, but new data seem mass-to-light (hereafter M/L) ratios will have been missed to indicate that the coolest gas is close to the radio lobes, in optical and X-ray surveys. Although we present a case- contrary to what is expected if there is heating by the AGN by-case study here, it is nevertheless interesting to compare (Fabian 2001). the masses and the M/L ratios of the AGN host clusters to If cooling flows were the chief mechanism for providing those of clusters detected on the basis of optical richness or fuel to the most powerful AGN in clusters, we should ob- X-ray luminosity. serve more rich clusters with central, powerful AGN than we do. In fact, most rich AGN host clusters do not contain The outline of the paper is as follows. In Section 2 we anything more powerful than an FRI source (like M87 in the describe the selection of the targets and review some of their Virgo cluster). In a sample of 260 rich-cluster radio galaxies properties. Section 3 describes the observations and the data studied by Ledlow, Owen & Eilek (2002), there are almost reduction. Before the weak lensing analysis is performed, we no FRII radio galaxies with luminosities at 1.4 GHz greater investigate the colour-magnitude diagrams of the clusters than 1025.5 W Hz−1.
Recommended publications
  • Jet-Induced Star Formation in 3C 285 and Minkowski's Object⋆
    A&A 574, A34 (2015) Astronomy DOI: 10.1051/0004-6361/201424932 & c ESO 2015 Astrophysics Jet-induced star formation in 3C 285 and Minkowski’s Object? Q. Salomé, P. Salomé, and F. Combes LERMA, Observatoire de Paris, CNRS UMR 8112, 61 avenue de l’Observatoire, 75014 Paris, France e-mail: [email protected] Received 5 September 2014 / Accepted 6 November 2014 ABSTRACT How efficiently star formation proceeds in galaxies is still an open question. Recent studies suggest that active galactic nucleus (AGN) can regulate the gas accretion and thus slow down star formation (negative feedback). However, evidence of AGN positive feedback has also been observed in a few radio galaxies (e.g. Centaurus A, Minkowski’s Object, 3C 285, and the higher redshift 4C 41.17). Here we present CO observations of 3C 285 and Minkowski’s Object, which are examples of jet-induced star formation. A spot (named 3C 285/09.6 in the present paper) aligned with the 3C 285 radio jet at a projected distance of ∼70 kpc from the galaxy centre shows star formation that is detected in optical emission. Minkowski’s Object is located along the jet of NGC 541 and also shows star formation. Knowing the distribution of molecular gas along the jets is a way to study the physical processes at play in the AGN interaction with the intergalactic medium. We observed CO lines in 3C 285, NGC 541, 3C 285/09.6, and Minkowski’s Object with the IRAM 30 m telescope. In the central galaxies, the spectra present a double-horn profile, typical of a rotation pattern, from which we are able to estimate the molecular gas density profile of the galaxy.
    [Show full text]
  • The Faint X-Ray Source Population Near 3C 295 V
    Outskirts of Galaxy Clusters: Intense Life in the Suburbs Proceedings IAU Colloquium No. 195, 2004 c 2004 International Astronomical Union A. Diaferio, ed. DOI: 10.1017/S1743921304000109 The faint X-ray source population near 3C 295 V. D’Elia1,F.Fiore,M.Elvis,M.Cappi,S.Mathur,P.Mazzotta, E. Falco and F. Cocchia 1INAF - Osservatorio Astronomico di Roma - Via di Frascati, 33 I-00040 Monteporzio Catone (Rome), Italy email: [email protected] Abstract. We present a statistical analysis of the Chandra observation of the source field around the 3C 295 galaxy cluster (z =0.46). Three different methods of analysis, namely a chip by chip LogN-LogS, a two-dimentional Kolmogorov-Smirnov (KS) test, and the angular correlation function (ACF) show a strong overdensity of sources in the North-East of the field, that may indicate a filament of the large scale structure of the universe towards 3C 295. 1. Introduction N-body and hydrodynamical simulations show that high redshift clusters of galaxies lie at the nexus of several filaments of galaxies (see e.g. Peacock 1999). Such filaments map out the “cosmic web” of voids and filaments of the large scale structure of the universe. Thus, rich clusters represent good indicators of regions of sky where several filaments converge. The filaments themselves could be mapped out by Active Galactic Nuclei (AGNs), assuming that AGNs trace galaxies. Cappi et al. (2001) studied the distribution of the X-ray sources around 3C 295 (z = 0.46). The cluster was observed with the ACIS-S CCD array for a short exposure time (18 ks).
    [Show full text]
  • 1949–1999 the Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics
    P1: FHN/fkr P2: FHN/fgm QC: FHN/anil T1: FHN September 9, 1999 19:34 Annual Reviews AR088-11 Annu. Rev. Astron. Astrophys. 1999. 37:445–86 Copyright c 1999 by Annual Reviews. All rights reserved THE FIRST 50 YEARS AT PALOMAR: 1949–1999 The Early Years of Stellar Evolution, Cosmology, and High-Energy Astrophysics Allan Sandage The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara Street, Pasadena, CA 91101 Key Words stellar evolution, observational cosmology, radio astronomy, high energy astrophysics PROLOGUE In 1999 we celebrate the 50th anniversary of the initial bringing into operation of the Palomar 200-inch Hale telescope. When this telescope was dedicated, it opened up a much larger and clearer window on the universe than any telescope that had gone before. Because the Hale telescope has played such an important role in twentieth century astrophysics, we decided to invite one or two of the astronomers most familiar with what has been achieved at Palomar to give a scientific commentary on the work that has been done there in the first fifty years. The first article of this kind which follows is by Allan Sandage, who has been an active member of the staff of what was originally the Mount Wilson and Palomar Observatories, and later the Carnegie Observatories for the whole of these fifty years. The article is devoted to the topics which covered the original goals for the Palomar telescope, namely observational cosmology and the study of galaxies, together with discoveries that were not anticipated, but were first made at Palomar and which played a leading role in the development of high energy astrophysics.
    [Show full text]
  • Observer's Handbook 1967
    THE OBSERVER’S HANDBOOK 1967 Fifty-ninth Year of Publication THE ROYAL ASTRONOMICAL SOCIETY OF CANADA Price One Dollar THE ROYAL ASTRONOMICAL SOCIETY OF CANADA Incorporated 1890 — Royal Charter 1903 The National Office of the Royal Astronomical Society of Canada is located at 252 College Street, Toronto 2B, Ontario. The business office of the Society, reading rooms and astronomical library, are housed here, as well as a large room for the accommodation of telescope making groups. Membership in the Society is open to anyone interested in astronomy. Applicants may affiliate with one of the Society’s seventeen centres across Canada, or may join the National Society direct. Centres of the Society are established in St. John’s, Halifax, Quebec, Montreal, Ottawa, Kingston, Hamilton, Niagara Falls, London, Windsor, Winnipeg, Edmonton, Calgary, Vancouver, Victoria, and Toronto. Addresses of the Centres’ secretaries may be obtained from the National Office. Publications of the Society are free to members, and include the J o u r n a l (6 issues per year) and the O b s e r v e r ’s H a n d b o o k (published annually in November). Annual fees of $7.50 are payable October 1 and include the publi­ cations for the following year. Requests for additional information regarding the Society or its publications may be sent to 252 College Street, Toronto 2B, Ontario. VISITING HOURS AT SOME CANADIAN OBSERVATORIES David Dunlap Observatory, Richmond Hill, Ont. Wednesday afternoons, 2:00-3:00 p.m. Saturday evenings, April through October (by reservation). Dominion Astrophysical Observatory, Victoria, B.C.
    [Show full text]
  • Deep Radio Observations of 3C 324 and 3C 368: Evidence for Jet–Cloud Interactions
    Mon. Not. R. Astron. Soc. 299, 357–370 (1998) Deep radio observations of 3C 324 and 3C 368: evidence for jet–cloud interactions P. N. Best,1 C. L. Carilli,2 S. T. Garrington,3 M. S. Longair4 and H. J. A. Ro¨ttgering1 1Sterrewacht Leiden, Huygens Laboratory, PO Box 9513, 2300 RA Leiden, The Netherlands 2NRAO, PO Box 0, Socorro, NM 87801-0387, USA 3The University of Manchester, NRAL, Jodrell Bank, Lower Withington, Macclesfield, Cheshire, SK11 9DL 4Cavendish Labs, Madingley Road, Cambridge, CB3 0HE Downloaded from https://academic.oup.com/mnras/article/299/2/357/1019191 by guest on 01 October 2021 Accepted 1998 March 23. Received 1998 March 16; in original form 1997 August 27 ABSTRACT High-resolution, deep radio images are presented for two distant radio galaxies, 3C 324 (z ¼ 1:206) and 3C 368 (z ¼ 1:132), which are both prime examples of the radio–optical alignment effect seen in powerful radio galaxies with redshifts z * 0:6. Radio observations were made using the Very Large Array in A-array configuration at 5 and 8 GHz, and using the MERLIN array at 1.4 and 1.65 GHz. Radio spectral index, radio polarization, and rotation measure maps are presented for both sources. Radio core candidates are detected in each source, and by aligning these with the centroid of the infrared emission the radio and the optical / infrared images can be related astrometrically with 0.1 arcsec accuracy. In each source the radio core is located at a minimum of the optical emission, probably associated with a central dust lane.
    [Show full text]
  • The Extension of the Hubble Diagram. II-New Redshifts and Photometry Of
    THE ASTROPHYSICAL JOURNAL, 221:383-394, 1978 April 15 © 1978. The American Astronomical Society. All rights reserved. Printed in U.S.A. 1978ApJ...221..383K THE EXTENSION OF THE HUBBLE DIAGRAM. IL NEW REDSHIFTS AND PHOTOMETRY OF VERY DISTANT GALAXY CLUSTERS: FIRST INDICATION OF A DEVIATION OF THE HUBBLE DIAGRAM FROM A STRAIGHT LINE JEROME KRISTIAN, ALLAN SANDAGE, AND JAMES A. WESTPHAL Hale Observatories, Carnegie Institution of Washington, California Institute of Technology Received 1977 July 22; accepted 1977 October 31 ABSTRACT Redshifts are given for 50 brightest cluster galaxies, extending as far as z = 0.75; BVR photom­ etry is given for 33 clusters. These data are combined with earlier data of a similar kind in order to investigate several effects. The measured B - V and V - R colors as a function of redshift are well represented by Whitford's standard-galaxy K corrections, as far as these are defined (to · z = 0.28 in B - V and z = 0.48 in V - R). This suggests both that the K corrections are valid over these ranges of z and that no major color change of the galaxies has occurred over the last 4-5 x 109 years. At larger redshifts, the colors, which start out being monotonically redder with z, turn over and become bluer with z. The data at large z seem to follow the prediction based upon ultraviolet photometry of NGC 4486 (M87), which is one extreme of a range of galaxies measured by Code and Welch. Other standard corrections to the measurements are discussed, and formal least-squares values of q0 are computed.
    [Show full text]
  • Evolution of Galactic Star Formation in Galaxy Clusters and Post-Starburst Galaxies
    Evolution of galactic star formation in galaxy clusters and post-starburst galaxies Marcel Lotz M¨unchen2020 Evolution of galactic star formation in galaxy clusters and post-starburst galaxies Marcel Lotz Dissertation an der Fakult¨atf¨urPhysik der Ludwig{Maximilians{Universit¨at M¨unchen vorgelegt von Marcel Lotz aus Frankfurt am Main M¨unchen, den 16. November 2020 Erstgutachter: Prof. Dr. Andreas Burkert Zweitgutachter: Prof. Dr. Til Birnstiel Tag der m¨undlichen Pr¨ufung:8. Januar 2021 Contents Zusammenfassung viii 1 Introduction 1 1.1 A brief history of astronomy . .1 1.2 Cosmology . .5 1.2.1 The Cosmological Principle and our expanding Universe . .6 1.2.2 Dark matter, dark energy and the ΛCDM cosmological model . .9 1.2.3 Chronology of the Universe . 13 1.3 Galaxy properties . 16 1.3.1 Morphology . 17 1.3.2 Colour . 20 1.4 Galaxy evolution . 22 1.4.1 Galaxy formation . 22 1.4.2 Star formation and feedback . 24 1.4.3 Mergers . 25 1.4.4 Galaxy clusters and environmental quenching . 26 1.4.5 Post-starburst galaxies . 29 2 State-of-the-art simulations 33 2.1 Brief introduction to numerical simulations . 33 2.1.1 Treatment of the gravitational force . 34 2.1.2 Varying hydrodynamic approaches . 35 2.2 Magneticum Pathfinder simulations . 39 2.2.1 Smoothed particle hydrodynamics . 39 2.2.2 Details of the Magneticum Pathfinder simulations . 40 3 Gone after one orbit: How cluster environments quench galaxies 45 3.1 Data sample . 46 3.1.1 Observational comparison with CLASH . 46 3.2 Velocity-anisotropy Profiles .
    [Show full text]
  • Csillagászati Évkönyv 1979
    CSILLAGÁSZATI ÉVKÖNYV 1979 CSILLAGASZATI ÉVKÖNYV az 1979. évre Szerkesztette a TIT Csillagászati és Űrkutatási Szakosztályainak Országos Választmánya az Eötvös Loránd Fizikai Társulat Csillagászati Csoportjának a MTESZ Központi Asztronautikai Szakosztályának közreműködésével A mmnkr wrertun .......... ............. gIihIuL'U Kllldó? Budapest 1978 Címképünk: A Szaturnusz 1974. március 10-én (A Lunar and Planetary Labo ratory felvétele) A hátsó borítón: Az űrrepülőgép (Space Shuttle) ISSN 0526-233X © Gondolat Kiadó 1978 CSILLAGÁSZATI ADATOK AZ 1979. ÉVRE Az adatokat összeállították az MTA Napfizikai Obszervatórium kutatói I. JANUÁR KÖZÉP-EURÓPAI zónaidőben (KözEI) Budapesten A NAP A HOLD napjai A HOLD fény­ hányadik hányadik változásai HÉT kel delel nyugszik kel nyugszik DÁTUM Év A hete Év napja h m h m h m h m h m h m 1 H 1 1 7 32 11 48 16 03 9 13 19 42 2 K 2 7 32 11 48 16 04 9 52 20 57 3 Sz 3 7 32 11 48 16 05 10 25 22 12 4 Cs 4 7 32 11 49 16 06 10 57 23 23 5 P 5 7 32 11 49 16 07 11 27 — D 12 16 6, Sz 6 7 32 11 50 16 08 11 56 0 33 7 V 7 7 31 11 50 16 09 12 28 1 39 8 H 2 8 7 31 11 51 16 10 13 01 2 44 9 K 9 7 31 11 51 16 12 13 38 3 45 10 Sz 10 7 30 11 52 16 13 14 20 4 43 11 Cs 11 7 30 11 52 16 14 15 06 5 37 12 P 12 7 30 11 52 16 15 15 55 6 24 13 Sz 13 7 29 11 53 16 17 16 49 7 08 O 08 09 14 V 14 7 28 11 53 16 18 17 45 7 45 15 H 3 15 7 28 11 53 16 19 18 43 8 19 16 K 16 7 27 11 54 16 21 19 43 8 50 17 Sz 17 7 27 11 54 16 22 20 42 9 17 18 Cs 18 7 26 11 54 16 23 21 43 9 43 19 P 19 7 25 11 55 16 25 22 45 10 09 20 Sz 20 7 24 11 55 16 26 23 48 10
    [Show full text]
  • Dark Matter in Galaxy Clusters: Shape, Projection, and Environment
    Dark Matter in Galaxy Clusters: Shape, Projection, and Environment A Thesis Submitted to the Faculty of Drexel University by Austen M. Groener in partial fulfillment of the requirements for the degree of Doctor of Philosophy September 2015 c Copyright 2015 Austen M. Groener. ii Dedications I dedicate this thesis to my family, and to my wife, who supported me unconditionally throughout my career as a scientist. iii Acknowledgments I have many people to thank for making this work a possibility. Firstly, I would like to thank my advisor, Dr. David Goldberg. His guidance, support, and most of all his patience provided the framework for which I was able to build my work from. I would also like to thank my dissertation committee members, Dr. Michael Vogeley, Dr. Gordon Richards, Dr. Luis Cruz, and Dr. Andrew Hicks, for their constructive criticism and support of my research. I would also like to acknowledge fellow graduate students for their assistance and support. A special thanks to Justin Bird, Markus Rexroth, Frank Jones, Crystal Moorman, and Vishal Kasliwal for allowing me to bounce ideas off of them, which was a truly important but time consuming process. iv Table of Contents List of Tables ........................................... vi List of Figures .......................................... vii Abstract .............................................. ix 1. Introduction .......................................... 1 1.1 The Radial Density Profile.................................. 2 1.2 Cluster Scaling Relations .................................. 5 1.3 Clusters and Environment.................................. 7 1.4 Outline ............................................ 11 2. Cluster Shape and Orientation .............................. 12 2.1 Introduction.......................................... 12 2.2 Triaxial Projections...................................... 14 2.3 Sample and Methods..................................... 15 2.3.1 Simulation Sample .................................... 15 2.3.2 Methods.........................................
    [Show full text]
  • Sub-Arcsecond Imaging of Arp 299-A at 150 Mhz with LOFAR: Evidence for a Starburst-Driven Outflow N
    Astronomy & Astrophysics manuscript no. Outflow_Arp299-A_with_LOFAR c ESO 2018 October 9, 2018 Letter to the Editor Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow N. Ramírez-Olivencia1 E. Varenius2, M. Pérez-Torres1; 3, A. Alberdi1, E. Pérez1, A. Alonso-Herrero4, A. Deller5, R. Herrero-Illana6, J. Moldón2, L. Barcos-Muñoz7; 8, I. Martí-Vidal9 1 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain 2 Jodrell Bank Centr for Astrophysics, Alan Turing Building, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom 3 Visiting Scientist: Facultad de Ciencias, Univ. de Zaragoza, Spain 4 Centro de Astrobiología (CSIC-INTA), ESAC Campus, 28692 Villanueva de Cañada, Madrid, Spain 5 Centre for Astrophysics & Supercomputing Swinburne University of Technology, John St, Hawthorn VIC 3122 Australia 6 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago de Chile 7 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 8 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 9 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden Received MM/DD, YY; accepted MM/DD, YY ABSTRACT We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcseconds from the A-nucleus in the N-S direction (≈ 5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system.
    [Show full text]
  • Astrophysical Applications of Scattering in Interstellar and Intracluster Gases
    Astrophysical Applications of Scattering in Interstellar and Intracluster Gases Conrad K. Cramphorn Munchen¨ 2004 Astrophysical Applications of Scattering in Interstellar and Intracluster Gases Conrad K. Cramphorn Dissertation an der Fakult¨at fur¨ Physik der Ludwig–Maximilians–Universit¨at Munchen¨ vorgelegt von Conrad K. Cramphorn aus Dundee in Schottland Munchen,¨ den 12. Mai 2004 Erstgutachter: Prof. Dr. Rashid A. Sunyaev Zweitgutachter: Prof. Dr. Ralf Bender Tag der mundlichen¨ Prufung:¨ 24. November 2004 Fur¨ meine Eltern Inhaltsverzeichnis Zusammenfassung (Summary in German) 3 Summary 5 1 Introduction 9 1.1 Diffuse Gas in the Universe ...................... 9 1.2 Supermassive Black Holes in the Centres of Galaxies ........ 11 1.2.1 Sgr A¤ .............................. 13 1.2.2 M31 ............................... 14 1.2.3 M87 ............................... 15 1.3 Relativistic Jets ............................. 16 1.4 Clusters of Galaxies ........................... 17 1.5 The Sunyaev-Zel’dovich Effect ..................... 18 2 The X-ray luminosity of the Galactic centre in the recent past 21 2.1 Introduction ............................... 22 2.2 Method ................................. 25 2.2.1 X-ray Archaeology ....................... 25 2.2.2 GMCs in the Galactic disk ................... 28 2.2.3 Scattered flux .......................... 31 2.3 Limits on the X-ray luminosity of Sgr A¤ from Giant Molecular Clouds 35 2.3.1 Response of a single cloud ................... 36 2.3.2 Response of one field of view .................. 40 2.3.3 Response of all fields of view containing at least one GMC . 43 2.4 Limits on the X-ray luminosity of Sgr A¤ from the interstellar HI distribution ............................... 47 2.5 The Milky Way at extragalactic distances .............. 52 2.5.1 Scattered X-ray surface brightness ..............
    [Show full text]
  • Sub-Arcsecond Imaging of Arp 299-A at 150 Mhz with LOFAR: Evidence for a Starburst-Driven Outflow N
    A&A 610, L18 (2018) https://doi.org/10.1051/0004-6361/201732543 Astronomy & © ESO 2018 Astrophysics LETTER TO THE EDITOR Sub-arcsecond imaging of Arp 299-A at 150 MHz with LOFAR: Evidence for a starburst-driven outflow N. Ramírez-Olivencia1, E. Varenius2, M. Pérez-Torres1,3, A. Alberdi1, E. Pérez1, A. Alonso-Herrero4, A. Deller5, R. Herrero-Illana6, J. Moldón2, L. Barcos-Muñoz7,8, and I. Martí-Vidal9 1 Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain e-mail: [email protected] 2 Jodrell Bank Centr for Astrophysics, Alan Turing Building, University of Manchester, Oxford Road, Manchester M13 9PL, UK 3 Visiting Scientist: Facultad de Ciencias, Univ. de Zaragoza, Zaragoza, Spain 4 Centro de Astrobiología (CSIC-INTA), ESAC Campus, 28692 Villanueva de Cañada, Madrid, Spain 5 Centre for Astrophysics & Supercomputing Swinburne University of Technology, John St, Hawthorn VIC 3122, Australia 6 European Southern Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 7 Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura, Santiago, Chile 8 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 9 Department of Space, Earth and Environment, Chalmers University of Technology, Onsala Space Observatory, 439 92 Onsala, Sweden Received 23 December 2017 / Accepted 2 February 2018 ABSTRACT We report on the first sub-arcsecond (0.44 × 0.41 arcsec2) angular resolution image at 150 MHz of the A-nucleus in the luminous infrared galaxy Arp 299, from International Low Frequency Array (LOFAR) Telescope observations. The most remarkable finding is that of an intriguing two-sided, filamentary structure emanating from the A-nucleus, which we interpret as an outflow that extends up to at least 14 arcsec from the A-nucleus in the N–S direction (≈5 kpc deprojected size) and accounts for almost 40% of the extended emission of the entire galaxy system.
    [Show full text]